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Turbulent thermal convection across a stable liquid-liquid interface
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We report a systematic study of turbulent thermal convection across two vertically
stacked layers of immiscible fluids, FC770 and water, with a stable liquid-liquid interface
even when each fluid layer is under turbulent convection. The normalized mean tem-
perature profile θ (z) and temperature variance profile �(z), as a function of distance z
away from the interface, are measured along the central vertical axis of the cylindrical
convection cell with varying temperature difference � across the cell. From the measured
mean temperature and temperature variance profiles, we find a unique twin-boundary-layer
structure across the liquid interface with one of the twin boundary layers (BLs) residing
on each side of the interface. The measured θ (z) and �(z) in each fluid layer are found
to have the scaling forms θ (z/λ) and �(z/λ), respectively, with varying BL thickness
λ, and their functional forms are well described by the equations for a BL attaching to
a solid conducting plate, so long as a thermal slip length �T is introduced to account
for the convective heat flux passing through the liquid interface. While the obtained
θ (z/λ) and �(z/λ) for the twin BLs share the same scaling forms, they nevertheless have
different BL thickness λ and slip length �T in the two fluid layers. Furthermore, three
characteristic temperatures are found as response parameters in the two-layer convection,
namely, the mean temperature T0 of the interface, the mean bulk temperature TF of the
FC770 layer, and the mean bulk temperature TW of the water layer. By combining the
scaling result of heat transport across the entire cell and the effects of broken symmetry
between the BL near the conducting plate and that near the liquid interface, we obtain three
quantitative relations that link the three characteristic temperatures to the normalized slip
length ξ0 = (1 + λ/�T )−1 and the temperature difference �. The theoretical predictions
are found in good agreement with the experimental results.

DOI: 10.1103/PhysRevFluids.9.033502

I. INTRODUCTION

As a classical model system, Rayleigh-Bénard convection (RBC) has been used for the study
of a range of hydrodynamic problems over a hundred years. In the laboratory, RBC is realized in
a single fluid layer confined between two horizontally parallel conducting plates, which are heated
from below and cooled from the top with a vertical temperature difference �T parallel to gravity.
When the Rayleigh number (dimensionless buoyancy proportional to �T ) is sufficiently large (e.g.,
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Ra � 108), the bulk fluid becomes turbulent and a large-scale circulation (LSC) is formed across
the convection cell [1,2]. The LSC is driven by the warm and cold plumes emitted from the unstable
thermal boundary layers (BLs) near the bottom and top conducting plates [3–6] and is maintained
in a turbulent environment. Turbulent RBC has been studied extensively in the upright cylindrical
cells of radius-to-height aspect ratio unity, in which the LSC has a single roll structure with its size
comparable to the cell height H [7–10]. As a wall-bounded flow, turbulent RBC has temperature
and velocity BLs adjacent to the conducting plates, and their dynamics are of great importance, as
the thermal BLs determine the global heat transport of the system [11,12].

In addition to the large number of investigations on thermal convection in a single fluid layer,
theoretical and experimental efforts have also been made to study thermal convection in two-layer
systems consisting of two stacking layers of immiscible fluids with a stable liquid interface. Early
studies of two-layer convection [13–17] focused mainly on the laminar region, in which the liquid
interface is considered to be stationary and heat transport across the interface is made only by
thermal conduction. In this case, the temperature at the liquid interface can be derived directly from
the conservation requirement of heat flux across the entire system. In recent years, the studies of two-
layer convection have expanded into the turbulence regime [18–22], in which the convective flow
in each fluid layer was found to be turbulent and possess the key features of single-layer turbulent
convection [5,6,23,24]. Due to the coupling of the large-scale flows between the two immiscible
fluid layers [18–20], the liquid interface undergoes strong fluctuations with a net convective heat
flux passing through it. Nonetheless, the liquid interface is still stable and remains in an average
position with minimal movement.

In a more recent study [25], Huang et al. reported the measurements of thermal BL profiles
across a stable and immiscible liquid-liquid (water-FC770) interface formed in two-layer turbulent
Rayleigh-Bénard convection. Understanding the BL flow near a liquid interface is relevant to
a number of important natural phenomena, such as the coupled ocean-atmosphere flows [26]
and convection of the Earth’s upper and lower mantles [27,28], and many industrial applications
ranging from the liquid-encapsulated crystal growth technique [29] to solvent extraction [30].
Airflow through the respiratory system [31] is another example of two-layer flow, which involves
complex flow patterns and transport processes along the airway passages that are important for the
physiological processes related to breathing and gas exchange. A central finding of the investigation
by Huang et al. is that the measured mean temperature and temperature variance profiles near the
liquid interface can all be well described by the BL equations for a solid wall, so long as a thermal
slip length �T is included to account for the convective heat flux passing through the liquid interface.

On a solid conducting plate, the no-slip and no-fluctuation boundary conditions dictate that

〈w′T ′〉t = 0, ∂z〈w′T ′〉t = 0, ∂2
z 〈w′T ′〉t = 0, (1)

where 〈w′T ′〉t is the velocity-temperature correlation function with T ′ and w′ being, respectively,
the local temperature and vertical velocity fluctuations, and 〈· · · 〉t denotes an average over time t .
In this case, Shishkina et al. [4] introduced the turbulent thermal diffusivity κt (z) to describe the
convective heat transfer, 〈w′T ′〉t = −κt (z)∂z〈T 〉t , and showed that near a solid wall, κt (z) has a
scaling form, [κt (z)]S � aκξ 3

S , in the leading order, where a is a proportionality constant, κ is the
molecular thermal diffusivity of the convecting fluid, and ξS = z/λS is the vertical distance z away
from the solid surface normalized by the thermal BL thickness λS . Hereafter, we use the subscripts S
and L to indicate the quantities that are obtained near a solid conducting plate and a liquid interface,
respectively.

