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The elliptical approximation (EA) model is an important method for deducing spatial fluctuations from the temporal fluc-
tuations at a single point. It has been extensively examined and used in shear fields of desktop experiments for the longitudinal
space-time cross-correlation functions C r( , ). Here we examine the EA model in the flow field of the ocean and present its
application to the transversal space-time cross-correlation functions G r( , ). The result shows that EA model is valid for the

velocity field of the ocean, that is, G r( , ) has the scaling form of G r( , 0)E with r r U V= ( ) + ( )E
2 2 1/2

, where U and V are the

velocities associated with the vertical phase velocities of the internal waves. Based on the EA model, we can obtain the vertical
wavenumber energy spectrum of the ocean and estimate the transversal Taylor micro-scale and Reynolds number.
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1. Introduction

Spatial and temporal structure has become an important
method for studying the ocean dynamics [1-3]. However, it
is difficult to obtain the spatial structure of the flow field in
the ocean with current measurement techniques and ob-
servation methods. By contrast, we can easily obtain the
temporal structure of a fixed point by the method of con-
tinuous observation. As a result, to obtain the spatial
structure of the flow field, researchers have to rely on
Taylor’s hypothesis [4], by which the spatial fluctuations
can be deduced from the temporal fluctuations measured at a
single point. Taylor’s hypothesis has been widely used in the
ocean. For example, Taylor’s hypothesis was used to convert
the time series obtained from a submersible particle image

velocimetry (PIV) system into spatial series to extend the
wavenumber space of spectra [5]. Taylor’s hypothesis was
employed to convert the acoustic Doppler velocimeter
(ADV) velocity measurements into a wavenumber spectrum
to estimate the dissipation rate [6]. Taylor’s hypothesis was
used to convert frequency spectra into wavenumber spectra
to study the horizontal distribution of eddy energy and ex-
plore the turbulent mixing [7,8]. However, Taylor’s hypoth-
esis remains controversial because it heavily relies on the
existence of a large mean flow [9,10]. Soloviev and Lukas
[10] suggested that the validation of Taylor’s hypothesis re-
quires the mean flow to be at least 10 times greater than the
perturbation velocity. In flow field with a mean flow smaller
than the perturbation velocity, spatial structure derived from
Taylor’s hypothesis would be erroneous [11,12].
In 2006, He and Zhang [13] introduced an elliptical ap-

proximation (EA) model by which they could also deduce
the spatial fluctuations from the temporal fluctuations
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measured at a single point. EA model overcomes the
weakness of Taylor’s hypothesis and can be applied to flow
fields without large mean flow. Desktop experiments and
numerical simulations have been conducted to assess the
ability of EA model to convert temporal statistical quantities
into spatial statistical quantities [14]. For example, EA
model was verified with direct numerical simulation of
turbulent channel flows [15]. EA model was assessed in the
temperature and velocity fields of the turbulent Rayleigh-
Bénard convection [16-19]. However, as far as we know, no
studies have evaluated the EA model in the ocean or applied
it to the ocean dynamics. The flow field of the ocean con-
tains various motions, such as internal waves, mesoscale
eddies, and circulations [20-23]. It remains unclear whether
the EA model is effective in the ocean. Previous desktop
experiments and numerical simulations have examined its
application to the longitudinal space-time cross-correlation
functions. Different from previous studies, here we assess
the EA model using the flow field of the ocean and present
its application to the transversal space-time cross-correlation
functions. This assessment provides reference and evidence
for the application of the EA model to the flow field of the
ocean, which is important to explore the ocean dynamics.

2. Observations

In 2008, we deployed a mooring over the continental shelf in

the northern South China Sea (SCS) (22.15°N, 115.60°W)
where the depth of the seabed is 67 m (Fig. 1(a)). The mooring
consists of an upward looking 300-kHz acoustic Doppler
current profiler (ADCP) at 60 m. Velocity data between 4 and
56 m was collected by the ADCP, which has 2 m vertical
resolution and 1 minute temporal resolution. Approximately
16 days data were collected (12:09, Jul 1, 2008 to 03:19, Jul
17, 2008). Figure 1(b) shows the averaged zonal velocity u
during the observation and the corresponding shear S . u
decreases almost linearly with increasing depth, which sug-
gests nearly homogeneous shear in the flow. The magnitude of
shear in the water column was approximately 6×10−3 s−1.
The northern SCS is one of the most active areas in the

world, with large amplitude internal waves propagating
from the Luzon Strait to the continental shelf [20,24]. Figure
2(a) shows the spectra of the horizontal kinetic energy at
mooring site. Significant peaks appear in inertial (f), diurnal
(O1 and K1), semidiurnal (M2 and S2), and higher tidal
harmonic (e.g., D3 and D4) frequency bands. Harmonic
analysis is performed on the velocity data at each depth to
investigate the amplitude and phase of the internal tides
[25]. Four (O1, K1, M2, and S2) primary internal tidal ellipses
are shown in Fig. 2(b). The elliptical polarization of the
internal tides O1, K1, M2, and S2 is rotated clockwise, which
is consistent with that of freely propagating waves in the
northern hemisphere. O1 and K1 tidal currents are dominated
by baroclinic component, with large variation (Greenwich
phase and ellipse inclination) across the water column. M2

