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We report a systematic study of the collective effect of thermal plumes on the
probability density function (p.d.f.) P(δT) of temperature fluctuations δT(t) in turbulent
Rayleigh–Bénard convection. By decomposing δT(t) into four basic fluctuation modes
associated with single and multiple warm and cold plumes and a turbulent background, we
derive an analytic form of P(δT) based on the convolutions of the five independent modes.
To test the derived form of P(δT) in the multiple-plume regions, where the thermal plumes
are heavily populated, we conduct time series measurements of temperature fluctuations in
two convection cells; one is a vertical thin disk and the other is an upright cylinder of aspect
ratio unity. For a given normalized position in most regions of the convection cell, all of the
measured p.d.f.s P(δT) for different Rayleigh numbers fall onto a single master curve, once
δT is normalized by its root-mean-square (r.m.s.) value σT . It is found that the measured
P(δT/σT) at different locations along the symmetric horizontal and vertical axes of the
convection cells can all be well described by the derived form of P(δT/σT). The fitted
values of the parameters associated with the number of plumes in multiple plume clusters
and their relative strengths and degrees of intermittency are closely linked to the spatial
distribution of thermal plumes and local dynamics of the large-scale circulation in a closed
convection cell. Our work thus provides a unified theoretical approach for understanding
scalar p.d.f.s in a turbulent field, which is very useful not only for the present study but
also for the study of many turbulent mixing problems of practical interest.
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1. Introduction

Chaotic mixing of a passive scalar, such as temperature or pollutant concentration,
by a turbulent velocity field, is often observed to create convoluted spatial structures,
characterized by elongated lamellar (in two dimensions) or sheets (in three dimensions)
with a wide range of self-similar scales, which produce large intermittent fluctuations
with a non-Gaussian probability density function (p.d.f.) (Ottino 1989; Sreenivasan,
Ramshankar & Meneveau 1989; Procaccia et al. 1991; Villermaux 2012). The strong
non-Gaussian fluctuations in turbulent mixing are relevant to the transport of heat and
mass in many natural systems of geophysical and astrophysical scales, such as in the
ocean (Rahmstorf 2000), the atmosphere (Sidorenkov 2009) and the outer layer of the
Sun (Cattaneo, Emonet & Weiss 2003), and in numerous industrial processes of polymers,
minerals, fine chemicals, paints, cosmetics, food, water and waste-water treatment (Ottino
1989; Paul, Atiemo-Obeng & Kresta 2004; Dimotakis 2005).

Experimentally or numerically well-controlled studies of turbulent temperature
fluctuations are often conducted in Rayleigh–Bénard convection (or RBC), which occurs
in a confined fluid layer between two horizontal plates heated from below and cooled from
above. The convective flow in RBC is determined by the Rayleigh number, a dimensionless
form of buoyancy, Ra ≡ ψg�T H3/(νκ) and the Prandtl number Pr ≡ ν/κ . Here g is the
gravitational acceleration,�T is the temperature difference across the fluid layer of height
H, and ψ , ν and κ are, respectively, the thermal expansion coefficient, and the viscous
and thermal diffusivities of the convecting fluid. For a detailed review of RBC turbulence,
please see Siggia (1994), Kadanoff (2001), Ahlers, Grossmann & Lohse (2009), Lohse &
Xia (2010), Chillá & Schumacher (2012) and references therein.

When the Rayleigh number is sufficiently large (e.g. Ra � 108 for Pr � 4.4), the bulk
fluid becomes turbulent and a large-scale circulation (LSC) is formed across the convection
cell (Krishnamurti & Howard 1981; Zocchi, Moses & Libchaber 1990). The LSC is driven
by the warm and cold plumes emitted from the unstable thermal boundary layers (BLs)
near the bottom and top conducting plates and is maintained in a turbulent environment.
This large-scale flow with Pr > 1 has been studied extensively in upright cylindrical cells
of aspect ratio unity (Du & Tong 2000; Qiu & Tong 2001; Xi, Lam & Xia 2004; Sun, Xia
& Tong 2005), in which the LSC has a single roll structure, with its size comparable to
the cell height. An intriguing feature of this convective flow is the continuing appearance
of large fluctuations in the temperature field, which do not follow the Gaussian statistics
(Kadanoff 2001). The measured p.d.f. P(δT) of temperature fluctuations δT from the mean
value in the central region of the cell has a long exponential tail with its amplitude varied
by more than four decades, which falls off much slower than a Gaussian (Castaing et al.
1989; Sano, Wu & Libchaber 1989; Gollub et al. 1991; Belmonte, Tilgner & Libchaber
1994; Niemela et al. 2000; Du & Tong 2001; Zhou & Xia 2002; He, Tong & Xia 2007;
Wei & Ahlers 2016).

In a recent experiment, He, Wang & Tong (2018) showed that the exponential
temperature p.d.f. in RBC is generated by the thermal plumes, which intermittently emit
from the thermal boundary layers (BLs) and carry temperature fluctuations from the
BLs to the bulk region of the flow (Kadanoff 2001; Siggia 1994). Because of the rapid
mixing and advection of warm and cold plumes passing through the central region of the
convection cell, the local thermal dissipation rate ε(t) ≡ κ[∇T(t)]2 associated with the
thermal plumes was found to have a broad distribution f (ε) (He et al. 2007; He & Tong
2009). Consequently, the temperature p.d.f. P(δT) can be written as

P(δT) =
∫ ∞

0
f (ε)G(δT|ε) dε, (1.1)
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Non-Gaussian temperature fluctuations in a closed RBC cell

where G(δT|ε) is the conditional p.d.f. of temperature fluctuations when ε is held constant
(He et al. 2018). The measured G(δT|ε) was found to be of Gaussian form

G(δT|ε) = 1√
2πσ0(ε)

exp(−δT2/[2σ 2
0 (ε)]), (1.2)

and its variance σ 2
0 for different values of ε follows an exponential distribution

F(σ 2
0 ) = 1

σ 2
T

exp(−σ 2
0 /σ

2
T ), (1.3)

where σT is the r.m.s. value of the measured δT . The convolution of the two distribution
functions gives rise to the exponential p.d.f. P(δT). The physical origin of (1.2) and (1.3)
was discussed in He et al. (2018).

With this finding, Wang, He & Tong (2019) further proposed that the temperature p.d.f.
P(δT) at other (non-symmetric) locations of the cell can be obtained by assuming the
overall temperature fluctuations result from two independent sources, namely,

δT(t) = δTB(t)+ δTP(t), (1.4)

where δTB(t) denotes temperature fluctuations from the (turbulent) background with a
Gaussian distribution, and δTP(t) represents those resulting from the thermal plumes with
an exponential distribution. With (1.4), the temperature p.d.f. P(δT) can be derived from a
convolution of the two fluctuation modes with a relative ratio between the two modes and
a duty-cycle parameter for plume intermittency. These two adjustable parameters were
used to fit the measured P(δT) in different flow regions along the central vertical axis
of two different convection cells. A good agreement between the calculated P(δT) and
the experimental results was obtained (Wang et al. 2019), which suggests that the above
theoretical framework captures the essential physics behind the non-Gaussian statistics of
temperature fluctuations in a closed convection cell.

Based on the spatial distribution of thermal plumes in the closed convection cell, the
convective flow can be divided into five distinct regions, namely, thermal BL, mixing
zone, turbulent bulk, sidewall and cell centre, as shown in figure 1. Thermal plumes first
form and grow in the outer BL and they are mixed and bundled together in the mixing
zone. Because of the coherent LSC, most of the thermal plumes in the mixing zone are
eventually swept to the sidewall region. As a result, the bulk region has fewer plumes.
The mixing zone can be further divided into an inner region (0.04 � z/H � 0.1) and an
outer region (0.1 � z/H � 0.3), depending on whether the thermal plumes emitted from
the opposite BL can be detected (outer mixing zone) or not (inner mixing zone).

