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Activity-assisted barrier crossing of self-propelled colloids over parallel microgrooves
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We report a systematic study of the dynamics of self-propelled particles (SPPs) over a one-dimensional
periodic potential landscape U0(x), which is fabricated on a microgroove-patterned polydimethylsiloxane
(PDMS) substrate. From the measured nonequilibrium probability density function P(x; F0) of the SPPs, we
find that the escape dynamics of the slow rotating SPPs across the potential landscape can be described by an
effective potential Ueff(x; F0), once the self-propulsion force F0 is included into the potential under the fixed
angle approximation. This work demonstrates that the parallel microgrooves provide a versatile platform for a
quantitative understanding of the interplay among the self-propulsion force F0, spatial confinement by U0(x), and
thermal noise, as well as its effects on activity-assisted escape dynamics and transport of the SPPs.
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Self-propelled colloids are synthetic microswimmers that
can take up energy from the surrounding environment and
convert it into directed motion [1–4]. They are developed as
simplified model systems that feature similar dynamic be-
haviors of various living systems, such as molecular motors,
cells, and bacteria [5–8]. The micro or nanoscale swimmers
hold great promise for a wide range of biomedical applica-
tions, ranging from directed cargo transport and drug delivery
to targeted cancer therapy [3,9,10]. These applications re-
quire a better understanding of the dynamics of individual
self-propelled particles (SPPs) and their response to complex
environments, which can be modeled by imposing well-
characterized external potential (or free-energy) landscapes.
Unlike passive colloids at equilibrium, whose statistical dis-
tribution and escape dynamics over a potential landscape
can be understood through Boltzmann statistics and Kramers
theory [11–13], SPPs are intrinsically in a nonequilibrium
state [14–17] in which detailed balance and Boltzmann dis-
tribution do not apply in general.

A number of experiments were carried out to study the
dynamics of SPPs under the influence of simple potential
fields U0(x), such as linear gravitational potentials [18,19]
and two-dimensional (2D) optical or acoustic traps [20–23].
These studies found that, depending on the interplay be-
tween the external potential force Fe(x) ≡ −dU0(x)/dx and
the self-propulsion force F0 (which is proportional to the self-
propulsion velocity v0 of SPPs), the SPPs can stay in two
dynamically distinct states. One is the “bound state” in which

*Corresponding authors: pylai@phy.ncu.edu.tw,
xu.xinpeng@gtiit.edu.cn, and penger@ust.hk

the SPPs spend more time at the force balanced location,
resulting in a local accumulation of the SPPs near the confin-
ing boundary [20–24]. This is achieved when the persistence
time τp of the SPPs is much longer than their traveling time
between the confining boundaries. The other is the “extended
state” in which either Fe(x) is too small to balance F0 or the
lifetime of the bound state is too short, so that the SPPs can
explore all the available space of U0(x) at an elevated effective
temperature [19,25,26].

In fact, there are many practical situations of interest re-
maining between the two limiting cases. For example, the
motion of SPPs along a thin channel or a groove is a common
way for active particle transport [27] in which the SPPs are
confined only in the lateral direction but are free to move
along the longitudinal direction. Because there are fewer
experimental systems in which one can actually visualize
the potential landscape and track the individual SPPs with
sufficient statistics, much of the work done so far in this
area is through computer simulations [28–33]. Experiments
with well-characterized SPPs are, therefore, very valuable in
testing different ideas and providing new insights into the
nonequilibrium statistical properties of active colloids.