Figure 1 (a) Map showing the observation station (red circle) in the SCS. (b) Profiles of the averaged zonal velocity and the corresponding shear S at the
mooring site. The background map is available for download at http://bzdt.ch.mnr.gov.cn/index.html. The drawing review number of the map is GS(2019)1652.
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tidal currents are barotropic, with little variation (Greenwich
phase and ellipse inclination) across the water column. S2
tidal currents are small compared to other tidal currents. The
dominant baroclinic component in O1 and K1 tidal currents
suggests that their vertical phase velocities are relatively
small, while strong barotropic component in M2 tidal cur-
rents suggests that M2 tidal currents have fast vertical phase
velocity. In addition to internal waves with tidal frequencies
(O1, K1, M2, and S2), internal waves with other frequencies
(e.g., f, D3, and D4) also have vertical phase velocities that
vary with frequency. Measuring the phase velocities of in-
ternal waves and their averaged phase velocity is important
to explore the energy cascade among internal waves [26,27].

3. Results

Space-time cross-correlations are the quantities that are
commonly used to study the space-time statistics of turbu-
lent flows [28,29]. The velocity transversal space-time
cross-correlation function at z0 is defined as

( ) ( )
( )G r

u z t u z r t
z z r( , ) =

, + , +
+ (1)

u u

0 0
( 0) 0

where u z t( , )0 is the local velocity along the zonal direction,
z( )u 0 is the r.m.s velocity, r is the spatial separation along

the vertical direction, is the delay time, and denotes a
time average. Near the origin, the cross-correlation function
can be expanded using Taylor’s series up to the second order:
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In Eq. (2), we have G(0, 0)/ = 0 for steady-state flow.
While in the shear flow (Fig. 1(b)), we have
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With Eqs. (2) and (3), we get
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In the r-τ plane, the iso-correlation contours of G r( , ) are
a set of self-similar elliptical curves. According to the EA
model, one can find a new length scale rE that satisfies

r r U V= ( ) + ( ) , (5)E
2 2 2

and

G r G r( , 0) = ( , ), (6)E

with
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Equation (5) is the EA model introduced by He and Zhang

Figure 2 (a) Spectra of horizontal kinetic energy as a function of frequency for all depths (gray). The black curve represents their averaged spectrum.
Inertial (f), diurnal (O1 and K1), semidiurnal (M2 and S2), and high harmonic (D3 and D4) frequencies are indicated by vertical lines. The statistical significance
level (95%) is indicated by the vertical line. (b) The diurnal (O1 and K1) and semidiurnal (M2 and S2) measured horizontal current ellipses. The Greenwich
phase is denoted by the line within the ellipse, and the direction of rotation of the current is denoted by the arrow. The unit "cpd" means cycle per day.
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[13]. EA model is a plausible extension of Taylor’s hy-
pothesis to the flow fields without large mean flow. It be-
comes Taylor’s hypothesis when V vanishes, r r U=T .

In Eq. (4),
( )u z t

z S2
,

u

0
2( 0)

can be ignored if S is infinitely close

to zero, in which case, G r G r( , ) ( , ) and EA model can
also be applied to G r( , ). Next, we assess the application of
EA model to G r( , ) using the velocity u z t( , ) measured in
the ocean. Figure 3 shows the flood contours of the mea-
sured G r( , ) as a function of r and at z0 = 30 m. As
expected, G r( , ) is a single peaked function with a maximal
value at the origin r( , ) = (0, 0) and decays to negative value
at large r or . G r( , ) decays slowly along the preferential
direction (the major axis of ellipse), and decays quickly in
the direction perpendicular to the preferential direction. If
Taylor’s hypothesis holds for the present flow field, the iso-
correlation contours of G r( , ) should be degenerated to
straight lines, r r U=T . However, the iso-correlation
contours of G r( , ) are significantly different from the
straight lines predicted by Taylor’s hypothesis. They are
more like the elliptic curves that can be described by the
elliptic forms, r r U V= ( ) + ( )E