Figure 2 shows the evolution of local temperature fluctuations δT(t) and their p.d.f.s
in four different flow regions. The measured δT(t) in the outer BL (figure 2a) exhibits
dense positive spikes, indicating that warm plumes are formed intermittently in this
region. These intermittent temperature spikes give rise to a downward-bending tail in the
temperature p.d.f. P(δT) (black squares in figure 2(e) with δT/σT � 1). Furthermore, the
measured δT(t) has a continuous background of small-amplitude fluctuations resulting
from thermal conduction. These continuous fluctuations produce a symmetric distribution
in the resulting P(δT) (black squares in figure 2(e) with δT/σT < 1). In the inner
mixing zone (figure 2b), only those positive spikes with a large amplitude remain in the
measured δT(t), but their number is reduced considerably because many warm plumes
have been swept to the sidewall region by the LSC. As a result, continuous small-amplitude
fluctuations from the turbulent background occupy a longer duration of time in the
measured δT(t), and the resulting P(δT) exhibits an exponential-like long tail (red circles
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z Top cooling plate

Turbulent

bulk

Warm/cold inner BL,

Gaussian

Warm/cold inner BL,

(2.14)

Warm/cold mixing zone,

(2.15) and (2.16)

Warm/cold sidewall region,

(2.13)

Centre

Bottom heating plate
x

Figure 1. Sketch of distinct flow regions in the A = 1 upright cylinder: inner BL (z/δ � 0.6), outer BL (0.6 �
z/δ � 4), mixing zone (0.04 � z/H � 0.3), turbulent bulk (0.3 � z/H � 0.5 and |x|/Dup � 0.3), sidewall
region (0.3 � |x|/Dup � 0.5) and cell centre (z/H = 0.5). Here δ is the thermal BL thickness and A ≡ Dup/H
is the aspect ratio of the cylindrical cell with diameter Dup and height H. The dashed lines show the Cartesian
coordinates used in the experiment. The black arrows indicate the direction of the large-scale circulation. The
temperature p.d.f.s in each flow region are described by the given equations.
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Figure 2. Measured time series of local temperature fluctuations δT(t) in four different flow regions: (a) outer
BL (x = 0 mm and z = 1.6 mm), (b) inner mixing zone (x = 0 mm and z = 9.5 mm), (c) cell centre (x = 0 mm
and z = 95 mm) and (d) sidewall region (x = 85 mm and z = 95 mm). In the plot, δT(t) is normalized by its
r.m.s. value σT . The measurements are made in the upright cylinder filled with water and at Ra = 4.4 × 109

and Pr = 4.4 for (a–c) and Ra = 4.7 × 109 and Pr = 5.4 for (d). The coordinate system used is shown in
figure 3(b). (e) Corresponding p.d.f.s of the measured δT/σT .

in figure 2(e) with δT/σT � 1.5). At the cell centre (figure 2c), temperature fluctuations
are symmetric because of the reflection symmetry between the upper and lower halves
of the convection cell. The resulting P(δT) thus has two symmetric exponential tails on
both sides of the temperature p.d.f. (green up-pointing triangles in figure 2e). Finally, in
the sidewall region (figure 2d), the measured δT(t) exhibits many positive spikes resulting
from the rising warm plumes in the region and a few negative spikes from the falling
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Non-Gaussian temperature fluctuations in a closed RBC cell

cold plumes. The resulting P(δT) in the sidewall region possesses a most complex form
(blue down-pointing triangles in figure 2e).

The complex spatial distribution of thermal plumes gives rise to a rich behaviour of the
temperature p.d.f. Nonetheless, we found that the simple decomposition of temperature
fluctuations δT(t) into a Gaussian background together with a contribution from individual
plumes (one plume at a time as recorded by a temperature sensor), as shown in (1.4),
works for most of the regions, as shown in figure 1. Hereafter, we refer to these regions
collectively as the ‘single-plume’ region. However, we find two exceptional regions in
the closed convection cell, in which the plumes are highly concentrated and the above
mentioned ‘single-plume’ decomposition of δT(t) does not work. These two regions are
the sidewall and outer BL regions, in which the thermal plumes merge together in space
and produce large temperature fluctuations. This ‘multi-plume’ effect changes the tail part
of the temperature p.d.f. P(δT) (see figure 2e), causing it to deviate from the functional
form derived from (1.4).

In this paper, we take the multi-plume effect into account and further decompose
δTP(t) into two independent and mutually excluded fluctuation modes, namely, δTP(t) =
{δTs(t), δTm(t)}, where δTs(t) and δTm(t) are, respectively, temperature fluctuations
produced by single and multiple plumes. By assuming that the p.d.f. of δTm(t) follows the
Gamma distribution, and together with the given p.d.f. form of the other two independent
sources, we derive an analytical form of P(δT), which is a sum of convolutions of p.d.f.s
of individual fluctuation modes and contains a set of spatially varying parameters that
account for the relative strength and incidence of each fluctuation mode, and the average
number of thermal plumes involved in the multi-plume effect. A good agreement between
the calculated and measured P(δT) is obtained with the temperature data collected at
various locations in two different convection cells. Our results demonstrate that the
theoretical framework proposed by Wang et al. (2019) with the multi-plume effect included
is capable of explaining the complex non-Gaussian form of temperature p.d.f.s in a highly
non-uniform convective flow with a unified set of physical parameters.

The remainder of the paper is organized as follows. We first derive a general form of
temperature p.d.f. P(δT) for turbulent thermal convection in § 2. In § 3, we briefly describe
the two convection cells and experimental methods used for temperature data acquisition
in turbulent RBC. In § 4, we present the measured p.d.f.s P(δT) along the central axis of
the cell and in the sidewall region at the mid-height of the convection cell, and compare
the experimental results with the theoretical model. Finally, we conclude the paper with a
summary in § 5.

2. Update of the theoretical framework

We now expand the theory of Wang et al. (2019) by assuming that the plume-induced
temperature fluctuations δTP in (1.4) contain contributions from both single and multiple
plumes, namely,

δTP(t) = {δTsw(t), δTmw(t), δTsc(t), δTmc(t)} , (2.1)

where the subscripts ‘sw’ and ‘sc’ denote, respectively, the single-warm and single-cold
plumes, and the subscripts ‘mw’ and ‘mc’ denote, respectively, the multiple-warm and
multiple-cold plumes. As shown in Wang et al. (2019), the continuous background
temperature fluctuations δTB(t) follow the Gaussian distribution with zero mean and r.m.s.
value σB:

PB(δTB) = 1√
2πσB

exp(−δT2
B/(2σ

2
B)), δTB ∈ (−∞,+∞). (2.2)
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As shown in He et al. (2018), temperature fluctuations from single plumes have a simple
exponential p.d.f.

Psw(δTsw) = 1
σw

exp(−δTsw/σw), δTsw ∈ [0,+∞) (2.3)

for δTsw(t) and

Psc(δTsc) = 1
σc

exp(δTsc/σc), δTsc ∈ (−∞, 0], (2.4)

for δTsc(t). Here σw and σc are the r.m.s. values of δTsw(t) and δTsc(t), respectively. The
condition δTsw ≥ 0 (δTsc ≤ 0) applies for warm (cold) plumes, and states that the thermal
plumes are moving fluid parcels with their temperature fluctuations larger (smaller) than
the average background temperature.