In this Letter, we present a combined experimental and
theoretical study of the dynamics of a dilute monolayer
of SPPs over a substrate with parallel microgrooves that
are fabricated by photolithography. With a large volume of
the SPP trajectories obtained using optical microscopy and
multiparticle tracking, we are able to provide a statistical
description of the nonequilibrium distribution of the SPPs
over a one-dimensional (1D) periodic potential landscape. A
central finding of this investigation is that the nonequilibrium
behaviors of the SPPs in the limit of long persistence time
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FIG. 1. (a) A schematic side view of a Pt-SiO2 Janus particle
of diameter d moving over a microgroove-patterned substrate with
groove spacing L and period λ. The gray hemisphere indicates the
Pt coating and the black arrow indicates the direction of the self-
propulsion velocity v0. (b,c) Two representative trajectories of the
Janus particle in the aqueous solution of 0.2% H2O2 [(b) duration
∼200 s] and in water [(c) duration ∼0.5 h], respectively. The data are
taken from Sample S1. The parallel stripes in the background show
the microgroove pattern with alternating ridges (darker stripes) and
grooves (brighter stripes). The dark circle shows the Janus particle
image at the beginning of the trajectory. The red dots indicate the
end of the trajectory. Also shown in (a) and (b) are the coordinate
systems used in the experiment. The scale bars are 2 µm.

τp can be described by an effective equilibrium approach
once the self-propulsion force F0 is properly included into the
effective potential Ueff(x; F0).

The SPPs chosen for the study are monodisperse SiO2

microspheres whose half surface is coated with a thin layer of
platinum of thickness ∼5 nm via sputter coating. The coating
is so thin that the Pt-SiO2 Janus particles can rotate freely
in three dimensions with minimal influence from an uneven
gravitational torque. When dispersed in an aqueous solution
of H2O2, the self-diffusiophoresis of the Janus particles gives
rise to a self-propulsion velocity v0, which increases with the
H2O2 concentration [34,35]. A low H2O2 concentration in the
range of 0–1.5 w/w% is used to avoid O2-bubble formation.
This is a well-studied SPP system whose synthesis procedures
are known [3,4] (see Supplemental Material Sec. I.B for more
details [34]).

The sample cell is a thin circular fluid chamber of di-
ameter 2.2 cm and is made of stainless steel. The bottom
coverslip is coated with a thin layer of polydimethylsiloxane
(PDMS) substrate, containing a parallel array of microgrooves
as illustrated in Fig. 1(a). When a dilute monolayer of
the Janus particles move over the rugged surface of the
microgroove-patterned substrate, they experience a 1D peri-
odic gravitational potential U0(x) in the x direction normal

to the microgroove [13,36]. The particle’s motion along
the y direction parallel to the microgroove is unrestricted. The
potential U0(x) is determined primarily by the ratio of the par-
ticle’s diameter d to groove spacing L and is not very sensitive
to the groove depth, which is fixed at 0.6 µm because the Janus
particles are suspended. The area fraction np occupied by the
Janus particles is less than 0.7%, at which the interactions be-
tween the particles can be ignored [13,37]. In the experiment,
we use two samples with different potential fields U0(x) and
their parameters are given in Table I. The particle’s motion
is viewed under bright field microscopy and recorded by a
complementary metal oxide semiconductor (CMOS) camera
at a sampling rate of ten frames per second (see Supplemental
Material Sec. I for other experimental details [34]).

Figures 1(b) and 1(c) show two representative trajecto-
ries of a Janus particle when it is in the active state with
H2O2 supplied and in the passive state with no H2O2 sup-
plied, respectively. Moving over the parallel microgrooves,
the particles do not undergo unrestricted lateral motion, as was
observed over a flat substrate [35]. Instead, their trajectories
revealed a confined motion within a single groove with occa-
sional hopping to a neighboring groove. The passive trajectory
appeared more diffusive compared with the active one. With
this setup, we obtain a large volume of particle trajectories
over long durations (60–1200 s) by using a homemade single-
particle tracking program at a spatial resolution of ∼100 nm.
From the obtained particle trajectories, we compute the mean-
squared displacement (MSD) 〈�y2(τ )〉 [35],

〈�y2(τ )〉 = 2D0τ + 2
3v2

0τp[τ + τp(e−τ/τp − 1)], (1)

where �y(τ ) = y(t + τ ) − y(t ) is the longitudinal displace-
ment of the Janus particles along the microgroove with D0

being their translational diffusion coefficient, which is known
from the measured 〈�y2(τ )〉 at v0 = 0. With the long particle
trajectories, we are able to obtain the trajectory-based velocity
v0i from 〈�y2(τ )〉i for the ith particle at small values of τ us-
ing Eq. (1). We then divide all the labeled particle trajectories
with different v0i, which are obtained at different H2O2 con-
centrations, into different subgroups based on a common set
of velocity bins. With this procedure, we remove the effect of
sample polydispersity in v0 resulting from nonuniform coat-
ing of the Janus particles (see Supplemental Material Sec. II.A
for more details [34]).