2 2 2, defined from EA
model. This suggests that EA model works better than
Taylor’s hypothesis in the present flow field. However, the
iso-correlation contours gradually deform as r or increase.
Only iso-correlation contours at r < 5 m can be well de-
scribed by the elliptic forms while those at r > 5 m deviate
from the elliptic forms (comparing with the cyan dashed
elliptic curves in Fig. 3). This deviation mainly results from

the term G
r r(0,0) in Eq. (2). This term depends on ( )u z t

z
,

u

0
2( 0)

and S (see Eq. (3)). In the observed flow field, S is not zero

(Fig. 1(b)). The effect of G
r r(0,0) can’t be ignored at large

r, which leads to the iso-correlation contours deviate from
the elliptic forms at large r (> 5 m).
To verify the EA model, we need to obtain the two ve-

locities U and V in Eq. (5). According to He et al.’s [16]
inference, G r( , 0)E is a decreasing function of rE in which a
minimum rE will correspond to a maximum G r( , 0)E ; thus,
the peak positions rp and p at which the correlation function
reaches its maximum can be determined by the conditions
that r r/ | = 0E and r / | = 0E r , respectively, from which
we can obtain
r U= , (9)p

and

( )
U

U V r=
+

. (10)p 2 2

It is observed from Fig. 3 that G r( , ) at a fixed (r) is a
single peaked function with peak position rp( p). In other
words, rp is the only spatial separation that maximizes
G r( , ) at a fixed and p is the only time delay that max-
imizes G r( , ) at a fixed r. Thus, rp and p can also be
directly determined by the iso-correlation contours of
G r( , ). Figure 4(a) and (b) shows rp as a function of and p

as a function of r, respectively. If the EA model is applicable
to all and r, rp will be a linear function of , as in Eq. (9),
and p will be a linear function of r, as in Eq. (10). However,
rp shows a linear function of only at [−2.5 2.5] h and p

shows a linear function of r only at r [−5 5] m. Deviations
from the linear functions at > 2.5 h and r > 5 m are
mainly due to the deformation of ellipses caused by

G
r r(0,0) . Therefore, only data at [−2.5 2.5] h and

r [−5 5] m are used to determine their linear functions,
respectively. The result shows that r =p 0 with 0 =
1.06 m h−1 and r=p 0 with 0 = 0.15 h m−1. Combining
r =p 0 and r=p 0 with Eqs. (9) and (10) gives

U = , (11)0

and
U

U V+ = . (12)2 2 0

Solving Eqs. (11) and (12), we obtain U = 1.06 m h−1 and
V = 2.4378 m h−1.
Next, we assess the relation between G r( , ) and G r( , 0)E

with the obtained U and V. Figure 4(c) shows the evolution
ofG r( , ) versus the delay time for several different spatial
separations. These correlation curves initially increase to the
maximum and then decrease. Every curve has a single peak
at p and gradually becomes asymmetric as r increases.

Figure 3 Velocity transversal space-time cross-correlations G r( , ) vs. r
and at z0 = 30 m. The cyan dashed curves show ellipses for comparison.
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Figure 4(d) shows the evolution of G r( , ) versus

r r U V= [( ) + ( ) ]E
2 2 1/2

defined from EA model, with U =
1.06 m h−1 and V = 2.4378 m h−1. For comparison, the di-
rectly measured G r( , 0) is also plotted as a function of r in
Fig. 4(d) (open circles). The measured correlation curves
collapse on top of each other and match the directly mea-
sured G r( , 0) at rE < 5 m, indicating that the measured
G r( , ) have the predicted scaling form G r( , 0)E and EA
model holds for rE < 5 m. However, correlation curves
gradually deviate from each other at rE > 5 m. These de-
viations mainly result from the non-zero term

( )G
r

u z t
z S(0,0) = 2
,

u

0
2( 0)

. Shear determines the degree of de-

viation of the curve. The greater the shear is, the faster the
curve deviates. In our observation, correlation curves col-
lapse into a single master curve at rE < 5 m, which indicates

that the effect of G
r

(0,0) on the application of EA model

can be ignored at rE < 5 m.
An important application of the EA model in the ocean is

to obtain wavenumber spectrum from time series data. One
implication of EA model is that when r = 0, we have
G G r(0, ) = ( , 0)E . Therefore, G(0, ) can be directly used to
evaluate G r( , 0)E and its vertical wavenumber energy spec-
trum ( )E kz . Figure 5(a) shows the measured ( )E kz at z =

30 m based on EA model. Note that the energy spectrum is
only valid at kz > 1/5 m−1 because the EA model only holds
for rE < 5 m. Here we designate the minimum effective
wavenumber as kz1, kz1 = 0.2 m−1, and the maximum effec-
tive wavenumber as kz2, kz2 = 6.3 m−1. kz2 is the maximum
wavenumber not effected by vibration noise. Two distinct
subranges of length scales can be identified in the effective
wavenumber range [kz1 kz2]. One subrange (0.2 < kz < 2)
contains motions with length scale between 0.5 and 5 m.
Energy in this subrange decays slowly, with a power law of
kz