The single-plume mode described in (2.3) and (2.4) was found to be a dominant one in
most regions along the central axis of the convection cell (Wang et al. 2019). Nonetheless,
we find that multi-plume clusters appear frequently in the outer BL region and in the
sidewall region, which is an extra effect to be considered in addition to the single-plume
mode. When a warm plume cluster contains n independent warm plumes, its temperature
fluctuation is a sum of n independent ones, namely,

δTmw(t) = δTsw,1(t)+ δTsw,2(t)+ · · · + δTsw,n(t), (2.5)

where each term results from single warm plumes at the measuring location. All the p.d.f.s
of δTsw,i(t) with i = 1, . . . , n obey the same exponential distribution, as shown in (2.3).
As a result, the p.d.f. of their sum δTmw(t) follows the gamma distribution:

Pmw(δTmw) = δTnw−1
mw exp(−δTmw/σw)

Γ (nw) σ
nw
w

, δTmw ∈ [0,+∞). (2.6)

Similarly, the p.d.f. of δTmc(t) from multiple-cold plumes is

Pmc(δTmc) = (−δTmc)
nc−1 exp(δTmc/σc)

Γ (nc) σ
nc
c

, δTmc ∈ (−∞, 0]. (2.7)

The gamma distribution is used to model the distribution of a random variable that
is a sum of n independent and identically distributed random variables following an
exponential distribution with rate parameter 1/σ (Hogg & Craig 1978). It has been used
in a variety of applications ranging from describing the size of insurance claims (Boland
2007) and the amount of rainfall (Aksoy 2000) to the protein concentration in live cells
(Friedman, Cai & Xie 2006). It has also been used previously to describe concentration
fluctuations of a dye in a turbulent jet (Villermaux & Duplat 2003; Duplat & Villermaux
2008; Le Borgne et al. 2017). When nw = 1 (or nc = 1), the gamma distribution becomes
the simple exponential distribution for single plumes. For nw > 1 (or nc > 1), the gamma
distribution is a single-peaked function with a value of zero at the origin. It has larger
effects on the distribution of large fluctuations. In principle, one needs a separate gamma
distribution for each given type of multi-plume clusters of size n, and the total distribution
would be a sum of gamma distributions with n = 1, 2, 3, . . . ,N. The experimental results
to be discussed below reveal that the thermal plumes often organize themselves into two
groups. One group is the individual single plumes with n = 1, and the other group is the
multi-plume clusters with a narrow size distribution so that a single gamma distribution
is adequate to describe their effect on P(δT). In this case, the value of nw (nc) becomes
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Non-Gaussian temperature fluctuations in a closed RBC cell

a positive real number representing the average number of warm (cold) plumes in the
multi-plume clusters at the measuring location.

Because the emission and appearance of thermal plumes at the measuring location is
intermittent, the four plume fluctuation modes, δTsw(t), δTmw(t), δTsc(t) and δTmc(t),
do not occur continuously. To characterize this intermittency effect, we introduce four
duty-cycle parameters, βsw, βsc, βmw and βmc, each varying from 0 to 1, to describe the
incidence of these fluctuation modes. As δTsw(t) and δTmw(t) (or δTsc(t) and δTmc(t))
are mutually exclusive at the measuring point (otherwise, they would be referred to as
a new multi-plume cluster), their coincidence is thus zero. When there are only warm
plumes present at the measuring location, the incidence of detecting the background
fluctuation δTB(t) is (1 − βsw − βmw). Similarly, when there are only cold plumes present
at the measuring location, the incident of detecting δTB(t) is (1 − βsc − βmc). When both
warm and cold plumes are present at the measuring location and they are independent of
each other, one has βsw + βmw ≤ 1 and βsc + βmc ≤ 1. In this case, the total temperature
fluctuations δT(t) can be expressed as

δT(t) =

⎧⎪⎨
⎪⎩

δTB(t), δTB(t)+ δTsc(t), δTB(t)+ δTmc(t)

δTB(t)+ δTsw(t), δTB(t)+ δTsw(t)+ δTsc(t), δTB(t)+ δTsw(t)+ δTmc(t)

δTB(t)+ δTmw(t), δTB(t)+ δTmw(t)+ δTsc(t), δTB(t)+ δTmw(t)+ δTmc(t)

⎫⎪⎬
⎪⎭ ,
(2.8)

and the corresponding incidence is given by⎧⎪⎨
⎪⎩
(1 − βsw − βmw)(1 − βsc − βmc), βsc(1 − βsw − βmw), βmc(1 − βsw − βmw)

βsw(1 − βsc − βmc), βswβsc, βswβmc

βmw(1 − βsc − βmc), βmwβsc, βmwβmc

⎫⎪⎬
⎪⎭ .
(2.9)

From the above discussions, we obtain the p.d.f. P(δT) as a weighted sum of
convolutions of the p.d.f.s for individual fluctuation modes:

P(δT) = (1 − βsw − βmw)(1 − βsc − βmc)PB(δT)

+ βsw(1 − βsc − βmc)

∫ +∞

0
PB(δT − δTsw)Psw(δTsw) d(δTsw)

+ βmw(1 − βsc − βmc)

∫ +∞

0
PB(δT − δTmw)Pmw(δTmw) d(δTmw)

+ βsc(1 − βsw − βmw)

∫ 0

−∞
PB(δT − δTsc)Psc(δTsc) d(δTsc)

+ βmc(1 − βsw − βmw)

∫ 0

−∞
PB(δT − δTmc)Pmc(δTmc) d(δTmc)

+ βswβsc

∫ 0

−∞

∫ +∞

0
PB(δT − δTsw − δTsc)Psw(δTsw)Psc(δTsc) d(δTsw) d(δTsc)

+ βswβmc

∫ 0

−∞

∫ +∞

0
PB(δT − δTsw − δTmc)Psw(δTsw)Pmc(δTmc) d(δTsw) d(δTmc)

+ βmwβsc

∫ 0

−∞

∫ +∞

0
PB(δT − δTmw − δTsc)Pmw(δTmw)Psc(δTsc) d(δTmw) d(δTsc)
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+ βmwβmc

∫ 0

−∞

∫ +∞

0
PB(δT − δTmw − δTmc)Pmw(δTmw)Pmc(δTmc) d(δTmw) d(δTmc).

(2.10)

With the p.d.f.s of the individual fluctuation modes as defined in (2.10), we find that the
total temperature fluctuations δT have mean value

ζ = σw(βsw + βmwnw)− σc(βsc + βmcnc), (2.11)

and r.m.s. value

σT = {σ 2
B + [2βsw + βmwnw(nw + 1)− (βsw + βmwnw)

2]σ 2
w

+ [2βsc + βmcnc(nc + 1)− (βsc + βmcnc)
2]σ 2

c }1/2. (2.12)

The normalized temperature fluctuation is defined as ξ = (δT − ζ )/σT . Except for some
specific symmetric locations in the flow, where the effects of warm and cold plumes are
equal, the local mean temperature ζ is non-zero.

By substituting (2.2)–(2.7) into (2.10), we obtain the analytic form of P(ξ):

P(ξ ;αw, αc, nw, nc, βsw, βmw, βsc, βmc) = (1 − βsw − βmw)(1 − βsc − βmc)χ1√
2π

× exp
(

−(χ1ξ + χ2)
2

2

)
+ βsw(1 − βsc − βmc)αwχ1

2
exp

(
α2

w

2
− αw (χ1ξ + χ2)

)

× erfc
(
αw − χ1ξ − χ2√

2

)
+ βmw(1 − βsc − βmc)2(nw−3)/2α

nw
w χ1√

πΓ (nw)

× exp

(
−(χ1ξ + χ2)

2

2

){
Γ
(nw

2

)
1F1

(
nw

2
,

1
2
,

[αw − χ1ξ − χ2]2

2

)

+
√

2Γ
(

nw + 1
2

)
(χ1ξ + χ2 − αw) 1F1

(
nw + 1

2
,

3
2
,

[αw − χ1ξ − χ2]2

2

)}

+ (1 − βsw − βmw)βscαcχ1

2
exp

(
α2

c

2
+ αc(χ1ξ + χ2)

)
erfc

(
αc + χ1ξ + χ2√

2

)

+ (1 − βsw − βmw)βmc2(nc−3)/2α
nc
c χ1√

πΓ (nc)
exp

(
−(χ1ξ + χ2)

2

2

)

×
{
Γ
(nc

2

)
1F1

(
nc

2
,

1
2
,

[αc + χ1ξ + χ2]2

2

)

−
√

2Γ
(

nc + 1
2

)
(χ1ξ + χ2 + αc) 1F1

(
nc + 1

2
,

3
2
,

[αc + χ1ξ + χ2]2

2

)}

+ βswβscαwαcχ1

2(αw + αc)

[
exp

(
α2

w

2
− αw (χ1ξ + χ2)

)
erfc

(
αw − χ1ξ − χ2√

2

)

+ exp
(
α2

c

2
+ αc(χ1ξ + χ2)

)
erfc

(
αc + χ1ξ + χ2√

2

)]
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Non-Gaussian temperature fluctuations in a closed RBC cell

+ βswβmcαwχ1

2Γ (nc)
exp

(
α2

w

2
− αw (χ1ξ + χ2)