With the well-characterized particle trajectories, we obtain
the population probability density function (PDF) P(x, y; v0)
of finding a Janus particle with a self-propulsion speed
v0 at the location (x, y), where the coordinates are shown
in Fig. 1(b). By averaging the particle trajectories along
the microgroove (y axis) and over different grooves,
we obtain the 1D PDF P(x; v0) = 〈P(x, y; v0)〉y, from
which we define the effective potential Ueff(x; v0)/kBT ≡
− ln[P(x; v0)/P(0; v0)], where P(x; v0) is normalized by the
PDF P(0; v0) at the bottom (x = 0) of the potential well. In
particular, the equilibrium potential U0(x) ≡ Ueff(x; v0 = 0) is
obtained from the passive particles with v0 = 0.

Figure 2(a) shows how the measured Ueff(x; v0)/kBT
evolves with increasing v0. The measured equilibrium poten-
tial U0(x) has a symmetric single-well shape with its local
minimum centered at the bottom of the microgroove (x = 0)
and its maximum at the middle of the microgroove ridge
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TABLE I. Two samples used in the experiment with particle diameter d , groove spacing L, groove period λ, particle’s diffusion coefficient
D0, persistence time τp, relaxation time t0, and equilibrium energy barrier height Eb(0).

d L λ D0 τp t0 Eb(0)
Sample (µm) (µm) (µm) (µm2/s) (s) (s) (kBT )

S1 2.96 1 2 0.08 11 ± 3 0.18 ± 0.03 5.7 ± 0.02
S2 2.4 2 3 0.09 7 ± 2 0.28 ± 0.04 7.6 ± 0.05

(x = ±λ/2). We now define the effective barrier height
Eb(v0) ≡ Ueff(λ/2; v0) and its equilibrium value Eb(0) ≡
Eb(v0 = 0) (which is shown in Table I for the two samples).
As v0 increases, the measured Ueff(x; v0)/kBT remains a sim-
ilar shape, but its barrier height Eb(v0) decreases with v0 until
v0 � 0.76 μm/s, above which the measured Ueff(x; v0)/kBT
does not change with increasing v0 any more and its barrier
height saturates at Eb(v0) = 2.8 ± 0.1 kBT . Note that, for all
the values of v0 studied, no particle accumulation is observed
near the confining boundaries (i.e., near the microgroove
ridges).

To show how the effective barrier height Eb(v0) changes
with v0, we define the barrier height difference �Eb =
Eb(0) − Eb(v0) and normalize v0 as v0λ/(2D0) = W/kBT ,
where W is the work done by the self-propulsion force F0 =
v0/μ0 over the distance of a half microgroove period λ/2.
Here μ0 = D0/kBT is the mobility of the Janus particles. As
shown in Fig. 2(b), the measured �Eb for small W (or for
v0 < 0.76 μm/s before the saturation) can be well described
by a linear function �Eb = aW with the fitting parameter a =
0.42 ± 0.05. This result prompts us to consider an effective
potential

Ũeff(x; v0, θ, ϕ) = U0(x) − (F0 sin θ cos ϕ)x, (2)

where F0 sin θ cos ϕ is the projection of the self-propulsion
force F0û along the x axis with û denoting the orientation of
the SPPs in three-dimensional (3D) motion, specified by the
polar angle θ and azimuthal angle ϕ. This activity-modified
potential was introduced in Refs. [28,29] under the fixed an-

gle approximation, which assumes that the SPPs rotate very
slowly with their persistence time τp much longer than their
relaxation time t0 ≡ kBT/(kD0) in the potential U0(x) (with a
spring constant k). In this limit, the particle’s orientation re-
mains unchanged during an escape attempt from the potential
(see the values of t0 in Table I), and thus F0 will decrease the
energy barrier effectively and assist the escape of the SPPs
across the 1D potential U0(x).