At a stable liquid interface, however, while the mean vertical velocity is zero, the local temper-
ature and vertical velocity fluctuations are nonzero, i.e., T ′ �= 0 and w′ �= 0, and consequently one
has [25]

〈w′T ′〉t �= 0, ∂z〈w′T ′〉t �= 0, ∂2
z 〈w′T ′〉t �= 0. (2)

033502-2



TURBULENT THERMAL CONVECTION ACROSS A STABLE …

FIG. 1. (a) Sketch of the two-layer convection system. The black dotted line indicates a typical mean
temperature profile across the cell height. The temperature of the top conducting plate (z = D) is Tt and that
of the bottom conducting plate (z = −D) is Tb. The temperature of the liquid interface (z = 0) is T0. The bulk
fluid temperature of the FC770 layer is TF and that of the water layer is TW . The thickness of the two BLs in
the FC770 layer is denoted as λF (near the liquid interface) and λ′

F (near the conducting plate), respectively.
Similarly, the thickness of the two thermal BLs in the water layer is denoted as λW (near the liquid interface)
and λ′

W (near the conducting plate), respectively. (b) Sketch of the experimental set-up for the measurement
of local temperature profiles along the central vertical axis of the convection cell. The inner diameter of the
upright cylinder is D = 190 mm and its height is H = 2D. Also shown is the coordinate system used in the
experiment.

In this case, κt (z) will contain all lower-order terms in general. Huang et al. demonstrated both by
experiment and direct numerical simulation (DNS) [25] that the turbulent thermal diffusivity near a
liquid interface has a complete cubic form, [κt (ξ )]L � aκ (ξL + ξ0)3, where ξ0 ≡ �T /λS � �T /(λL +
�T ) is the normalized slip length. In the study of BL profiles, one often uses the normalized mean
temperature profile θL(z) = |〈T (z, t )〉t − 〈T (z = 0, t )〉t |/�T , where z is the vertical distance away
from the liquid interface and �T is the temperature difference across the BL. It was found that the
measured θL(ξL ) near the liquid interface has the scaling form [25],

θL(ξL; c, ξ0) = 1

b

∫ bξL+ξ0

ξ0

(1 + aε3)−c dε, (3)

where ξL = z/λL is the vertical distance z away from the liquid interface normalized by the thermal
BL thickness λL, and b � 1 − ξ0 is used to re-normalize the slip-induced local slope change of the
temperature profile. It can also be viewed as a correction of the BL thickness. The parameter c (� 1)
in Eq. (3) satisfies the condition a = [�(1/3)�(c − 1/3)/3�(c)] [4].

When the normalized slip length ξ0 = 0, Eq. (3) reduces to an equation for the normalized mean
temperature profile θS (ξS; c) near a conducting plate [4]

θS (ξS; c) =
∫ ξS

0
(1 + aε3)−c dε. (4)

Equation (4) has only one fitting parameter c. When c → ∞, θS (ξS; ∞) approaches the Prandtl-
Blasius-Pohlhausen (PBP) form [32] for a laminar BL without any fluctuations. If the value of c can
be obtained from the conducting plate, then the number of fitting parameters in Eq. (3) is reduced to
one, i.e., ξ0. Figure 1(a) shows a sketch of a typical mean temperature profile in turbulent convection
across the two fluid layers.
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Another important quantity to characterize BL fluctuations is the normalized temperature vari-
ance profile, �L(ξL ) ≡ (η(ξL )/ηp)L, where ηL(z) = 〈[T (z, t ) − 〈T (z, t )〉t ]2〉t is the temperature
variance and ηp is its peak value located at the outer edge of the BL. For a laminar BL without
any fluctuations, one has �L(ξL ) = 0. The measured �L(ξL ) near the liquid interface was found to
have the scaling form [25],

�L(ξL; c, ξ0) = �S (bξL + ξ0; c), (5)

where �S (ξS ) = (η(ξS )/ηp)S is the normalized temperature variance profile near a solid conducing
plate, which can be solved numerically from the ordinary differential equation [5,37],

(
1 + dξ 3

S

)d2�S (ξS )

dξ 2
S

+ (τ + 3d )ξ 2
S

d�S (ξS )

dξS
+ 2

�2
b

ηp

aξ 3
S

(1 + aξS )2c
− 1

2

[d�S (ξS )/ dξS]2

�S (ξS )

− 2α�S (ξS ) = 0. (6)

In the recent work by Huang et al. [25], the above theoretical framework was tested only in one
of the two fluid layers, which were confined in a quasi-two-dimensional (quasi-2D) thin disk with
its stadium-shaped cross-section in parallel with gravity. In this work, we extend our investigation
to further test the universality of the BL properties across the liquid interface. In particular, we use
an upright cylinder of aspect ratio 0.5 as the convection cell, which allows more 3D flow modes in
each fluid layer [33–36]. The mean temperature and temperature variance profiles are measured both
above and below the liquid interface so that a comparative study of the BL properties is conducted
between the twin BLs across the liquid interface. The obtained mean temperature profile θL(z) and
temperature variance profile �L(z) for the twin BLs are found to share the same scaling forms,
but they have different BL thickness λL and slip length �T in the two fluid layers. Furthermore,
we obtain three quantitative relations that link the three characteristic temperatures of the two-layer
convection to the normalized slip length ξ0 and the temperature difference � across the entire cell.
The theoretical analysis is found to be in good agreement with the experimental results.