)∫ 0

−∞
(−η)nc−1 exp

((
1 + αw

αc

)
η

)

× erfc

(
αw − χ1ξ − χ2 + η

αc√
2

)
dη + βmwβscαcχ1

2Γ (nw)

× exp
(
α2

c

2
+ αc (χ1ξ + χ2)

)∫ +∞

0
ηnw−1 exp

(
−
(

1 + αc

αw

)
η

)

× erfc

(
αc + χ1ξ + χ2 − η

αw√
2

)
dη + βmwβmcχ1√

2πΓ (nw) Γ (nc)

∫ 0

−∞

∫ +∞

0
η

nw−1
1 (−η2)

nc−1

× exp
(

−(χ1ξ + χ2 − η1/αw − η2/αc)
2

2
− η1 + η2

)
dη1 dη2 . (2.13)

In the above, χ1 = σT/σB, χ2 = ζ/σB, erfc(x) is the complementary error function, and
1F1(x) is the confluent hypergeometric function of the first kind. The p.d.f. P(ξ) has eight
parameters, including four duty-cycle parameters as mentioned above, two r.m.s. ratios,
αw = σB/σw and αc = σB/σc, and two plume numbers, nw and nc, for the superimposed
plume clusters. Equation (2.13) is a further expansion of the general form of P(ξ) in (4.13)
in Wang et al. (2019), and includes the contributions from multiple plumes. It is expected
to be valid in most regions in the convection cell, especially in the plume-concentrated
regions.

The complex form of P(ξ) can be simplified in certain representative regions, as shown
in figure 1. For example, we now consider temperature fluctuation along the vertical
central axis of the lower half of an aspect ratio A = 1 upright cylinder. In the inner BL
(z/δ � 0.6), heat transport is conducted predominantly by means of conduction rather
than convection. In this case, thermal plumes do not play a role in P(ξ), so that the four
duty-cycle parameters, βi,j, vanish. As a result, (2.13) is simplified to a Gaussian function,
which has been confirmed in previous experiments (Zhou & Xia 2013; He et al. 2018;
Wang et al. 2019).

In the outer BL region (1 � z/δ � 4), many warm plumes are emitted and move
upwards. No cold plume is detected. In this case, we have βsc = βmc = 0 and the p.d.f.
P(ξ) becomes

P(ξ ;αw, nw, βsw, βmw) = (1 − βsw − βmw)χ1√
2π

exp

(
− (χ1ξ + χ2)

2

2

)

+ βswαwχ1

2
exp

(
α2

w

2
− αw (χ1ξ + χ2)

)
erfc

(
αw − χ1ξ − χ2√

2

)

+ βmw2(nw−3)/2αnw
w χ1√

πΓ (nw)
exp

(
− (χ1ξ + χ2)

2

2

){
Γ
(nw

2

)
1F1

(
nw

2
,

1
2
,

[αw − χ1ξ − χ2]2

2

)

+
√

2Γ
(

nw + 1
2

)
(χ1ξ + χ2 − αw) 1F1

(
nw + 1

2
,

3
2
,

[αw − χ1ξ − χ2]2

2

)}
. (2.14)

Away from the BL region, both the p.d.f. of temperature fluctuations (Wang et al. 2019)
and the temperature variance profiles (Wang, He & Tong 2016; Wang et al. 2018b) scale
with the cell height H instead of the BL thickness δ. In the mixing zone above the outer
BL (0.04 � z/H � 0.3), most warm plumes emitted from the outer BL are swept away
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by the horizontal shear flow of the LSC, and the chance of finding multiple warm plumes
is negligible. Specifically, in the inner mixing zone (0.04 � z/H � 0.1), we have βsc =
βmc = βmw = 0 and (2.14) is reduced to

P(ξ ;αw, βsw) = (1 − βsw)χ1√
2π

exp

(
−(χ1ξ + χ2)

2

2

)

+ βswαwχ1

2
exp

(
α2

w

2
− αw (χ1ξ + χ2)

)
erfc

(
αw − χ1ξ − χ2√

2

)
,

(2.15)

which is the same as (4.8) in Wang et al. (2019).
In the outer mixing zone (0.1 � z/H � 0.3), a small number of single cold plumes are

detected. Because these cold plumes travel a long distance from the upper cooling plate,
their intermittency is lost due to turbulent diffusion, and therefore they become continuous.
In this case, we have βmw = βmc = 0 and βsc = 1. Equation (2.13) then can be simplified
as

P(ξ ;αw, αc, βsw) = (1 − βsw)αcχ1

2
exp

(
α2

c

2
+ αc(χ1ξ + χ2)

)
erfc

(
αc + χ1ξ + χ2√

2

)

+ βswαwαcχ1

2(αw + αc)

[
exp

(
α2

w

2
− αw (χ1ξ + χ2)

)
erfc

(
αw − χ1ξ − χ2√

2

)

+ exp
(
α2

c

2
+ αc(χ1ξ + χ2)

)
erfc

(
αc + χ1ξ + χ2√

2

)]
, (2.16)

which is the same as (4.13) in Wang et al. (2019).
When the distance z moves to the bulk region (0.3 � z/H � 0.5), both warm and cold

plumes are continuous and the multi-plume effect is negligible. In this case, we have
βmw = βmc = 0 and βsw = βsc = 1. Taking all these into (2.13), we find

P(ξ ;αw, αc) = αwαcχ1

2(αw + αc)

[
exp

(
α2

w

2
− αw (χ1ξ + χ2)

)
erfc

(
αw − χ1ξ − χ2√

2

)

+ exp
(
α2

c

2
+ αc(χ1ξ + χ2)

)
erfc

(
αc + χ1ξ + χ2√

2

)]
. (2.17)

For large values of ξ , P(ξ) in (2.17) becomes a simple exponential function with a decay
rate αcχ1 for ξ < 0 and αwχ1 for ξ > 0. In the bulk region, we have αw /=αc for most
locations. Because of the reflection symmetry, the cell centre (z/H = 0.5) is a special
location, in which we have αw = αc = αp (or σw = σc = σp). In this case, (2.17) can be
further simplified as

P(ξ ;αp) =
√
α2

p + 2

4
exp

(
α2

p

2

)⎡⎣exp
(
−ξ
√
α2

p + 2
)

erfc

⎛
⎝α2

p − ξ
√
α2

p + 2
√

2αp

⎞
⎠

+ exp
(
ξ

√
α2

p + 2
)

erfc

⎛
⎝α2

p + ξ
√
α2

p + 2
√

2αp

⎞
⎠
⎤
⎦ . (2.18)

Equation (2.18) is the same as (4.11) in Wang et al. (2019).
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Non-Gaussian temperature fluctuations in a closed RBC cell

With a single fitting parameter αp, (2.18) was found to well describe the measured
p.d.f.s of δT(t) in different convection systems, including: water (Pr � 4.4) and 20 wt.%
aqueous solution of glycerin (Pr � 7.6) filled in the two cells as shown in figure 1 (Wang
et al. 2019); water (Pr � 5.4) filled in the A = 1 and A = 0.5 upright cylinders with rough
conducting surfaces (Du & Tong 2001); and low-temperature helium gas (Pr = 0.7) filled
in the A = 0.5, A = 1 and A = 6.7 upright cylinders (Wu & Libchaber 1992). In particular,
the exponential distribution

P(ξ) = 1√
2

e−√
2|ξ | (2.19)

is an asymptotic form of (2.18) when the contributions from the Gaussian background
are negligible (αp = 0). Previous studies have shown that for all the cases studied, one has
αp > 0, indicating the existence of a Gaussian background that rounds off the non-analytic
sharp peak of the exponential distribution at the origin (Wei & Ahlers 2016; Wang et al.
2019).

