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Photon correlation spectroscopy was used to explore turbulent pipe flow behind a grid. Measurements of the light intensity
correlation function indicate that the probability distribution function of the relative velocity in turbulent flow is well approxi-
mated by a product of a lorentzian function and a gaussian-iike function.

A quantity of fundamental interest in the theory
of turbulence is the velocity difference, ¥(R, f), be-
tween a pair of points in the turbulent fluid sepa-
rated by a distance R. The statistical property of the
velocity fluctuations F{ R, t) can be characterized by
its moments, < | V(R, {}|"), or more generally, by its
probability distribution function, P(F, R} {1,2]. We
report here a light-scattering study of turbulent flow
from which the functional form of P(V, R) can be
inferred.

It was shown [3~5] that the distribution function
P(V, R} is accessible by the technique of photon cor-
relation spectroscopy (PCS}. The correlation func-
tion of the Light intensity, I{¢), scatiered by small
particles suspended in the turbulent fluid, g{¢)=
I(#) It 1)), has the form [3,4]

e =1+G(g, L), (1)

where

L o
Gigt, L}:deh(R) J‘ dV PV, R)cos{qgth) .
Q — o

(2)
In the above, the velocity difference is defined as
VIR, ) =e(r(8)}—o(r(1}+ R},

where p(r(z}) is the local velocity of the fluid, and
V is the component of F(R, ) along the scattering
vector 4. The scattering volume viewed by a pho-

todetector is assumed to be quasi-one-dimensional
with length I, and #{R} i1s the number fraction of
particle pairs separated by a distance R in the scat-
tering volume. The scattering vector ¢ has the am-
plitude g== (4x/1) sin{8/2), where & is the scattering
angle, and 4 is the wavelength of light in the fluid,
Egs. (1) and (2) say that the light scattered by each
pair of particles contributes a phase factor cos(gtl)
{due to the frequency beating) to the intensity cor-
relation function, g(¢), and g(?) is an incoherent sum
of these ensemble averaged (or time averaged) phase
factors over all the particle pairs in the scattering
volume.

We have explored the PCS technique to study the
turbulent pipe flow behind a grid at moderate Rey-
nolds numbers [ 3]. The Reynolds number of the grid
flow 1s defined as Re= UMYy, where U/ is the mean
flow velocity at the center line of the pipe, M the ap-
erture size of the grid which generates turbulence,
and » is the kinematic viscosity of fluid, In this ex-
periment water seeded with polystyrene spheres of
diameter 0,06 microns, is circulated through a closed
system by a pump. A section of the pipe, of 2.0 inch
diameter, is made of glass to admit the incident laser
beam and observe the scatiering, Undesirable veioc-
ity fluctuations produced by the pump or by the pipe
comers, are damped out by a screen (aperture size
2.0 mm) on the high-pressure side of the grid. The
aperture size of the grid, M, was 3.1 mm. The meas-
uring point was on the axis of the pipe and 28 cm
downstream from the grid {(x/M=90). Measure-
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ments of g{¢), at room temperature, were performed
with use of the standard light-scattering apparatus
with a multi-channel correlator { Langley Ford 1096).
The focused laser beam from a 1 W argon-ion laser
enters the fluid along the axis of the pipe through an
optical window. A lens focuses the scattered laser
beam on a plane where g slit is located. The lens was
placed in such position that the size of the scattered
laser beam is the same as that of its image. It is the
width of the slit which controls the size of the scat-
tering volume viewed by the photomultiplier, lo-
cated far behind the shit. The incident beam and the
aligned optical apparatus (the lens, the slit and the
photomultiplier} define the scattering angle €. The
photermultiplter output went to the correlator, whose
output gives g{!).