The remainder of the paper is organized as follows. We first describe the experimental methods
in Sec. II. Experimental results are presented in Sec. III. Finally, the work is summarized in Sec. IV.

II. EXPERIMENT

As illustrated in Fig. 1(b), the two-layer convection cell is an upright cylinder with an inner
diameter D = 19.0 cm and a height H = 2D = 38.0 cm. The corresponding aspect ratio of the cell
is � ≡ D/H = 0.5. The convection cell is similar to those used in the previous experiments [37–39]
and here we only mention some key features. The sidewall of the cell is made of a transparent
Plexiglas ring with a wall thickness of 0.6 cm. The top and bottom plates are made of 1-cm-thick
brass plates and their surfaces are electroplated with a thin layer of gold. Two silicon rubber film
heaters (Omega, SRFR 7/10) connected in parallel are sandwiched on the backside of the bottom
plate to provide constant and uniform heating. The top plate is cooled by a closed cooling chamber,
in which cooling water is regulated by a temperature-controlled chiller (NESLAB, RTE740) with
a temperature stability of 10 mK. Three thermistors with an accuracy of 5 mK are embedded in
each brass plate 1 mm away from the conducting surface to record the bottom temperature (Tb)
and top temperature (Tt ). The temperature difference, � = Tb − Tt , across the cell is thus measured
and varied from 4.9 to 47.7◦C by changing the heating power. The lower half of the cell is filled
with a fluorinated liquid, FC770 (3M Fluorinert FC770), and the upper half of the cell is filled with
distilled water, which is immiscible with FC770 and has a lower density. Therefore, the aspect ratio
of each fluid layer is unity.

The dimensionless control parameters for the two-layer system are the Rayleigh number defined
as Rai = βigD3�i/(νiκi ) and the Prandtl number defined as Pri = νi/κi, where the subscript i indi-
cates the two different fluid layers with i = F for FC770 and i = W for water, g is the gravitational
acceleration, and �i is the temperature difference across the i-th fluid layer of height D. The values
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TABLE I. Two liquid samples used in the experiment and their literature values of density ρ, dynamic
viscosity μ, thermal diffusivity κ , thermal conductivity k, thermal expansion coefficient β, and surface tension
with air γ at specified temperatures T . The properties of water and FC770 are obtained, respectively, from
Refs. [40] and [41].

T ρ μ κ k β γ

Fluids (◦C) (g/cm3) (mPa s) (mm2/s) [W/(m K)] (1/mK) (mN/m) Pr

FC770 40.00 1.755 1.140 0.039 0.099 1.48 ∼14.8 20.0
19.20 0.998 1.021 0.143 0.598 0.177 72.53 7.30
29.74 0.996 0.809 0.149 0.618 0.317 71.03 5.43

Water
34.52 0.994 0.733 0.151 0.626 0.349 70.28 4.86
37.99 0.993 0.685 0.152 0.632 0.372 69.74 4.30

of the thermal expansion coefficient βi, kinematic viscosity νi, and thermal diffusivity κi of each
fluid at specified temperatures are given in Table I. Another important dimensionless parameter
is the Weber number defined as We = ρF βF �gH2/γ ′ with γ ′ being the interfacial tension of the
FC770-water interface [25]. The Weber number measures the relative importance of the inertial
forces compared to the surface tension forces. In this work, we focus on the two thermal BLs near
the interface; one is beneath the liquid interface in the FC770 layer and the other is above the liquid
interface in the water layer. By adjusting the temperature of the cooling water, the bulk temperature
(TF ) of the FC770 layer is maintained at 40 ± 0.05◦C with a fixed Prandtl number PrF = 20.0 for
all the measurements. The bulk temperature (TW ) of the water layer is varied from 19.2 to 37.0◦C
with 4.3 � PrW � 7.3. In the experiment, we vary the total temperature difference, � = �F + �W ,
across the cell, so that the resulting RaF is varied in the range 2.1 × 1010 � RaF � 1.8 × 1011, RaW

is in the range 2.3 × 108 � RaW � 1.2 × 109, and We is in the range 25 � We � 250, as shown in
Table II.

Two identical waterproof thermistors (AB6E3-B05KA202R, Thermometrics) are used to mea-
sure the local temperature of the convecting fluid. The two thermistors have a diameter of 0.17 mm
with a response time of 10 ms. They are assembled, with one bead pointing upward and the other
bead pointing downward, as illustrated in Fig. 1(b). To guide the thermistors and their connecting
wires into the convection cell, a thin stainless steel tube with a diameter of 1.2 mm is installed
through the center of the cooling chamber. The stainless steel tube is mounted on a translation
stage, which is controlled by a stepping motor for precise positioning of the thermistors at different
locations across the liquid interface. To minimize the wetting effect of the liquid interface on the
thermistor, we measure the local temperature profiles T (z, t ) above and below the liquid interface
separately. Thermistor B is used to measure T (z, t ) above the interface when the probe is moving
downward (advancing direction) from above the liquid interface. Thermistor A is used to measure
T (z, t ) below the interface when the probe is moving upward (receding direction) from below the
liquid interface. The whole temperature profile T (z, t ) is then obtained by combining the two parts
of T (z, t ), and the exact position of the liquid interface is determined by extrapolation. This is a

TABLE II. Experimental parameters obtained from different experimental runs.

