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We report a direct measurement of the friction coefficient of a fluctuating (and slipping) contact line

using a thin vertical glass fiber of diameter d with one end glued onto a cantilever beam and the other end

touching a liquid-air interface. By measuring the broadening of the resonant peak of the cantilever system

with varying liquid viscosity �, we find the friction coefficient of the contact line has a universal form,

�c ’ 0:8�d�, independent of the liquid-solid contact angle. The obtained scaling law is further supported

by the numerical simulation based on the phase field model under the generalized Navier boundary

conditions.
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What happens near a contact line, where a liquid inter-
face between two (immiscible) fluids intersects with a
solid surface is a fundamental issue in fluid dynamics
and is also a concern of many industrial processes ranging
from spreading of droplets, lubricants, and coatings to the
extraction of oil from sandstone by injecting water or gas
[1]. While considerable progress has been made recently in
controlling the wettability of various textured solid sur-
faces [2] and in understanding the energetics associated
with deformable soft substrates [3–5], our fundamental
understanding of the dynamics of the contact line still
remains very limited [1,6]. Like the static problem [3–5],
the motion of the contact line is also a singular problem; it
is incompatible with the nonslip boundary condition and
would lead to unphysical infinite dissipation [7]. Over the
years there have been many ad hoc models and proposals
aimed at resolving the incompatibility issue [1,2,6], but
none of the theoretical ideas has been experimentally
confirmed.

As illustrated in the inset of Fig. 1, a moving contact
line (MCL) involves fluid motion (i) at a small distance
a (� 1 nm) in the immediate vicinity of the contact line, in
which molecular interactions between the liquid and solid
are important, and (ii) in the ‘‘outer region’’ of meso- or
macroscopic size ‘, in which classical hydrodynamics
are applicable. To avoid the dissipation divergence of
MCL, de Gennes et al. [8] introduced the cutoff length a
and calculated the hydrodynamic friction coefficient �w in
regime (ii) away from the contact line,

�w ’ ½3 lnð‘=aÞ=���d�; (1)

for liquids with a small contact angle �. In the above, �d is
the contact line length, and � is the fluid viscosity. The
value of �w becomes very large for liquids with small � and
even becomes divergent when � ¼ 0�.

Most experiments on MCL were conducted in
regime (ii) [9–11], because direct observation of the fluid
motion in regime (i) (& 1 �m) is difficult with the con-
ventional optical methods. While these measurements
provided useful information about the MCL dynamics at
large distances, direct comparison of the experimental
results with the microscopic models is not possible. This
is because all the theories predicted the same flow field to
the leading order [1,12,13]. As a result, our current under-
standing of the contact line dynamics in regime (i) relies
mainly on the results from molecular dynamic (MD) simu-
lations [14–16]. These simulations, however, were carried
out under highly idealized conditions, such as atomically
smooth solid surface and simplified fluid-solid interac-
tions. Direct measurement of the properties of the MCL
in regime (i) is, therefore, needed in order to test different
theoretical ideas.

FIG. 1 (color online). (a) Sketch of the AFM-based hanging
fiber probe and the capillary rise around the fiber tip. Inset shows
the geometry near the contact line and the coordinate system
used in the experiment. (b) Actual glass fiber of diameter d ¼
1:9 �m and length 270 �m in contact with a decane-air inter-
face. The arrow points to the contact point.
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In this Letter, we report direct measurement of the
scaling properties of the friction coefficient �c of the
MCL in regime (i) through the measurement of the spec-
trum of fluctuation amplitude of a contact line at equilib-
rium (no external driving), which is amplified under the
spontaneous resonance condition. The two quantities are
intrinsically linked together by the fluctuation-dissipation
theorem [17], which establishes what happens at the micro-
scopic level to a macroscopically measurable dissipation
coefficient.

Figure 1 shows the working principle and the actual
setup of a newly developed hanging fiber resonator [18]
based on atomic force microscopy (AFM). A vertical glass
fiber of diameter in the range of 0:4–2:5 �m and length in
the range 130–300 �m is glued onto the further end of a
rectangular AFM cantilever beam. The tip of the hanging
fiber touches a liquid-air interface, at which a circular
contact line between the interface and the fiber surface
is formed. The vertical displacement zðtÞ of the fiber
(� vertical deflection of the AFM cantilever) is well
described by the Langevin equation [18,19]:

m
@2z

@t2
þ �

@z

@t
þ kz ¼ fBðtÞ; (2)

where m is the effective mass of the modified cantilever,
�@z=@t is the drag force on the fiber with � being the
friction coefficient, kzðtÞ is the elastic force due to the
bending of the cantilever with a spring constant k, and
fBðtÞ is the random Brownian force due to thermal fluctua-
tions of the surrounding fluid. While fBðtÞ has a zero mean,
its rms value, hf2Bi ¼ 2kBT�, is a nonzero quantity with
kBT being the thermal energy of the system.