It was found in the experiment that when Re be-
comes larger than a transition Reynolds number, Re,
{ ~ 300-400), the function &{qr, L)} extracted from
the measured g(¢) has the scaling form,
Glgt, L) =0CG(x), where x =gti(L). Here (L} is the
characteristic turbulent velocity associated with ed-
dies of size L. Both the functional form of G{x) and
its scaling argument x provide information about the
statistical properties of the velocity fluctuations
F(R, 1}). Qur measurements of g{¢) suggest that the
distribution function P(V, R) for small values of
V{R, t} is lorentzian-like when Rez Re. Equiva-
lently the characteristic function {the Fourier trans-
form of £( ¥, R}) decays exponentially. By assuming

PV, RY~{1+[Va(R)]*} !
(V=g-¥V(R, t}/g) and
ARy~ (ALY~ R/L)

{scatterers are uniformly distributed), the integrals
in eq. {2) can be carried out, The function G(gt, L)
turns out to be the incomplete gamma function with
qti( L) as its argument. This equation was extremely
well fitted to the measured g(#). An example of this
good fit is seen in fig. | (solid line), which shows
g{1) at Re=1.395, #=90" and L=0.6 mm. If the
flow is assumed to be locally isotropic, this fitting
suggests that the three dimensional distribution
function P{F, R} is lorentzian-square:

POV, R)~{1+[IFI/a(R)]*} % .

We also found that #(L) has a scaling form,

148

PHYSICS LETTERS A

15 February 1988

720 T T T T ]
- L = 0.6mm
@ ﬂ
c = 90°
3 6.96F 9 .
o Re= {395
[+ - e
o
— G .
= 6.48
r 1 E- I =
o 1.6 3.2 4.8 6.4 8.0

t (10 %sec )

Fig. 1. A typical correlation function g{1) versus £, The solid curve
is a fit 1o the incompiete pamma function.

#(L) ~ LS. The exponent { shows a nontrivial Re-
dependence and reveals a transition character when
Re is near and above Re.. When Rez 1400, { has
climbed to, and saturated at, a value close to 1/3 {the
Kolmogorov value). Fig. 2 shows more clearly the
variation of { with Re. The above features summa-
rized in figs. 1 and 2 were also observed when both
the grid and the fine screen were removed [6].

In theortes of fully developed isotropic turbulence
[7-9,2] F(R, §} 1s expected 1o be self-similar, in that
the statistical properties of V(R, t} over varying
length scales, R, become identical under an appro-
priate scaling of velocities (i.e. {F(R, £}") obeys a
power law of R). It is easy to show that [1] the self-
similar behavior of V( R, 1) can be obtained if its dis-
tribution function P{}, R) is a homogeneous func-
tion P(¥7a(R)), where f(R) is a scaling velocity.
Then eq. {2) becomes
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Fig. 2. The variation of the exponent { with the Reynolds num-
ber Re. The solid curve is drawn by eve through the data points,
The dashed curve shows a small oscillation of {.
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L
Glat, L) = | dRAGR)F{ati(R)) , 3)
4}

where F(x) is the Fourier cosine transform of
P(V, R). In the scaling theories of turbulence, atten-
tion is focused on the so called “active region”, where
vorticity is highly localized {the intermittency ef-
fect), and the contributions from the “passive re-
gion” to the statistical properties of the turbulent
fluctuations are completely neglected. Therefore it is
believed that the higher moments of V{ R, {) are con-
vergent and give information about the intermittent
turbulent fluctuations. However, our experimental
results indicate that for small relative velocity fluc-
tuations, P(V, R) is lorentzian-like (algebraic de-
cay) whose moments higher than the first diverge,
Of course P(V, R} cannot remain lorentzian for very
large velocity fluctuations, since the turbulent energy
injection rate is finite.

Referring ta the above experimental results, Onuki
proposed [10] that the three dimensional distribu-
tion P(¥, R) for isotropic flow is a product of two
functions. One function is associated with the large
velocity fluctnations, having finite moments and
being characterized by a scaling velocity u(R). The
other function is associated with the small velocity
fluctuations, having lorentzian-square form (in the
three dimensional case) and being characterized by
a scaling velocity (R} as mentioned above. Under
the assumption that the moments {| F(R, £}{") obey
the original Kolmogorov theory [ 7], it is proved by
Onuki that the scaling velocities #{ R) and #(R) have
the same R-dependence. Onuki also predicts that the
characteristic function F should cross over from ex-
ponentialike form (F~ 1 —#(R)gt} to gaussian-like
form (F~1—constxu(RYa(R)(g)*) when
qtu(R) ~1.