Run Tb (◦C) Tt (◦C) TF (◦C) TW (◦C) T0 (◦C) λF (mm) λW (mm) RaF RaW We

1 58.87 11.17 40.05 19.20 23.81 0.98 1.13 1.8 × 1011 1.2 × 109 250
2 50.07 25.87 39.97 29.74 31.70 1.12 1.20 9.5 × 1010 9.8 × 108 131
3 45.22 32.61 40.03 34.52 35.58 1.19 1.39 5.0 × 1010 6.2 × 108 69
4 42.25 37.35 40.00 37.99 38.39 1.23 1.54 2.1 × 1010 2.3 × 108 25
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FIG. 2. (a) Measured mean temperature profiles 〈T (z, t )〉t (colored symbols) as a function of distance z
away from the liquid interface for different temperature differences � across the convection cell. In the plot,
the temperature T0 at the liquid interface is used as a temperature reference point and thus is subtracted from the
mean temperature profiles. The solid lines indicate the local slope of the measured 〈T (z, t )〉t on each side of the
liquid interface at � = 47.7◦C. The resulting thermal BL thickness on the FC770 side is λF = 0.98 mm and
that on the water side is λW = 1.13 mm. (b) Normalized mean temperature profiles (〈T (z, t )〉t − T0)/(TF − TW )
as a function of the normalized distance z/λF,W for different Rayleigh numbers. For z < 0 (FC770 layer), z is
normalized by the BL thickness λF in the FC770 layer. For z > 0 (water layer), z is normalized by the BL
thickness λW in the water layer. Here, TF − TW is the temperature difference between the two bulk fluids.

new procedure, which was not used in the previous work (see, e.g., Fig. 4 in Ref. [25]). With this
procedure, we correct the slight offset that the interface experiences when the thermistor crosses it.

The entire cell is wrapped with Styrofoam and placed inside a thermostat box, to minimize heat
exchange between the convecting fluid and the surroundings. The temperature of the thermostat box
is set to match the mean temperature of the bulk FC770 fluid (40 ± 0.05◦C). More details about the
high-precision temperature measurements across the liquid interface have been described elsewhere
[25]. This experimental setup ensures an accurate measurement of T (z) and minimizes the external
influences on the temperature field of the convecting fluid.

III. EXPERIMENTAL RESULTS

A. Scaling behavior of the measured mean temperature and temperature variance profiles

Figure 2(a) shows the measured mean temperature profiles, 〈T (z, t )〉t − T0, as a function of
distance z away from the liquid interface for different temperature differences � across the convec-
tion cell. The mean temperature 〈T (z, t )〉t is obtained from the time series data T (z, t ) obtained at
different locations z. The temperature T0 at the interface is used as a temperature reference point and
is determined by a linear extrapolation of the local slope (black solid lines) of the measured 〈T (z, t )〉t

on both sides of the liquid interface. In this way, all the mean temperature profiles pass through the
zero point at the interface. It is seen that the measured 〈T (z, t )〉t − T0 changes linearly with distance
z when the absolute value of z is small (i.e., for positions vary close to the interface) and gradually
approaches a constant value when z is moved far away from the interface. The asymptotic values of
〈T (z, t )〉t are the bulk fluid temperatures TF for the FC770 layer with z < 0 and TW for the water
layer with z > 0. The three characteristic temperatures of the two-layer system, namely T0, TF and
TW , all change with the temperature difference � across the convection cell. It is found that the
measured mean temperature 〈T (z, t )〉t across the interface is continuous and does not have a jump,
whereas the measured temperature gradient d〈T (z, t )〉t/dz has a finite jump at the interface with
the measured values of d〈T (z, t )〉t/dz below the interface being much larger than that above the
interface, as indicated by the two solid lines with a slope of −16.50 K/mm on the FC770 side and
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FIG. 3. (a) Measured temperature variance profiles η(z) (colored symbols) as a function of distance z for
different temperature differences � across the convection cell. (b) Normalized temperature variance profiles
η(z)/(ηP )F as a function of the normalized distance z/λF,W for different Rayleigh numbers. In the plot, the
measured variance profiles η(z) are normalized by their peak height (ηp)F in the FC770 layer. The dashed line
(z = 0) indicates the position of the liquid interface. The error bars show the experimental uncertainties of the
measurements.

a slope of −4.07 K/mm on the water side, respectively. The results shown in Fig. 2(a) indicate that
a well-developed thermal BL is formed both above and below the liquid interface.