3. Experiment

The experimental apparatus and procedures used in this work have been described in detail
in previous publications (He & Tong 2009; He, Ching & Tong 2011; Song, Villermaux
& Tong 2011; Wang et al. 2016, 2018a,b, 2019), and here we only mention some key
features. The convection experiments are conducted in two convection cells with different
geometries. As illustrated in figure 3(a), one convection cell is a vertical thin disk of
diameter D = 188 mm and thickness L = 20 mm, so that the aspect ratio of the cell is
A ≡ L/D � 0.1. Its circular cross-section is symmetrically aligned in parallel with gravity.
The top and bottom thirds of the circular sidewall are made of nickel-plated copper,
between which a stable temperature difference �T is maintained during the experiment.
The rest of the cell is made of transparent Plexiglas. When the convection system reaches
a steady state, an LSC of thermal plumes is established in the quasi-two-dimensional
rotation plane of the convective flow, as indicated by the two black arrows in figure 3(a).

As illustrated in figure 3(b), the other convection cell is an upright cylinder whose
sidewall is made of transparent Plexiglas with inner diameter Dup = 190 mm and height
H = 190 mm, so that the aspect ratio of the cylinder is A ≡ Dup/H = 1. The cylindrical
sidewall is sandwiched between two gold-plated brass plates, and a stable temperature
difference �T is maintained between them. During the experiment, the convection cells
are placed inside a square thermostat box, in which the temperature is maintained the same
as the mean temperature Tbulk of the bulk convecting fluid. This set-up minimizes the heat
exchange and thermal interference between the bulk fluid and surroundings.

Because of the different shapes and aspect ratios, the two convection systems have
different flow structures. First, the LSC in the upright cylinder has more complex
three-dimensional modes, such as torsional and sloshing modes (Funfschilling & Ahlers
2004; Xi et al. 2009), which are absent in the quasi-two-dimensional thin disk (Wang
et al. 2016). As the thermal plumes are carried by the LSC, the spatial distributions of
thermal plumes in the two cells are different. Second, the boundary layer dynamics in
the two cells is different (one has corner flows and the other has no corner flow) (Wang
et al. 2018b), which affects the emission dynamics of thermal plumes. These two features
are important in determining the spatial variations of temperature fluctuations and their
p.d.f.s. We therefore use the two convection cells to test the theory more thoroughly.

For the thin disk cell, its Ra is defined with the cell height H being replaced
by the disk diameter D. By varying �T , we change the values of Ra in the range
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(a) (b)

Cooling, Tb – �T

T(t)
T(t)

T0
T0D H

x

z
Dup

z

1

2

3

Heating, Tb

Tb – �T

Tb

Figure 3. Sketch of the experimental set-up for the measurement of local temperature fluctuations at different
locations in (a) the vertical thin disk and (b) the A = 1 upright cylinder. In the thin disk cell, the local
temperature time series data T(t) are measured by waterproof thermistors along the vertical axis of the cell
with varying distance z from the bottom plate and at three fixed vertical positions close to the sidewall. The
measurements of T(t) in the upright cylinder are conducted along the vertical axis of the cell with varying
distance z and along the radial direction with varying distance x at the mid-plane of the cylinder. The black
arrows indicate the direction of the large-scale circulation. The coordinate system used is also shown.

8 × 108 � Ra � 1.3 × 1010. Two working fluids are used in the experiment. For the
measurements in the thin disk, we use distilled water and a 20 wt.% aqueous solution of
glycerin at Tbulk = 40 ◦C. The corresponding Prandtl numbers are Pr = 4.4 for water and
Pr = 7.6 for glycerin solution. For the measurements in the upright cylinder, we use the
glycerin solution with Pr = 7.6 and distilled water with Pr = 4.4 (at Tbulk = 40 ◦C) and
Pr = 5.4 (at Tbulk = 30 ◦C). Both convection cells are slightly tilted with their vertical axis
at a small angle (<1◦) relative to gravity, which ensures that the LSC rotates anticlockwise
as illustrated by the two black arrows in figures 3(a) and 3(b). On average, the LSC
produces an azimuthal upward flow of warm plumes on one side of the cell and a
downward flow of cold plumes on the other side of the cell. Otherwise, the small tilt
has no other effect on our results (Ahlers, Brown & Nikolaenko 2006).

Small glass-encapsulated thermistors of diameter 0.17 mm and accuracy 5 mK are used
to measure local temperature fluctuations T(t) at different locations in the rotation plane
of LSC. The procedures used for temperature calibration and measurements have been
reported in detail by He & Tong (2009). As shown in figure 3, several thermistors are
guided into the convection cell via stainless steel tubes. Each thermistor is mounted on
a translational stage of 50 μm in spatial resolution. For the thin disk cell, one thermistor
is placed at the cell centre to measure the centre temperature T0(t) at a sampling rate of
2 Hz. Another thermistor is used to measure T(z, t) at varying vertical positions z along
the cell axis at a sampling rate of 15 Hz. For each value of z, we take a 1 h-long time series
of T(z, t) (5.4 × 104 data points). Three more thermistors are placed at different heights
close to the sidewall along the flow direction of falling cold plumes. The middle thermistor
is placed at the mid-plane of the cell, and the other two are placed above and below the
middle one, with an equal vertical separation of 15 mm. All of the three thermistors have
the same radial distance r = 84 mm (r/D � 0.45) away from the cell centre. Temperature
measurements at the three positions are sampled at 40 Hz, and each set of time series
data T(t) is 8 h long (1.2 × 106 data points). For the upright cylinder, we measure T(z, t)
along the vertical axis of the cell with varying z, and T(x, t) along the cell diameter at
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Non-Gaussian temperature fluctuations in a closed RBC cell

Ra = 9.1×108

Ra = 1.5×109

Ra = 2.4×109

Ra = 3.8×109

Ra = 5.9×109

Ra = 9.1×109

(2.14)

(2.15)

Gaussian

(a) (b)

–2 0 2 4 6

δT/σT

–2 0 2 4 6
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P(
δT
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10–3
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Figure 4. Measured p.d.f.s P(δT) as functions of the normalized temperature fluctuations δT/σT for different
values of Ra at a fixed Pr = 7.6 (20 wt.% aqueous solution of glycerin). The measurements were made in the
outer BL region along the central vertical axis of the A = 1 upright cylinder at a fixed normalized distance, (a)
z/δ � 1.3 and (b) z/δ � 2.2, away from the bottom conducting plate. The black solid lines show the fits of (2.14)
to the data points in (a) with αw = 0.45 ± 0.05, nw = 4.8 ± 0.5, βsw = 0.75 ± 0.05, βmw = 0.25 ± 0.05, and
in (b) with αw = 0.40 ± 0.05, nw = 6.0 ± 0.5, βsw = 0.50 ± 0.1, βmw = 0.13 ± 0.02. The red dashed lines
show plots of (2.15) in (a) with αw = 0.20, βsw = 0.80, and in (b) with αw = 0.16, βsw = 0.45. The blue
dashed lines in (a,b) show a Gaussian distribution.

the mid-height with varying x, a horizontal distance away from the sidewall as shown in
figure 3(b). In these temperature measurements, the sampling rate of T(t) is 40 Hz and we
typically take an 8 h-long time series for each data set (∼ 106 data points). From each set of
time series data, we compute the local mean temperature 〈T〉 and its r.m.s. value σT . In the
following analysis, the local temperature fluctuation δT is defined as δT(t) = T(t)− 〈T〉,
and the normalized local temperature fluctuation is defined as ξ = δT/σT .

4. Experimental results

In this section, we compare the measured P(δT) at various locations in the two convection
cells with the theoretical model.

4.1. Turbulent temperature fluctuations in the A = 1 upright cylinder
We first examine the functional form of the measured P(δT) in the two multi-plume
regions of the upright cylinder, namely, the outer BL (1 � z/δ � 4) and the side-wall
region (0.3 � |x|/D � 0.5). Figure 4 shows the p.d.f.s P(δT) as functions of the
normalized temperature fluctuations δT/σT in the outer BL. Once the position z is
normalized by the BL thickness δ, and δT is normalized by its r.m.s. value σT , the
measured p.d.f.s P(δT) for different values of Ra at a given normalized position z/δ
all collapse onto a single master curve, indicating that σT and δ are the proper scaling
variables for P(δT) (Wang et al. 2016, 2018b). The left-hand side of the peak in P(δT)
has a Gaussian shape (blue dashed lines), which we believe results from the residual
temperature fluctuations caused by thermal conduction inside the BL (close to the bottom
conducting plate). When the warm plumes form and are emitted into the outer BL, they
start to dominate the temperature fluctuations on the right-hand side of the peak in P(δT),
which is highly non-Gaussian. As shown by the black solid lines in figure 4, (2.14) fits
the data well with four fitting parameters at both locations. For comparison, we also plot
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in figure 4 the fits of (2.15) to the data points (red dashed lines), which include only the
contributions of single plumes; multi-plume contributions are excluded. It is seen that
(2.15) gives rise to a straight exponential tail for large δT (δT/σT � 0) and cannot well
describe the downward-bending tail of the measured P(δT) (for δT/σT � 1). The fitting
results shown in figure 4 thus demonstrate the existence of the multi-plume effect and its
significance in determining the functional form of P(δT).