The measured quantity in the experiment is the power
spectrum of vertical deflections of the cantilever, jzð!Þj2,
which can be solved analytically from Eq. (2):

jzð!Þj2 ¼ 2kBT�=m
2

ð!2 �!2
0Þ2 þ ð!�=mÞ2 ; (3)

where ! ¼ 2�f is the angular frequency and !0 ¼
ðk=mÞ1=2 (� 600 kHz) is the resonant frequency of the
hanging fiber. Being operated at a resonant state, the
hanging fiber amplifies the fluctuation spectrum and thus
can accurately detect minute changes of the friction
coefficient � caused by the damping of a spontaneously
fluctuating contact line [20].

The setup in Fig. 1 has several features particularly
useful for the investigation intended here. (i) When the
fiber tip touches the liquid interface, the resulting capillary
force on the fiber is immediately detected by the AFM
force sensor, making the determination of the contact point
very accurate to within 0:1 �m. By pulling the fiber
upward slightly to keep the fiber tip in minimal contact
with the liquid interface, the drag force from the bulk fluid
is minimized. (ii) By pushing downward and pulling
upward the fiber through the liquid interface, one can

immediately measure the advancing and receding contact
angles resulting from the interfacial pinning. These
real-time measurements ensure that the cleaned fiber sur-
face and liquid interface are kept under an equilibrium
condition.
(iii) As indicated in Fig. 1, there is a small capillary rise

of the wetting fluid around the fiber. The meniscus of the
interface around a stationary fiber has the form [8], rðhÞ ¼
b cosh½h=b� lnð2‘c=bÞ�, where h is the meniscus height, r

is its radial location, ‘c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�=�g

p
is the capillary length,

and b ¼ ðd=2Þ cos�. Here, � is the surface tension, � is
the fluid density, g is the gravitational acceleration, and d is
the fiber diameter. In this case, we have a capillary rise of
�3d in height and�1:5d in film thickness. When the fiber
oscillates, the viscous shear wave can only penetrate into a

thin fluid layer of thickness � ¼ ð2	=!0Þ1=2 from the fiber
surface [21], where 	 ¼ �=� is the kinematic viscosity.
The capillary rise [i.e., the fluid in regime (ii) marked as
a wedge-shaped fluid layer in the inset of Fig. 1(a)] will
oscillate in phase with the fiber, contributing only an added
mass and no dissipation to the oscillating fiber, if its
thickness is smaller than �. For liquids with � * 1 cP
and!0 ’ 2�� 110 kHz, we have � * 1:7 �m. By choos-
ing the glass fibers with d & 2 �m, we deliberately mini-
mize the viscous drag from the capillary rise around the fiber
and thus avoid the dissipation divergence at the zero contact
angle limit [see Eq. (1)]. The above discussion is valid only
for the fluid layer with a nonslip boundary condition [i.e., in
regime (ii)]. As a result, the oscillating fiber only feels the
drag on its end surface and the MCL in regime (i), where the
wall velocity slips as demonstrated by previous MD simu-
lations [14–16] and by recent continuum hydrodynamic
calculations [16,22,23]. Such a slip produces a relative
motion between the contact line and the fiber.
Figure 2 shows how the measured jzðfÞj2 changes when

the fiber tip (d ¼ 2 �m) touches the liquid-air interface
with different viscosities. Nine organic liquids and aqueous
solutions of glycerine are used in the experiment and their
properties are given in [20]. These liquid samples are
chosen because their interfacial properties are stable and
a wide range of viscosities is covered. Once in contact with
the interface, the resonant peak changes continuously with
increasing fluid viscosity �; the frequency peak broadens
while the peak height decreases and peak position shifts
to lower frequencies. This behavior is well described by
Eq. (3), as shown by the fitted solid line in the inset of
Fig. 2. From the equipartition theorem, one finds the
measured rms value of contact line fluctuations to be

hz2ðtÞi1=2t ¼ ðkBT=kÞ1=2 ’ 2� 10�2 nm for k ¼ 10 N=m.

The corresponding drag force is fd ’ �!0hz2ðtÞi1=2t ’
1 pN and the capillary number Ca ’ �!0hz2ðtÞi1=2t =
� ’ 1:9� 10�7 for water with � ¼ 10�7 Ns=m and !0 ¼
2�� 110 kHz. These numbers reveal the tremendous
sensitivity of the technique useful for the study of the
MCL dynamics.