To further understand the scaling behavior of the measured mean temperature profiles, we replot
the data by normalizing the mean temperature 〈T (z, t )〉t − T0 with the temperature difference TF −
TW between the two bulk fluids (or across the two BLs) and normalizing the distance z by the
thermal BL thickness λF,W (λF or λW ) in each fluid layer. As shown in Fig. 2(b), the normalized
mean temperature profiles (〈T (z, t )〉t − T0)/(TF − TW ) as a function of the normalized distance
z/λF,W for different Rayleigh numbers RaF (or RaW ) all collapse onto a single master curve. Here
the BL thickness λF,W is determined by the distance, at which the tangent of the mean-temperature
profile 〈T (z, t )〉t near the interface intersects the bulk temperature of each fluid layer, as indicated
in Fig. 2(a). The scaling results shown in Fig. 2(b) suggest that the measured mean temperature
profiles obtained in different fluid layers and at different Rayleigh numbers are determined by a
single mechanism.

Figure 3(a) shows the measured temperature variance profiles, η(z), as a function of distance
z for different values of �. Here, the temperature variance η(z) is defined as η(z) ≡ 〈[T (z, t ) −
〈T (z, t )〉t ]2〉t . All of the variance profiles exhibit a bimodal shape with a distinct peak on each side
of the interface. The peak height in the FC770 layer is found to be significantly larger than that in
the water layer. Moreover, the temperature variance at the liquid interface is not zero but instead
is a local minimum, which is a new feature very different from that at a solid surface. The large
difference in the peak height between the FC770 and water layers indicates that BL fluctuations in
the FC770 layer are much larger than those in the water layer.

When the temperature variance profiles η(z) are normalized by their peak height (ηp)F in the
FC770 layer and the distance z is normalized by the thermal BL thickness λF,W (λF or λW ) in
each fluid layer, we find all the variance profiles η(z)/(ηp)F obtained in different fluid layers and
at different Rayleigh numbers collapse onto a single curve, as shown in Fig. 3(b). It is found that
the peak height (ηp)W in the water layer scales with (ηp)F , and their ratio (ηp)W /(ηp)F remains at
a constant value of 0.38 for different Rayleigh numbers. This explains why the peak height (ηp)F

alone is adequate to scale the measured η(z) in both fluid layers. The normalized profile η(z)/(ηp)F

in the FC770 layer peaks at the position zp = (0.68 ± 0.05)λF below the interface, whereas the
peak position of the normalized η(z)/(ηp)F in the water layer is located at the position zp = (0.53 ±
0.05)λW above the liquid interface. These two values of zp near the liquid interface are smaller than
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FIG. 4. (a) Normalized mean temperature profiles θF (ξF ) as a function of the normalized distance ξF in the
FC770 layer for four different values of RaF . The dashed and dotted lines are the calculated mean temperature
profiles θS (ξS; c) near a solid surface using Eq. (4) with c = ∞ (PBP form) and c = 1, respectively. The
solid line shows the calculated θL (ξF ; c, ξ0 ) near a liquid interface using Eq. (3) with c = 1.5 and ξ0 = 0.17.
(b) Normalized mean temperature profiles θW (ξW ) as a function of the normalized distance ξW in the water
layer for four different values of RaW . The dashed and dotted lines are the calculated mean temperature profiles
θS (ξS; c) near a solid surface using Eq. (4) with c = ∞ (PBP form) and c = 1, respectively. The solid line
shows the calculated θL (ξW ; c, ξ0 ) near a liquid interface using Eq. (3) with c = 2.3 and ξ0 = 0.32.

the peak position of the normalized η(z)/(ηp)F near a solid surface, which is 0.85λS as reported
by Wang et al. [5,37]. The bimodal structure of the normalized variance profiles provides further
support for the establishment of two separate thermal BLs above and below the liquid interface.
Similar bimodal variance profiles were also observed in a quasi-2D convection cell [25].

B. Scaling form of the normalized mean temperature and temperature variance profiles

Following the convention of defining the BL profiles near a solid surface [5,37], we now define
the normalized mean temperature profile in each fluid layer separately as

θi(ξi) ≡ |〈T (ξi, t )〉t − T0|
|Ti − T0| , (7)

where ξi = |z|/λi is the normalized distance away from the liquid interface and |Ti − T0| is the
temperature difference across the BL. Hereafter, we use the subscript i to indicate the two fluid
layers with i = F for the FC770 layer and i = W for the water layer. When no confusion arises
(such as in the Abstract and Conclusion), the subscripts F and W will be dropped off to simplify
the notation. Similarly, we define the normalized temperature variance profile in each fluid layer as

�i(ξi ) ≡ η(ξi)

(ηp)i
≡ 〈[T (ξi, t ) − 〈T (ξi, t )〉t ]2〉t

(ηp)i
, (8)

where (ηp)i is the peak height of the measured η(z).
Figure 4(a) shows the obtained θF (ξF ) as a function of ξF for four different values of RaF .