In the experiment, Ueff(x; v0) is obtained by averaging over
particle trajectories with all possible orientations. Assuming
that the average of the self-propulsion force F0û over different
orientations û in three dimensions can give rise to an effective
1D force 〈F0û〉1D = aF0 along the x direction, we have

Ueff(x; v0) � U0(x) − aF0|x|, (3)

where the prefactor a (<1) is a fitting parameter char-
acterizing the averaging effect of the 3D rotation pro-
jected onto the x axis. For a uniformly distribution of
θ and ϕ, we may have a simple estimate of a as
a≈(1/π2)

∫ π

0 sin(θ )dθ
∫ π/2
−π/2 cos(ϕ)dϕ=4/π2 � 0.41, which

is close to the experimental value a = 0.42 ± 0.05 (see
Supplemental Material Sec. IV for more discussions [34]).

The activity-induced term −aF0|x| in Eq. (3) measures the
difference between Ueff(x; v0) and U0(x). Once this term is
subtracted out from the measured Ueff(x; v0), all of the data
sets obtained at different v0 for v0 � 0.76 µm/s collapse onto
a common master curve, as shown in Fig. 2(c). It is seen
that the reconstructed data sets agree well with the directly
measured U0(x) from the passive particles (black solid line).

FIG. 2. (a) Comparison of the effective potentials Ueff(x; v0)/kBT that are measured in experiments (open symbols) and calculated in
simulation (dashed lines) across one microgroove period. Here x = 0 is set at the bottom center of the microgroove. The data are taken from
Sample S1. The color-coded symbols show the obtained Ueff(x; v0)/kBT for increasing values of v0. (b) Measured barrier height difference
�Eb/kBT = [Eb(0) − Eb(v0)]/kBT as a function of the normalized self-propulsion work W/kBT = v0λ/(2D0) for Samples S1 (black circles)
and S2 (red triangles). The solid line shows a linear fit �Eb = aW with a = 0.42 to the data points with small values of W/kBT . The error
bars show the experimental uncertainties of the measurements. (c) Reconstructed potential U0(x)/kBT from the measured Ueff(x; v0)/kBT using
Eq. (3) for Sample S1 with different values of v0. The black solid line shows the directly measured U0(x)/kBT for passive particles with v0 = 0.
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FIG. 3. (a) Measured PDF P(td ) of the dwell time td for Sample
S1. In the plot, td is normalized by its mean value 〈td 〉 obtained
for different values of v0. The solid line shows an exponential fit
P(td ) ∝ exp(−td/〈td 〉) to the tail part of the measured P(td ). (b) Ex-
perimentally measured (black and red symbols) and numerically
simulated (blue symbols) mean dwell time, 〈td 〉/t0, as a function of
the effective barrier height Eb(v0)/kBT obtained for different values
of v0. Here 〈td 〉 is normalized by the relaxation time t0. The two
rightmost data points (black circle and blue triangle) are obtained for
passive particles with v0 = 0. The solid line shows an exponential fit
〈td 〉/t0 ∝ exp(Eb/kBT ) to the black circles. The error bars show the
experimental uncertainties of the black circles.

Similar results are also obtained for Sample S2, as shown in
Supplemental Material Fig. S7 (see Supplemental Material
Sec. II.C for more details [34]). Figures 2 and S7 thus verify
the prediction of Eq. (3). Moreover, from Eq. (3), we can find
a critical self-propulsion force Fc � Eb(0)/[a(λ/2)], or a crit-
ical velocity vc = μ0Fc, above which the effective barrier to
escape vanishes and Eq. (3) does not hold any longer [12,37].
For S1, we find vc � 1.1 μm/s and hence Eq. (3) applies
only for v0 < vc. This is consistent with the results shown in
Fig. 2(c) [and Fig. 2(b)] that the scaling of the reconstructed
potential works only for v0 � 0.76 μm/s < vc.