PRL 111, 026101 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
12 JULY 2013

026101-2



We also measure jzðfÞj2 when the fiber is in air and
obtain the corresponding friction coefficient �0. The net
friction coefficient is then defined as �� � �� �0, which
is shown in Fig. 3(a) as a function of liquid viscosity �.
Two sets of data obtained by using two different fibers are
displayed. The error bars show the standard deviation of
the repeated measurements. The overall uncertainties of
the measured�� are at the 10% level. For the d ¼ 0:4 �m
fiber, the signals at the two lowest values of � have become
very close to the noise floor (in air). The two sets of data
can be well described by the equation,

�� ¼ Aþ 
�d�þ �b; (4)

where A and 
 are two fitting parameters, and �b is the
friction coefficient resulting from the end surface of the
fiber tip. For an oscillating disk fully immersed in an
unbounded liquid of density �, its friction coefficient
parallel to the normal of the disk is given by [24,25],

�b ¼ 4d�þ 8
ffiffiffi
2

p
3�

d2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�!0�

p
; (5)

where!0 is the oscillation frequency. Because the fiber has
only one (circular) end surface in contact with the liquid,
here we express �b for only a half of its total value.

The solid lines in Fig. 3(a) show the fits to Eq. (4). The
�-independent term A is a device parameter, which char-
acterizes the internal dissipation of the hanging fiber under
the capillary force. By varying � for more than two dec-
ades, we are able to accurately determine the linear term in
�, which becomes dominant at large values of �, and theffiffiffiffi
�

p
term in �b, which is more important at small values of

�. It is found that the measured�� for different fibers with
various values of d and !0 can all be described by Eq. (4).
The frequency-dependent

ffiffiffiffi
�

p
term in Eq. (5), therefore,

provides a unique way to separate the end effect from the
measured ��.

Once subtracting out the end contribution �b and the
device constant A, we find that the resulting friction
coefficient, �c � ��� A� �b, for different fibers with
varying diameters d (and hence varying capillary rises)
and resonant frequencies !0 and for fluids with different
contact angles � all collapses into a single master curve.
Figure 3(b) shows the obtained friction coefficient per
unit length, �c=ð�dÞ, as a function of �. The first four sets
of data are obtained using organic liquids, which show
zero contact angle with the glass fiber. The last two sets of
data are obtained using aqueous solutions of glycerine
with various concentrations. In one case (v), the glass
fiber is plasma cleaned and the contact angle is zero. In
the other case (vi), the glass fiber is coated with a mono-
layer of trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane
(FTS) and the (advancing) contact angle is changed from
0� to 100�. Such an increase in the contact angle also
introduces a large contact angle hysteresis. Nevertheless,
all the data sets can be well described by a universal
function

FIG. 3 (color online). (a) Measured �� as a function of liquid
viscosity �. Two hanging fibers with (i) d ¼ 1:9 �m, k ¼
11 N=m (circles) and (ii) d ¼ 0:4 �m, k ¼ 9 N=m (triangles)
are used. Inset shows an SEM image of the d ¼ 0:4 �m fiber.
The solid lines show the fits to Eq. (4). (b) Measured �c=ð�dÞ as
a function of �. Six fibers are used: (i) d ¼ 2:3 �m (green
circles), (ii) d ¼ 2:1 �m (red triangles), (iii) d ¼ 1:9 �m (blue
diamonds), (iv) d ¼ 0:4 �m (magenta squares), (v) d ¼ 0:8 �m
(cyan circles), and (vi) d ¼ 2:1 �m (yellow triangles). The solid
line is a linear fit to Eq. (6) with 
 ¼ 0:8� 0:2. The black solid
circles are the simulation results obtained at � ¼ 30�.

FIG. 2 (color online). Variations of the measured jzðfÞj2 when
the fiber tip touches different fluids: air (black curve), octane (red
curve), dodecane (blue curve), silicone oil 1 (� ¼ 19 cP) (green
curve) and silicone oil 2 (� ¼ 97 cP) (violet). Inset shows a fit
of Eq. (3) to the dodecane data with m ¼ 2:26� 10�8 g,
k ¼ 11:33 N=m, and � ¼ 8:28� 10�8 N s=m.

PRL 111, 026101 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
12 JULY 2013

026101-3



�c ¼ 
�d�; (6)

where�d is the total length of MCL and the fitted value of

 ¼ 0:8� 0:2 (solid line).

Loewenberg [26] has carried out a numerical study of
the friction coefficient � for an oscillating cylinder of
varying aspect ratio � fully immersed in an unbounded
fluid (without a contact line). His numerical results indi-
cated that the use of Eq. (5) to correct the end-wall effect is
accurate and the numerical errors associated with the
end-wall subtraction are negligibly small compared with
the measured �c shown in Fig. 3(b) [27].