Figure 4(b) shows the obtained θW (ξW ) as a function of ξW for four different values of RaW . The
dashed and dotted lines in Figs. 4(a) and 4(b) are the calculated mean temperature profiles θS (ξS; c)
near a solid surface using Eq. (4) with c = ∞ and c = 1, respectively. The parameter c is a measure
of the level of fluctuations in the BL with c = 1 being the most fluctuating and c = ∞ being laminar
(i.e., the PBP form without fluctuations). The shaded (gray-colored) region between the dashed and
dotted lines indicates the region in which Eq. (4) is valid. It is seen that both the measured θF (ξF )
and θW (ξW ) deviate from the laminar profile (PBP form) considerably with θF (ξF ) exhibiting even
larger deviations outside the shaded region. This is because the FC770 layer is more turbulent with
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FIG. 5. (a) Normalized temperature variance profiles, �F (ξF ) ≡ (η(ξF )/ηp)F , as a function of the normal-
ized distance ξF for four different values of RaF . The solid line shows the numerical solution �L (ξF ; c, ξ0 ) of
Eq. (5) with c = 1.5 and ξ0 = 0.17. (b) Normalized temperature variance profiles, �W (ξW ) ≡ (η(ξW )/ηp)W , as
a function of the normalized distance ξW for four different values of RaW . The solid line shows the numerical
solution �L (ξW ; c, ξ0 ) of Eq. (5) with c = 2.3 and ξ0 = 0.32.

larger values of RaF and hence has more BL fluctuations. The fact that the measured θF (ξF ) is
outside the shaded region further demonstrates that the BL dynamics near the liquid interface are
very different from those near the solid surface. Nevertheless, the measured θF (ξF ) in the FC770
layer is well described by Eq. (3) with two fitting parameters, c = 1.5 and ξ0 = 0.17 [solid line in
Fig. 4(a)]. Similarly, the measured θW (ξW ) in the water layer is also well described by Eq. (3) with
c = 2.3 and ξ0 = 0.32 [solid line in Fig. 4(b)].

Figure 5(a) shows the normalized temperature variance profiles, �F (ξF ) ≡ (η(ξF )/ηp)F , as a
function of the normalized distance ξF for different values of RaF . Figure 5(b) shows the obtained
�W (ξW ) ≡ (η(ξW )/ηp)W as a function of the normalized distance ξW for different values of RaW .
The obtained temperature variance profiles in both fluid layers can all be well described by the
numerical solution �L(ξL; c, ξ0) of Eq. (5) for a liquid interface. The solid line in Fig. 5(a) shows
the calculated �L(ξF ; c, ξ0) using the same fitting parameters, c = 1.5 and ξ0 = 0.17, as those used
in Fig. 4(a). Similarly, the solid line in Fig. 5(b) shows the calculated �L(ξW ; c, ξ0) using the same
fitting parameters, c = 2.3 and ξ0 = 0.32, as those used in Fig. 4(b). It is seen that in the water layer,
the normalized temperature variance at the interface [�W (z = 0)] is larger than that in the FC770
layer, which is consistent with the observation that the peak position of the measured �W (ξW ) in the
water layer is closer to the interface. This finding further demonstrates how the fitted value of the
normalized thermal slip length ξ0 in the water layer is larger than that in the FC770 layer. Compared
to the measured mean temperature profiles, the temperature variance profiles are more sensitive to
the changes of ξ0. As mentioned above, the FC770 layer has larger values of RaF and hence is more
turbulent. Consequently, the large-scale flow in the FC770 layer will impose a stronger shear on the
neighboring water layer. This strong shear effect at the liquid interface enhances the thermal slip
and gives rise to a larger value of ξ0 in the water layer. Conversely, the shear effect to the FC770
layer is relatively weaker and hence results in a smaller value of ξ0 in the FC770 layer.

C. Spatial distribution of local temperatures in two-layer convection

When a given temperature difference, � = Tb − Tt , is applied to the two-layer system, the tem-
perature T0 at the interface and hence the temperature differences, �F = Tb − T0 and �W = T0 − Tt ,
across the two fluid layers are adjusted so that a constant heat flux goes through the two-layer
system, which is similar to a constant electric current going through two resistors connected in
series. Because of the immiscibility and mismatch of the thermal properties between the two fluids,
the temperature profile across the liquid interface forms a well-developed thermal BL on each side
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FIG. 6. Variations of the normalized local temperature, (Tb − 〈T (z, t )〉t )/�, at different locations z/D
along the central axis of the convection cell for different temperature differences � across the convection
cell. The horizontal dashed lines indicate a constant value of (Tb − 〈T (z, t )〉t )/� for different values of �.

of the interface, instead of having a finite temperature jump. The two BLs are unstable, however, and
emit thermal plumes on each side of the interface, giving rise to strong BL fluctuations as shown in
Fig. 5. As a result, the two-layer system yields three characteristic temperatures, the two bulk fluid
temperatures TF and TW and an interface temperature T0, in response to the applied temperature
difference � across the entire convection cell.

Figure 6 shows how the normalized local temperature (Tb − 〈T (z, t )〉t )/� changes at different
locations z/D along the central axis of the convection cell for different temperature differences �.
It is seen that the three characteristic temperatures, the bulk temperature TF (z/D = −0.5) of the
FC770 layer, the interface temperature T0 (z/D = 0), and the bulk temperature TW (z/D = 0.5) of
the water layer, once normalized by the temperature difference � across the whole cell, all reveal
a very weak dependence on � (slightly decrease with increasing �). It is seen that approximately
76% of � is distributed across the FC770 layer, and the other 24% of � is distributed across the
water layer. Similarly, the temperature difference, TF − T0, across the lower BL below the interface
is considerably larger than that (T0 − TW ) across the upper BL above the interface. The bulk fluid
temperature in each layer is no longer an arithmetic mean of the conducting plate temperature (Tb

or Tt ) and interface temperature (T0), as in the case for single-fluid convection under the Oberbeck-
Boussinesq (OB) condition. Instead, both TF and TW show a significant shift towards the interface
temperature T0. As will be shown in Fig. 7(b) below, this shift of the bulk fluid temperature towards
T0 is caused primarily by the broken symmetry between the BL near the bottom conducting plate
with the no-slip boundary condition and the BL near the top liquid interface with a slip boundary
condition.