The measured Ueff(x; v0) has an important effect of spatial
confinement on the Janus particles. From the particle trajec-
tories, we measure the dwell time td for a particle staying in
the same groove. As shown in Fig. 3(a), the obtained PDFs
P(td ) for different values of v0 all collapse onto a common
master curve once td is normalized by its mean value 〈td〉. The

measured P(td ) has a long tail, which is well described by the
exponential function P(td ) ∝ exp(−td/〈td〉) (solid line). This
result suggests that the escape events occur randomly in time
and can be described by a Poisson process [11,28]. Figure 3(b)
shows how the normalized mean dwell time 〈td〉/t0 changes
with Eb(v0). The obtained 〈td〉/t0 follows a Kramers-like rela-
tion [11,33,38] 〈td〉/t0 ∝ exp[Eb(v0)/kBT ] for large values of
Eb(v0)/kBT . This result further demonstrates that the dynam-
ics of the slow rotating Janus particles in a trapping potential
can be well described by an effective potential Ueff(x; F0),
once F0 is properly included.

To further understand the dynamics of Janus particles in a
trapping potential, we conduct Brownian dynamic simulations
of run-and-tumble particles (RTPs) whose motion follows the
over-damped Langevin equation

ṙ = v0û − μ0∇U (r) +
√

2D̃0η, (4)

where r(t ) is the particle position, μ0 = D0/kBT is the mobil-
ity of the RTPs, η is a Gaussian white noise with zero mean
and unit variance, and D̃0 is an adjustable diffusion coeffi-
cient, characterizing the amplitude of the thermal noise in the
system. The particle’s orientation û(t ) changes stochastically
to a new direction with equal probability at a Poisson rate
1/τp, which is defined via the autocorrelation function of the
orientation vector û(t ):

〈û(t1) · û(t2)〉 = e−|t2−t1|/τp . (5)

In our 3D simulations, the external potential U (r) is always
one dimension along the x direction, i.e., U (r) = U0(x). The
simulated data used in this study are obtained when the pro-
gram has run over a long period with 105 time steps (103 s), so
that the system is in a steady-state (see Supplemental Material
Sec. III.A for more details [34]).

When the input parameters of the simulation; D0, τp, U0(x),
and v0 are chosen to be the same as those obtained from the
experiment; and the value of D̃0 is set to be the same as D0,
we are able to reproduce the main features of the experimental
results as shown in Figs. 2–3. For example, the dashed lines
in Fig. 2(a) show the simulated Ueff(x; v0) for different v0,
which are in agreement with the measured Ueff(x; v0) within
an accuracy level of 10%. The resulting �Eb/kBT as shown
in Supplemental Material Fig. S8(a) [34] obeys Eq. (3) with
a slightly smaller value of a for v0 � 0.76 μm/s. The recon-
structed equilibrium potentials U0(x)/kBT from the simulated
Ueff(x; v0)/kBT exhibit the same scaling form, as shown in
Supplemental Material Fig. S8(b) and Fig. S8(c) [34]. Fur-
thermore, the obtained 〈td〉 from the simulation follows the
same Kramers-like relation, as shown in Fig. 3(b). The slight
difference in the absolute value of Eb(v0) between the simu-
lation and experiment can be attributed to a small orientation
bias induced by the heavier Pt coating, even though we tried to
minimize this effect by using a 5-nm-thin Pt coating to make
the Pt-SiO2 Janus particles. As a result, the propulsion direc-
tion of the Janus particles has a slightly higher tendency to
pointing upward, which gives rise to an extra net force against
gravity and thus lowers the gravitational potential U0(x) (see
Supplemental Material Sec. III.C for more discussions [34]).