The calculated �w in Eq. (1) is �w ’ ð26=�Þ�d� for
‘ ’ 6 �m. This value of �w is about 100 times larger than
the measured �c for liquids with � ’ 15� and even
becomes divergent for liquids with � ¼ 0�. Clearly, the
calculated �w for regime (ii) does not apply to the mea-
sured �c shown in Fig. 3(b), further confirming that the
capillary rise in regime (ii) does not contribute to the
measured �c. The direct comparison between the data
sets (v) and (vi) with the same fluid but different fiber
surfaces (hydrophilic vs hydrophobic) reveals that the
measured �c is insensitive to the changes of the contact
angle and to the contact line pinning, as the measurement
is conducted at equilibrium without involving a macro-
scopic flow.

In a more recent experiment, we measured �c for the
hanging fiber intersecting with a thin soap film [28]. In this
case, there are two contact lines formed on the fiber surface
(with the two water-air interfaces of the soap film) and no
end-wall correction is needed. The measured �c is found to
decrease with time as the water in the soap film gradually
drains out and reaches an asymptotic value when the film
thickness becomes very small (& 36 nm) before the soap
film bursts. The obtained asymptotic value of �c is twice as
large as the value given by Eq. (6). The universal behavior
of the measured �c for different fluid systems with various
contact angles and capillary rises (by varying d) thus
demonstrates that �c given in Eq. (6) is indeed associated
with a fluctuating (and slipping) contact line in regime (i).

In fact, �c is an intrinsic property of the MCL and can
also be realized through a macroscopic flow. To further
verify this effect, we conduct a direct numerical simulation
(DNS) of a two-dimensional two-phase (fluid and gas) flow
between two parallel plates under a constant speed U0 and
the third dimension of the flow parallel to the contact line is
assumed to be homogeneous [29]. The DNS study is
carried out by solving the phase field model of coupled
incompressible Navier-Stokes equation and Cahn-Hilliard
equation under the generalized Navier boundary conditions
using a gradient stable scheme [23,30]. From the obtained
tangential velocity profile vxðxÞ at the solid wall as a
function of distance x away from the contact line, where
the x axis is along the flow direction, we compute the
dissipation rate per unit length �u ¼ ð�=‘sÞ

R
v2
xðxÞdx,

occurring at the fluid-solid interface, where the slip length

‘s (¼ 10 nm) is a fixed input parameter. The friction
coefficient per unit length is �u=U

2
0, and from Eq. (6) we

have 
 ¼ R½vxðxÞ=U0�2dðx=‘sÞ. It is found that the nor-
malized wall velocity vxðxÞ=U0 is a scaling function of
x=‘s, which slips mainly in the core region x=‘s & 8 and
has a partial slip region with vxðxÞ=U0 � ‘s=x for all fluids
with varying viscosities from 0.37 to 18.4 cP. [The calcu-
lated vxðxÞ, as shown in Fig. 2 in [29], thus represents a
velocity profile of the MCL in regime (i)].
The (black) solid circles in Fig. 3(b) are the calculated

�c=ð�dÞ at � ¼ 30�. Each value of �c=ð�dÞ is obtained by
integrating the dissipation rate ð�=‘sÞv2

xðxÞ over the core
region x=‘s � 8. As shown in [27], the smallest amplitude
fluctuations detectable by the hanging fiber probe is set by
the root mean vibration amplitude of the solid atoms. This
lower cutoff length in fluid motion gives rise to a cutoff slip
velocity vc ’ 0:38U0, which occurs at a distance very
close to x=‘s ’ 8 and marks the onset of the 1=x regime.
Therefore, the dissipation in the partial slip region and
beyond is too small to be detected by the hanging fiber.
Figure 3(b) clearly reveals that the numerical results are in
good agreement with the measured �c=ð�dÞ.
The establishment of the direct connection between the

measured �c in Eq. (6) and the fluctuating (and slipping)
contact line has several important implications. First,
Eq. (6) as a universal scaling law applicable to liquids
with different viscosities and contact angles establishes a
rigorous relationship which can be used to test various
microscopic models for MCL. Second, Eq. (6) sets up
an intrinsic bound for the dissipation of the MCL in
regime (i), which is useful for evaluating relevant molecu-
lar parameters associated with the MCL, such as ‘s for
different fluids. Finally, the understanding of contact line
dissipation also provides a solid foundation for the further
study of other liquid interfaces of practical interest, such as
those coated with polymers, surfactant and lipids.
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