It is found that the fitted value of αw decreases with increasing z/δ, suggesting that the
effect of thermal conduction is weakened. This is expected because the thermal conduction
is concentrated mainly in the inner BL and decays quickly as the measuring position moves
away from the bottom conducting plate. Meanwhile, the average number of plumes nw
in the multi-plume clusters increases with z/δ, which indicates that in the outer BL the
number of multi-plumes passing thorough the measuring position increases with z/δ. As
z/δ increases, the values of βsw and βmw (or βsw + βmw) decrease, suggesting that warm
plumes become more intermittent in time. We used the least-squares fitting method with
various initial values of the fitting parameters, and the best results are obtained using the
manual fit based on our own fitting experience, which tends to give a global optimum. This
is especially true for the most general form of (2.13) with eight fitting parameters. The error
bar of the fitting parameters given in the figure captions and in table 1 below represents
the confidence interval of the physical parameters that we obtain from the fitting.

Figure 5 shows the p.d.f.s P(δT) as functions of δT/σT at a fixed Pr = 4.4
(water). Similar to figure 4, the measured p.d.f.s P(δT) as functions of δT/σT have a
Ra-independent form and are well described by (2.14) (solid lines). As z/δ increases, the
fitting parameters obtained at Pr = 4.4 change in a way similar to those at Pr = 7.6,
indicating that the functional form of P(δT) is not sensitive to the change in Pr in the
range studied. Similar to the red dashed lines in figure 4, (2.15) – which includes only the
contributions of single plumes – does not fit the p.d.f.s in figure 5 well (not shown here).

We now examine the functional form of the p.d.f.s P(δT) obtained in the sidewall region
at the mid-height (z/H = 0.5) of the A = 1 upright cylinder. Figure 6 shows the p.d.f.s
P(δT) as functions of δT/σT at two representative radial locations. Once the horizontal
position x is normalized by the cell diameter Dup and δT is normalized by its r.m.s. value
σT , the measured p.d.f.s P(δT) for different values of Ra at a given normalized position
x/Dup all fall onto a single master curve, indicating that σT and Dup are the proper scaling
variables for P(δT). A similar situation was found for the p.d.f.s P(δT) measured outside
the thermal BL along the vertical axis of the cell, where the cell height H is the proper
scaling length (Wang et al. 2019). Because of the LSC, warm plumes accumulate on the
rising side of the LSC (right-hand side of the cell as shown in figure 3b) and produce
many up-rising (positive) temperature fluctuations. As a result, the most probable value of
δT becomes negative (smaller than the mean value of T(t)) and the p.d.f. P(δT) is skewed
toward the positive side. A unique feature of the measured P(δT) in the sidewall region is
that both single and multiple warm and cold plumes are involved in the total temperature
fluctuations δT(t). Consequently, all four fluctuation modes are important in (2.1), and
they produce the most complex form of P(δT) in the convection cell, as shown in figure 6.

The solid lines in figure 6 show the fits of (2.13) to the measured p.d.f.s P(δT)with eight
fitting parameters. An excellent agreement between the theoretical model and experimental
results is obtained. At each radial distance x/Dup, the fitted values of αw and nw for
warm plumes are close to those (αc and nc) for cold plumes, indicating that the strength
and superposition level of multiple warm and cold plume clusters are approximately the
same. Meanwhile, the duty-cycle parameters βsw and βmw for warm plumes are much
larger than those (βsc and βmc) for cold plumes, which suggests that there are more warm
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N
on-G

aussian
tem

perature
fluctuations

in
a

closed
R

B
C

cell

Flow regions Pr αw αc nw nc βsw βmw βsc βmc

Boundary layer Inner 4.4 N/A N/A N/A N/A 0 0 0 0
Outer 4.4 0.40 ± 0.05 N/A 5.0 ± 0.5 N/A 0.40 ± 0.1 0.15 ± 0.03 0 0

Mixing zone Inner 4.4 0.31 ± 0.06 N/A N/A N/A 0.18 ± 0.05 0 0 0
Outer 4.4 0.33 ± 0.06 0.92 ± 0.15 N/A N/A 0.18 ± 0.05 0 1 0

Turbulent bulk 4.4 0.30 ± 0.06 0.33 ± 0.06 N/A N/A 1 0 1 0
Cell centre 4.4 0.30 ± 0.06 0.30 ± 0.06 N/A N/A 1 0 1 0
Sidewall region 5.4 1.4 ± 0.2 1.3 ± 0.2 5.5 ± 1.0 5.8 ± 1.0 0.48 ± 0.15 0.52 ± 0.15 0.08 ± 0.05 0.03 ± 0.01

Table 1. Obtained representative values of the eight fitting parameters, αw, αc, nw, nc, βsw, βmw, βsc and βmc, in (2.13) for different flow regions in the lower half of the
A = 1 upright cylinder. Distilled water was used as a working fluid, and its value of Pr varies with the bulk fluid temperature. When a fluctuation mode is absent, its
duty-cycle parameter β is set to zero and the corresponding amplitude α and the average number of plumes n in the multi-plume clusters are marked as N/A. The fitting
results in the mixing zone, turbulent bulk and cell centre are adopted from Wang et al. (2019).
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Figure 5. Measured p.d.f.s P(δT) as functions of δT/σT for different values of Ra at a fixed Pr = 4.4 (water).
The measurements were made in the outer BL region along the central vertical axis of the A = 1 upright
cylinder at a fixed normalized distance, (a) z/δ � 1.3 and (b) z/δ � 2.5, away from the bottom conducting
plate. The black solid lines show the fits of (2.14) to the data points in (a) with αw = 0.45 ± 0.1, nw = 4.5 ± 1,
βsw = 0.72 ± 0.05, βmw = 0.28 ± 0.05, and in (b) with αw = 0.40 ± 0.05, nw = 5.0 ± 0.5, βsw = 0.40 ± 0.1,
βmw = 0.15 ± 0.03. The blue dashed lines in (a,b) show a Gaussian distribution.
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Figure 6. Measured p.d.f.s P(δT) as functions of δT/σT for different values of Ra at a fixed Pr = 5.4 (water).
The measurements were made at the mid-height (z/H = 0.5) of the A = 1 upright cylinder in the sidewall
region with a fixed radial distance, (a) x/Dup � 0.45 and (b) x/Dup � 0.39, away from the cell centre. The solid
lines show the fits of (2.13) to the data points in (a) with αw = 1.4 ± 0.2, αc = 1.3 ± 0.2, nw = 5.5 ± 1.0, nc =
5.8 ± 1.0, βsw = 0.48 ± 0.15, βmw = 0.52 ± 0.15, βsc = 0.08 ± 0.05, βmc = 0.03 ± 0.01, and in (b) with
αw = 0.75 ± 0.1, αc = 0.65 ± 0.1, nw = 4.2 ± 1.0, nc = 3.5 ± 1.0, βsw = 0.50 ± 0.15, βmw = 0.25 ± 0.05,
βsc = 0.08 ± 0.04, βmc = 0.01 ± 0.005. The red dashed lines show the plots of (2.13) with βmw = βmc = 0
and hence nw and nc are not applicable. The red dashed line in (a) is plotted with αw = 0.4, αc = 0.5, βsw = 1,
βsc = 0.2, and that in (b) is plotted with αw = 0.3, αc = 0.4, βsw = 1, βsc = 0.1.