To quantitatively describe the temperature shift of the bulk fluid in each layer, we define an
asymmetry parameter χF in the FC770 layer as

χF = TF − T0

Tb − TF
. (9)

When the bulk fluid temperature is an arithmetic mean of two symmetric BLs, i.e., TF = (Tb +
T0)/2, we have χF = 1. Similarly, we define the parameter χW in the water layer as

χW = T0 − TW

TW − Tt
. (10)
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FIG. 7. (a) Measured asymmetry parameters, χF (red circles) and χW (blue squares), as a function of the
temperature difference � across the convection cell. The red and blue solid lines are plots of Eq. (11) with
(ξ0)F = 0.17 and (ξ0)W = 0.32, respectively. (b) Sketch of a typical temperature variation (black solid line)
across the FC770 layer in two-layer convection. The bottom red solid line indicates the solid conducting
plate with the no-slip boundary condition. The top blue solid line indicates the liquid interface with a slip
boundary condition. The top blue dashed line indicates an extrapolated interface, at which the extrapolated
mean temperature profile (red dotted line) becomes nonslip with a modified interface temperature T ′

0 .

These two parameters have been used previously to describe the non-Oberbeck-Boussinesq (NOB)
effect for single-fluid convection [42–46]. Figure 7(a) shows how the asymmetry parameters, χF

and χW , change with different temperature differences � across the convection cell.
To further understand the asymmetric behavior of the measured χF and χW as shown in Fig. 7(a),

we take the FC770 layer as an example and consider the effect of its thermal BL slip near the
liquid interface. As illustrated in Fig. 7(b), the presence of the thermal BL slip at the top liquid
interface causes a temperature offset, T0 − T ′

0 � (ξ0)F (Tb − TF ), at the top boundary. Here T ′
0 is the

modified temperature of an extrapolated interface (top blue dashed line), at which the extrapolated
mean temperature profile (red dotted line) becomes nonslip. When the top and bottom boundaries
are both under the no-slip boundary condition, the temperature difference across the bottom BL
becomes equal to that across the top BL, i.e., Tb − TF = TF − T ′

0 . Therefore, the two parameters
defined in Eqs. (9) and (10) become

χi � 1 − (ξ0)i, (11)

where ξ0 = �T /λS is the normalized slip length. From Fig. 7(b), we have λS � λL + �T and hence
ξ0 � �T /(�T + λL ) = (1 + λL/�T )−1 [25]. The red and blue solid lines in Fig. 7(a) show the
theoretical prediction of Eq. (11) for the two fluid layers, which capture the essential changes of the
measured χF and χW . Small variations of the measured χF and χW with the temperature difference
� across the convection cell are caused by other effects not considered here, such as the NOB effects
in both the FC770 layer and the water layer at different Prandtl numbers PrW (varied in the range
4.3–7.3) [42–46].

We now consider the heat transfer across the liquid interface, which involves both the conductive
[−k(d〈T (z, t )〉t/dz)] and convective (ρCp〈w′T ′〉t ) contributions, where Cp is the specific heat of
the convecting fluid. For the local measurement of the mean temperature profile 〈T (z, t )〉t along the
central axis of the convection cell, one also needs to consider the effect that the local heat flux may
also go horizontally in parallel with the liquid interface. These complex dynamic processes at the
interface make the conductive heat flux across the liquid interface nonconserved locally, namely,

kF
TF − T0

λF
�= kW

T0 − TW

λW
. (12)
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FIG. 8. Measured temperature ratio χFW (black circles) as a function of the temperature difference � across
the convection cell. The red crosses show the calculated χFW using Eq. (15) with ω = 0.29 and α = 0.14. The
red solid line is drawn to guide the eye.

The inequality in Eq. (12) can be checked with the numerical numbers given in Tables I and II. It
explains why the ratio of the measured temperature gradient above the interface to that below the
interface, as shown in Fig. 2(a), is not equal to the thermal conductivity ratio kF /kW .

In contrast, the local heat flux through the bottom and top conducting plates is conserved and we
have

kF
Tb − TF

λ′
F

= kW
TW − Tt

λ′
W

, (13)

where λ′
F and λ′

W denote the thermal BL thickness near the bottom and top conducting plates,
respectively. Using the Grossmann-Lohse theory [47,48], we have the scaling relation between the
thermal BL thickness and the local Rayleigh number and local Prandtl number

λ′
i ∼ Ra−ω

i Pr−α
i , (14)

where ω = 0.29 ± 0.03 and α = 0.14 ± 0.03 for the upright cylinder [37]. For other cell geome-
tries, the measured values of ω and α have shown a weak dependence on the cell geometry [49–51].
By combining Eqs. (9)–(11) and Eqs. (13) and (14), we find the ratio of the temperature difference
Tb − T0 across the FC770 layer to the temperature difference T0 − Tt across the water layer,

χFW = Tb − T0

T0 − Tt
�

(
2 − (ξ0)F

2 − (ξ0)W

) 1
1+ω

(
kW

kF

) 1
1+ω

(
βW

βF

) ω
1+ω

(
κF

κW

) ω+α
1+ω

(
νW

νF

) ω−α
1+ω

. (15)

In the above, the first factor on the right-hand side of the equation represents the influence of thermal
BL slip, whereas the remaining factors account for the difference in the fluid properties of the
two layers. Equation (15) is an extension of a previous result obtained by Liu et al. [20] for an
idealized system, in which the thermal properties such as thermal expansion coefficient (βi), thermal
diffusivity (κi), and kinematic viscosity (νi) in the two fluid layers were assumed to be the same and
the effect of thermal BL slip at the interface was not considered. In Eq. (15), we have included these
new effects in the actual two-layer system.