0.2. Another subrange (2 < kz < 6.3) contains motions with
length scale between 0.16 and 0.5 m. Energy decays rapidly
in this subrange, with a power law of kz

2.5.
Another important application of EA model is to estimate

the transversal Taylor micro-scale g. g is defined by [30]

t G t( ) = 1
2 (0, ) , (13)g

1/2

where G t G r(0, ) = ( / )r
2 2

=0. Letting p r( ) be the parabola
osculating G r( ) at r = 0, i.e., p G(0) = (0), p G(0) = (0),
and p G(0) = (0), we obtain

p r G r r( ) = 1 + 1
2 (0) = 1 . (14)

g

2 2

2

For small values of r, G r p r( , ) ( ) [13,15,16]. Thus, we

Figure 4 (a) The measured rp vs. . r =p 0 based on data between the two vertical dashed lines is shown by the solid line. (b) The measured p vs. r.
r=p 0 based on data between the two vertical dashed lines is showed by the solid line. Velocity transversal space-time cross-correlations G r( , ) for several

different spatial separations (r = 0 m, 2 m, 4 m, 6 m, 8 m, and 10 m) are plotted vs. (a) and (b) r r U V= [( ) + ( ) ]E
2 2 1 /2 defined from EA model. The

measured G r( , 0) vs. r is shown by the open circles. The vertical dashed line in (d) indicates the distance at which the cross-correlations G r( , ) begin to
deviate from each other.
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have
r
G r1 ,0 (15)g

( )

for small values of r. Figure 5(b) shows =E

r G r/ 1 ( , 0)E E as a function of rE, where G r( , 0)E is ob-
tained from G(0, ) based on the EA model. The directly
measured r r G r( ) = / 1 ( , 0) (circles) was also plotted in
Fig. 5(b) for comparison. The obtained r( )E are in agreement
with the measured r( ), especially at the distance (rE < 5 m) at
which EA model is valid. We obtain r( )g E 11.2 m for
small rE. The Reynolds number based on the transversal

Taylor microscale is ( )Re U V+ /g
2 2 1/2

g
8845, where

= 9.35×10−7 m2 s−1 is the kinematic viscosity of seawater.
Based on the EA model, we also obtain two characteristic

velocities U and V. These two velocities are associated with
the vertical phase velocities of the internal waves. The ob-
served flow field contains internal waves of various fre-
quencies, which propagate downward or upward at different
vertical phase velocities in the water column. The propa-
gation properties of internal waves make the velocity signals
at different depths correlated with each other. Yet, more
observations and numerical simulations are needed to study

the effects of internal waves with different phase velocities
on U and V, and the EA model in the near future.

4. Conclusions

We have presented a systematic investigation of the appli-
cation of the EA model to the velocity transversal space-
time cross-correlation functions G r( , ) of the velocity field
over the continental shelf in the northern SCS. The result
shows that the iso-correlation contours of G r( , ) have an
elliptical curve shape. With the separation rE defined from
the EA model to scale G r( , ), the correlation curves col-
lapse into a single master curve at r < 5 m. The correlation
curves at r > 5 m fail to collapse on top of each other.
Failure of the EA model at large separation mainly results
from the non-zero G r(0, 0)/ which depends on shear.
Previous studies have verified that EA model is suitable for
longitudinal space-time cross-correlation functions in desk-
top experiments [16,17,19]. In this study, we first verify that
EA model is also suitable for the transversal space-time
cross-correlation functions in the ocean. Based on the EA
model, we can obtain the vertical wavenumber energy
spectrum of the ocean using time series data at a single
point, which is difficult to obtain by direct observation. We
can also estimate the transversal Taylor micro-scale and
Reynolds number of the ocean. These physical quantities are
essential for understanding the ocean dynamics.
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EA模型在海洋的速度横向时空互相关函数中的应用

梁长荣, 尚晓东, 陈桂英, 何晓舟, 童彭尔

摘要 椭圆近似(EA)模型是从单个点的时间波动数据中推断空间波动数据的重要方法, 它已在室内实验剪切场的纵向时空互相关函

数C r( , )得到验证并被广泛应用. 在这里, 我们研究了EA模型在海洋流场中的有效性, 并介绍了其在横向时空互相关函数G r( , )中的应

用. 结果表明, EA模型在海洋的速度场中是有效的, 即G r( , )具有G r( , 0)E 的尺度形式, 其中r r U V= [( ) + ( ) ]E
2 2 1 /2, U和V是与内波垂直

相速度相关的两个特征速度. 基于EA模型, 我们可以获得海洋的垂直波数能谱, 并估计海洋的泰勒微尺度和雷诺数.
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