plumes passing through the measuring position than the cold plumes. This is expected as
the temperature measurements are conducted on the rising side of the LSC, as shown
in figure 3(b), where there are more warm plumes rising with the LSC than the cold
plumes falling downwards against the LSC. When the radial location is moved closer
to the cell centre (smaller value of x/Dup), the fitted values of αw, αc, nw, nc, βmw and
βmc become smaller. These results suggest that the incidence of multi-plume clusters and
the average number of plumes in them are reduced, whereas the fluctuation strength of
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Figure 7. Measured p.d.f.s P(δT) as functions of δT/σT for different values of Ra at a fixed Pr = 7.6 (20 wt.%
aqueous solution of glycerin). The measurements were made in the outer BL region along the central vertical
axis of the thin disk cell at a fixed normalized distance, (a) z/δ � 1.3 and (b) z/δ � 2.2, away from the bottom
conducting plate. The black solid lines show the fits of (2.14) to the data points in (a) with αw = 0.67 ± 0.07,
nw = 5.5 ± 0.8, βsw = 0.75 ± 0.15, βmw = 0.065 ± 0.02, and in (b) with αw = 0.45 ± 0.05, nw = 6.0 ± 1,
βsw = 0.35 ± 0.15, βmw = 0.046 ± 0.01. The blue dashed lines in (a,b) show a Gaussian distribution.

thermal plumes relative to the background increases. The values of βsw and βsc do not
show a strong dependence on the two values of x/Dup studied. For comparison, we also
plot in figure 6 the fits of (2.13) without the multi-plume modes (βmw = βmc = 0) to the
data points (red dashed lines), which cannot well describe the downward-bending tails of
the measured p.d.f.s. The fitting results shown in figure 6 thus demonstrate the existence
of the multi-plume effect in the sidewall region and its significance in determining the
functional form of P(δT).

4.2. Turbulent temperature fluctuations in the thin disk cell
Figure 7 shows the p.d.f.s P(δT) as functions of δT/σT in the outer BL. Similar to
the situation for the upright cylinder, the measured p.d.f.s P(δT) for different values
of Ra at a given normalized position z/δ all collapse onto a single master curve, once
δT is normalized by its r.m.s. value σT . The left-hand side of the peak in P(δT) has a
Gaussian shape (blue dashed lines), but the right-hand side of the peak in P(δT) is highly
non-Gaussian. It decays much slower than a Gaussian function but faster than a simple
exponential function. As mentioned above, this is a signature of temperature fluctuations
δTmw resulting from the multiple warm plumes, which follow the gamma distribution. It
is seen that the obtained p.d.f.s at both locations in the outer BL can be well described by
(2.14) with four fitting parameters (solid lines). Similar to the red dashed lines in figure 4,
(2.15) – which includes only the contributions of single plumes – does not fit the data in
figure 7 well (not shown here).

As z/δ increases, the fitted values of βsw, βmw, αw and nw in the thin disk show a trend
similar to those for the A = 1 upright cylinder. With increasing z/δ, the relative strength of
warm plumes, as expressed by α−1

w , increases in agreement with the fact that the right-hand
side of the peak in P(δT), as shown in figure 7(b), is skewed further to the right. The two
duty-cycle parameters βsw and βmw decrease with increasing z/δ, indicating that the warm
plumes become more intermittent as they move away from the BL. At the same location
z/δ and same Pr, the obtained value of βmw in the thin disk is much smaller than that
in the upright cylinder, suggesting that the warm plume clusters appear less frequently in
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the thin disk. There are two possible reasons for this effect. First, the LSC in the upright
cylinder has a three-dimensional motion (Funfschilling & Ahlers 2004; Xi et al. 2009),
which may bring extra plumes from the nearby region to the measuring position, thereby
increasing the incidence of the multiple plumes. Second, the outer BL region in the thin
disk (1 � z/δ � 2) is narrower than that in the upright cylinder (1 � z/δ � 4) (Wang et al.
2016, 2018b). As a result, the measuring position in the thin disk is relatively closer to the
mixing zone compared with that in the upright cylinder with the same value of z/δ, which
leads to a reduced probability of detecting the multi-plume clusters in the thin disk.

Finally, we examine the functional form of the p.d.f.s P(δT) obtained in the sidewall
region. Figures 8(a), 8(b) and 8(c) show, respectively, the p.d.f.s P(δT) obtained at three
fixed positions along the flow direction of LSC, where there are more cold plumes falling
along the LSC than warm plumes rising against the LSC. As illustrated in figure 3(a),
cold plumes accumulate on the left-hand side of the cell (the falling side of the LSC)
and produce many downward spikes in the measured T(t). As a result, the most probable
value of δT becomes slightly positive (larger than the mean value of T(t)), and the p.d.f.
P(δT) is skewed towards the negative side. The main portion of the measured p.d.f.s P(δT)
(with δT/σT � 2) for different values of Ra falls onto a single master curve, once δT is
normalized by its r.m.s. value σT . This result suggests that the statistics of cold plumes and
turbulent background are invariant in the Ra range studied. On the other hand, the positive
(right) tail of the measured p.d.f.s P(δT) (with δT/σT � 2) varies with Ra, suggesting
that the statistics of warm plumes are influenced by the changes in Ra. This is because
the LSC in the thin disk is more organized compared with that in the upright cylinder,
so that fewer warm plumes will move against the LSC and reach the measuring positions
with increasing Ra. It is seen that when Ra � 1.3 × 1010, the measured p.d.f.s P(δT) at
the three positions all reach their asymptotic form.

The solid lines in figure 8 show the fits of (2.13) to the p.d.f.s P(δT) obtained at the
three positions with a given value of Ra = 4.5 × 109. An excellent agreement between
the theoretical model and experimental data is obtained with the given fitting parameters.
Equally good fits are also obtained to the p.d.f.s P(δT) obtained at other values of Ra
(not shown here). Unlike the sidewall region in the upright cylinder, which contains both
intermittent single and multiple plumes, we find βsc = 0 and βmc = 1 from the fits at all
three positions in the sidewall region of the thin disk. This result suggests that single cold
plumes are absent on the down side of the LSC, and multiple cold plumes are continuous
in time, further confirming that the LSC in the thin disk is more organized compared
with that in the upright cylinder. As the measuring position moves from the up steam
(position 1) to the down stream (position 3) as shown in figure 3(a), the fitted values of αc
and nc for the multiple cold plumes increase, indicating a decrease of cold plume strength
and an increase of their average number in the multiple plume clusters. This is because
the cold plumes will diffuse and mix with the surrounding fluid as they travel down
stream with the LSC, a process that reduces their relative temperature difference with the
background (reduction of strength) and increases their size, making them easier to cluster.
The duty-cycle parameters βsw and βmw for warm plumes also increase along the down
stream direction. This is expected because in the sidewall region where the warm plumes
rise against the LSC, it is easier to detect them at a measuring position closer to the heating
plate. Meanwhile, the fitted value of αw increases as the measuring position moves toward
the heating plate, indicating a decrease of warm plume strength. This counter-intuitive
effect is also caused by the LSC, which acts as a discriminator of warm plumes.
At position 1, only strong warm plumes with larger temperature variations relative to
the background can reach, which gives rise to a larger plume strength. At position 3,
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Figure 8. Measured p.d.f.s P(δT) as functions of δT/σT for different values of Ra at a fixed Pr = 4.4 (water).
The temperature measurements were conducted at three fixed positions in the sidewall region of the thin disk
cell, as indicated in figure 3(a): (a) position 1, (b) position 2, and (c) position 3. All the three positions
have the same radial distance r = 84 mm (r/D � 0.45) away from the cell centre. The black solid lines
show the fits of (2.13) to the data points obtained at Ra = 4.5 × 109 (blue down-pointing triangles) in (a)
with αw = 0.57 ± 0.05, αc = 0.65 ± 0.1, nc = 1.3 ± 0.3, βsw = 0.0025 ± 0.001, βmw = βsc = 0, βmc = 1, in
(b) with αw = 0.6 ± 0.08, αc = 1.0 ± 0.15, nc = 2.5 ± 1.0, βsw = 0.008 ± 0.002, βmw = βsc = 0, βmc = 1,
and in (c) with αw = 1.1 ± 0.1, αc = 1.2 ± 0.1, nw = 6.0 ± 0.7, nc = 4.5 ± 1.0, βsw = 0.02 ± 0.01, βmw =
0.003 ± 0.001, βsc = 0, βmc = 1. For solid lines in (a,b), nw is not applicable as βmw = 0. The blue dashed
lines show the fits of (2.13) to the data points obtained at Ra = 1.3 × 1010 (brown left triangles) in (a) with
αc = 0.65 ± 0.1, nc = 1.3 ± 0.3, in (b) with αc = 1.0 ± 0.2, nc = 2.5 ± 1.0, and in (c) with αc = 1.2 ± 0.2,
nc = 4.5 ± 1.5. For all the blue dashed lines, we find βsw = βmw = βsc = 0 and βmc = 1. Consequently, αw
and nw are not applicable. The red dashed line in (c) shows the plot of (2.16) with αw = 0.5, αc = 0.85 and
βsw = 0.012.