Figure 8 shows the measured temperature ratio χFW as a function of the temperature difference �

across the convection cell. The red crosses show the calculated χFW using Eq. (15) with ω = 0.29
and α = 0.14. It is seen that the calculated χFW without any adjustable parameter gives a good
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estimate of the experimental results. As mentioned in Sec. II, when the temperature difference � is
varied in the experiment, the bulk temperature TF of the FC770 layer is kept constant (40◦C) so that
its fluid properties remain unchanged. The bulk temperature TW of the water layer, however, is varied
from 19.2 to 37.0◦C, so that its four fluid parameters and especially the thermal expansion coefficient
(βW ) and kinematic viscosity (νW ) change considerably. As a result, the obtained values of χFW

decrease modestly with increasing �. Figure 8 thus confirms that Eq. (15) provides a quantitative
relation that can be used to determine the interface temperature T0 for a given �.

IV. CONCLUSION

In this work, we carried out a systematic experimental study of turbulent two-layer convection in
an upright cylinder. The two-layer system consists of two stacked layers of immiscible fluids, FC770
and water, in which a stable liquid interface is formed even when each fluid layer is under turbulent
thermal convection. The normalized mean temperature profile θ (z) and temperature variance profile
�(z), as a function of distance z away from the interface, were measured along the central vertical
axis of the convection cell with varying temperature difference � across the cell. In the experiments
with varying �, the bulk temperature TF of the FC770 layer was kept constant (40◦C) whereas the
bulk temperature TW of the water layer was varied from 19.2 to 37.0◦C. Correspondingly, the local
Rayleigh number of each liquid layer was varied, respectively, in the ranges of 2.1 × 1010 � RaF �
1.8 × 1011 and 2.3 × 108 � RaW � 1.2 × 109.

From the measured mean temperature and temperature variance profiles, we find a unique twin-
boundary-layer structure across the liquid interface with one of the twin BLs residing on each side of
the interface. The measured θ (z) and �(z) in each fluid layer with different local Rayleigh numbers
are found to have the scaling forms θ (z/λ) and �(z/λ), respectively. The functional form of the
obtained θ (z/λ) and �(z/λ) near the liquid interface is well described by the BL equations for
a solid conducting plate, so long as a thermal slip length �T [or its normalized value ξ0 = (1 +
λ/�T )−1] is introduced to account for the convective heat flux passing through the liquid interface.
While the obtained θ (z/λ) and �(z/λ) for the twin BLs share the same scaling forms, as described
by Huang et al. [25], they nevertheless have different BL thickness λ and slip length �T (or ξ0) in
the two fluid layers. This work represents a further extension of the recent experiment by Huang
et al. [25] in a quasi-2D convection cell. Here we investigate the flow properties of both the fluid
layers above and below the liquid interface simultaneously. Interestingly, even in the more complex
three-dimensional system with a larger number of flow modes, thermal slip is observed in both the
fluid layers with the water layer having a lower Rayleigh number and exhibiting a larger thermal slip
length �T . The larger value of �T results from a stronger shear effect to the liquid interface imposed
by the FC770 layer, which has a larger value of RaF and hence is more turbulent.

Furthermore, three characteristic temperatures are found as response parameters in the two-layer
convection, namely, the temperature T0 of the interface, the bulk temperature TF of the FC770
layer, and the bulk temperature TW of the water layer. The three characteristic temperatures, once
normalized by the temperature difference � across the whole cell, all reveal a very weak dependence
on � (slightly decrease with increasing �). Compared with turbulent convection in a single fluid
layer under symmetric boundary conditions, the two bulk fluid temperatures, TF and TW , show a
significant shift towards the interface temperature T0, primarily due to the broken symmetry between
the BL near the solid conducting plate and that near the liquid interface. This temperature shift is
quantitatively described by two asymmetry parameters, χF and χW , which are directly linked to the
normalized slip length ξ0, as shown in Eq. (11). By combining the scaling result of heat transport
across the entire cell and the two asymmetry parameters χF and χW , we obtain a quantitative relation
that links the interface temperature T0 to ξ0 and other fluid properties, as shown in Eq. (15). The
theoretical results are found to be in good agreement with the experimental values.

In this work, the thickness ratio of the two fluid layers is kept at unity. The interfacial tension
γ ′ between the two fluids also remains unchanged. How the thickness ratio of the two fluid layers
affects the thermal slip length in each layer and the heat transport across the whole convection cell
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is an interesting subject for future study [20]. According to Eq. (15), the changes in the thermal
slip length will, in turn, affect the distribution of the temperature differences across the two fluid
layers. The effect of the interfacial tension γ ′ on the thermal slip length is also an interesting subject
for future study. The interface between the two fluid layers may become unstable when the control
parameters (Rai, We) are in a critical regime [19]. The current study represents the first step toward
these directions.
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