The simulation also allows us to examine other effects not
accessible in the experiment. First, we reduce the amplitude
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of thermal noise and examine its effects on P(x; v0). When
the thermal noise goes to zero, we find the Janus particles
start to accumulate with P(x; v0) peaked at the two force bal-
ance positions ±x0 [where F0=−∇U0(x0) � kx0], as shown
in Supplemental Material Fig. S9 [34]. A similar particle
accumulation near confining boundaries was also observed in
previous studies [20,21,24]. Because of Brownian diffusion,
the peak width σ of P(x; v0) is broadened. For Sample S1,
we find σ � (2D0t0)1/2 � 0.17 µm, which is about two times
larger than x0 � 0.09 µm (for v0 = 0.51 µm/s). In this case,
the two peaks of P(x; v0) overlap so closely (with separation
2x0 
 2σ ) that they cannot be resolved in the experiment. A
similar effect was also observed in a previous experiment, in
which the SPPs were confined in a harmonic potential U0(x).
As the spring constant k of the potential is increased to a
large value, the two peaks of P(x; v0) eventually merge into
a single peak [23]. Our simulation results also suggest that the
Brownian broadening of P(x; v0) is further enhanced when the
particle’s orientation is changed from one to three dimensions
(see Supplemental Material Sec. III.B for more details [34]).

Second, we find the measured effective potential barrier
height Eb(v0) saturates at ∼2.8 kBT for v0 > 0.76 µm/s [see
Fig. 2(b)]. This saturation effect is not observed in the sim-
ulation, however, where the calculated Eb(v0) continues to
decrease to zero with increasing v0. Recent studies [39,40]
showed that geometric boundaries, such as a planar wall or
a step, can realign the orientation of the Pt-SiO2 particles
via hydrodynamic interactions, so that these particles tend to
move along the edge or groove of the geometric boundaries.
When the particles have a higher tendency to move along the
groove (y direction) with increasing v0, the projection of v0

along the x direction ceases to grow with v0, and hence some
of the Janus particles remain inside the groove and give rise to
a saturation in the barrier height.

In summary, we made an unique experimental design to
overcome the problem of sample polydispersity and identified
a different nonequilibrium regime for the slow rotating SPPs
in a strong symmetric trapping potential in which the nonequi-
librium steady-state properties of the SPPs can be described

by an effective equilibrium approach. First, the probability
density function (PDF) of the particle’s position P(x; v0) takes
a Boltzmann-like form, P(x; v0) ∼ exp [−Ueff(x; v0)/(kBT )],
where Ueff(x; v0) is an activity-dependent effective poten-
tial. This result is obtained under the strong confinement
condition, under which the self-propulsion force F0 = v0/μ0

of the SPPs is much smaller than the critical force Fc ∼
Eb(0)/(λ/2) needed to take away the potential barrier, so that
the particle fluxes are strongly hindered and remain negli-
gibly small [37]. Second, the effective potential Ueff(x; v0)
takes the simple form given in Eq. (3), once the effects of
F0 are properly included under the fixed angle approxima-
tion [28,29]. Third, with the effective potential Ueff(x; v0), the
barrier-crossing dynamics of the SPPs follows a Kramers-
like relation [11,33,38]. Finally, in the confined space, the
Brownian motion of the SPPs including both translation and
3D rotation plays an important role in determining the broad-
ening of the PDF P(x; v0). These findings provide a coherent
guideline for future experimental studies and for the develop-
ment of applications of the SPPs in confined geometries, such
as advanced technologies in microfluidics and targeted drug
delivery. Incidentally, the nonequilibrium regime discussed
here is very different from the universal effective equilibrium
limit, as reported in Refs. [19,25] and reviewed in Ref. [41],
where the persistence time τp of the SPPs is short compared to
the time scale of interest. In this short τp limit, the work done
by the self-propulsion force W = F0	p ∝ F 2

0 is limited by the
persistence length 	p = v0τp and thus gives rise to an elevated
effective temperature [19,25,26].
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