however, weaker warm plumes with moderate temperature variations can also reach, which
reduces the mean strength of warm plumes. For comparison, we also plot in figure 8(c) the
fit of (2.16) to the data points at Ra = 4.5 × 109 (blue down-pointing triangles), which
includes only the contributions of single plumes; multi-plume contributions are excluded.
It is clearly seen that (2.16) cannot well describe the two downward-bending tails of the
measured p.d.f., further demonstrating the multi-plume effect in the sidewall region and
its significance in determining the functional form of P(δT).

The blue dashed lines in figure 8 show the fits of (2.13) to the p.d.f.s P(δT) obtained at
the three positions with the largest value of Ra = 1.3 × 1010 achievable in the experiment.
At this Ra, warm plumes have been completely eliminated from the down side of LSC,
and consequently, we find βsw = βmw = βsc = 0 and βmc = 1. In this case, αw and nw
are not applicable, and the p.d.f.s P(δT/σT) become a convolution between the gamma
distribution and a Gaussian background with only two fitting parameters. The fitted values
of αc and nc for the multiple cold plumes show an increasing trend similar to those for other
values of Ra, when the measuring position is moved from the up steam (position 1) to the
down stream (position 3). At a fixed position, the measured p.d.f.s P(δT) have reached
their asymptotic form, and thus the fitted values of αc and nc become invariant with Ra.

5. Summary

In this paper, we report a systematic study of the collective effect of thermal plumes on
the p.d.f. P(δT) of turbulent temperature fluctuations δT(t) in a closed Rayleigh–Bénard
convection cell. To include the effect of multiple plumes appearing simultaneously at
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the measuring position, we assume that the plume-induced temperature fluctuations
δTP(t) can be decomposed into four independent fluctuation modes, as shown in (2.1).
Temperature fluctuations produced by single warm (or cold) plumes follow the exponential
distribution, whereas those produced by multiple warm (or cold) plumes obey the gamma
distribution. In addition, the overall temperature fluctuations, δT(t) = δTP(t)+ δTB(t),
contain a turbulent background δTB(t), which follows the Gaussian distribution. With
this decomposition, we derive the general form of P(δT) in (2.13) from the convolutions
of the five independent fluctuation modes. The derived form of P(δT) includes eight
space-dependent parameters, which account for the spatial variations of the number of
plumes in multiple plume clusters and their relative strengths and degrees of intermittency.
Equation (2.1) can be simplified to (2.14)–(2.18) when one or more fluctuation modes
become negligibly small. In particular, when the multiple-plume effect can be neglected,
(2.1) becomes (2.16), which has been verified in a previous experiment conducted in the
single-plume regions of the convection flow (Wang et al. 2019).

To test the derived form of P(δT) in the multiple-plume regions, we conducted new
temperature measurements in two convection cells; one is the vertical thin disk and the
other is the A = 1 upright cylinder. The convection experiments were conducted in the Ra
range 8 × 108 � Ra � 1.3 × 1010, and at three fixed values of Pr = 4.4, 5.4 and 7.6. The
two multiple-plume regions studied are the sidewall region at the mid-height of the cell
and the outer BL region with 1 � z/δ � 2 for the thin disk and 1 � z/δ � 4 for the upright
cylinder, in which the thermal plumes are heavily populated. For a given normalized
position, all of the measured p.d.f.s P(δT) fall onto a single master curve, once δT is
normalized by its r.m.s. value σT . In the outer BL region near the bottom conducting
plate, negative fluctuations (δT � 0) are from the turbulent background, which follows the
Gaussian distribution. Positive fluctuations (δT � 0), on the other hand, are produced by
both single and multiple warm plumes, which give rise to a highly non-Gaussian P(δT).
The measured temperature p.d.f.s P(δT) are well described by (2.14), which includes the
contributions from the turbulent background, and single and multiple warm plumes.

In the sidewall region, both the single and multiple warm and cold plumes contribute
to the measured P(δT). Large temperature fluctuations are evident on both the positive
and negative tail parts of the measured P(δT). They are neither Gaussian nor exponential
and give rise to the most complex form of temperature p.d.f. in the convection cell, as
shown in figures 6 and 8. The measured temperature p.d.f.s P(δT) are well described by
(2.13), which includes all of the five fluctuation modes given in (1.4) and (2.1); each has
its own distinct distribution, as shown in (2.2)–(2.7). The eight fitting parameters in (2.13)
are closely related to the spatial distribution of thermal plumes and local dynamics of the
LSC in a closed convection cell and therefore they have clear physical interpretations.

Table 1 gives a brief summary of the representative values of the eight fitting parameters
in (2.13), which are obtained from the five flow regions in the lower half of the A = 1
upright cylinder. Inside each flow region, the fitted values of the parameters still change
continuously to a certain extent. For different flow regions, the fitted values of the four
duty-cycle parameters show categorical changes, representing different states regarding
the four plume-related modes, with 0 indicating non-existence, 1 indicating continuous
existence, and a value between 0 and 1 indicating intermittent existence. The data in the last
row of table 1 were obtained at a slightly different Prandtl number (Pr = 5.4). It has been
shown that such a small change in Pr will not cause a large change in the fitting parameters
(Wang et al. 2019). The fitting results shown in table 1 provide an overall description of
the measured P(δT) in different flow regions. It is found that the fitted values of αw and αc
in the sidewall region are much larger than those along the central axis, indicating that the
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sidewall region has a relatively stronger turbulent background. The fitted values of nw in
the outer BL (nw = 5.0) are close to those in the sidewall (nw = 5.5). This result indicates
that most warm plumes emitted from the bottom BL are carried to the sidewall region, as
expected.

Our work thus further demonstrates that temperature fluctuations in turbulent RBC can
indeed be decomposed into four basic fluctuation modes plus a turbulent background
based on the statistics of thermal plumes. The final functional form of the temperature
p.d.f. P(δT), which results from the convolutions of the five independent modes, is closely
linked to the spatial distribution of thermal plumes and local dynamics of the LSC in
a closed convection cell. This systematic approach to understanding scalar p.d.f.s in a
turbulent field is very useful not only for the present study but also for the study of
many turbulent mixing problems of practical interest. For example, it is worth testing the
effectiveness of our model in turbulent RBC with Pr < 1 (Wei 2021), where the viscous
BL is nested inside the thermal BL and the plume distribution changes considerably (Xu
et al. 2021). By applying the model to the p.d.f. P(δT)measured at two spatially symmetric
positions, such as those symmetric points on the central or horizontal axis relative to the
cell centre, one can check the symmetry characteristics of warm and cold plumes and their
clusters. With more p.d.f. measurements, one may also investigate the two-dimensional
landscape showing the variations of the eight fitting parameters in the rotation plane of
the LSC. It is also interesting to examine how the new model can be used to describe
temperature p.d.f.s resulting from turbulent RBC under different boundary conditions,
such as surface roughness or wall slippage. Our model may also be extended to describe
scalar distributions in other flow systems. Examples include dye concentration in turbulent
mixing (Villermaux & Duplat 2003), and temperature fluctuations in a closed combustion
chamber or those caused by plume-like drafts in the Earth’s atmospheric surface layer
(Chu et al. 1996; Liu, Hu & Cheng 2011; Chowdhuri, Iacobello & Banerjee 2021).
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