H P(V,R) 1s a product of two functions, the
Fourier transform of £(V, R) is the convolution of
the two individual Fourier transforms. Because the
distribution function P(V, R) is assumed to be a
product of {1+ [W/a(R)]*}~" (lorentzian) and
exp{—| V/ﬁ u{R)]?} {gaussian), then in the small
¢t limit eqg. (3) becomes

G{qt, Ly~ a [e™ 7 erfc{ — Has +as/2ay)
+ ¢"* etfe(tay +as/2a)] {(4)
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Fig. 3. A typical plot of the function G{g¢, L} versus £. The solid
curve is a fit to eq. (4). The inset is a semilog ptot of G(gt, L)
versus { at the same parameters, The solid linc in the inset shows
the exponential behavior of G{gt, L) away from =0,

where erfc(x) is the complementary error function,
a,=1/0.643gi(L), and a; = ﬁ/G.643qu(L). To get
eq. {4) we used the gaussian guadrature method [11]
to evaluate the integral in eq. (3), i.e. the integral in
eq. (3) is approximated by the characteristic func-
tion F(gtia{ R)) evaluated at its zero-order abscissa
0.643gta( L)Y, It turns out that the error introduced
by this approximation is no more than 13% when
qria(R) < 1. Eq. {4) was well fitted to the measured
G{gt, L) in the short time region, where a,, 4., and
a5 are fitting parameters. A typical fit is displayed in
fig. 3 (solid line) which shows G{agf, L) at Rex 837,
8=90°, and L=1.0 mm. The fitting resuits are
2, =4.77%10"% s and a;=8.30%x10"%s.

From the fitting in fig, 3 it was found that the ratio
of the two decay times, a./a,, is 5.75. Because the
gaussian factor in P(V, R) introduces a round-off to
G(qt, L) near t==0, the absolute value of the slope of
G{qt, L) should decrease as ¢-+0. This decrease in
slope is more clearly seen in the semilog plot of
G{gt, L) in the inset of fig, 3. The inset of fig. 3 also
shows that G{qt, L}, away from (=1, is best fitted to
a single exponential which is associated with the lor-
entzian factor in P(V, R). Many measured G(gt, L)
at various slit widths and Re were fitted to eq. (4).
It was found that the typical value of the ratio,
y=u(L)(L) =./2 ay/a;, is about 7, and does not
change very much with Re and L. Using the fitted
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values of a, and a; we calculated that #{ L}/ U= 4.0%,
and /| F]* >/ U=2.7%. Whereas the turbulent in-
tensity measured by laser Doppler velocimetry,
/{807 >/U, was about 5.6%, where bv is the fluc-
tuation part of the local velocity.

Kraichnan pointed out [12] that the brownian
motion of the seed particles may affect the behavior
of G{qgt, L) near t==0. The effect of the brownian
motion is to contribute a factor exp(—2Dg?%1) to
G{g, L), where D 1s the diffusion constant of
brownian particles. The diffusion time Th=
(2Dg?)~ ! can be obtained by measuring the corre-
lation function g(¢) when the flow is absent [13]. In
our experiment the measured diffusion time
Typ=113x10"* 5. By equating the brownian mo-
tion contribution with that of the gaussian round-off
of G(gt, L) [10] in the short-time region, we can
show that the brownian motion will eventually dom-
inate the gaussian round-off effect when
t<3nDiu{Lyd(L). This time is 6.83 % 10~% s for fig.
3 and 8.9%10-7 s for fig. 1. Because the time res-
olution (the smallest sampling time) is 10~%sin fig.
I, the brownian effect can be neglected in this case.
For fig. 3 the time resolution of the measurement of
G(qt, L) is 10~ 7 s, s0 that the brownian motion must
be taken into account, The measured G{qgf, L) shown
in fig. 3 has been divided by exp{ —#/T4) to ¢limi-
pate the brownian motion effect.

In conclusion, our measurements suggest that the
distribution function P(V, R) changes its functional
form lorentzian to gaussian-like with increasing
V(R, t), and hence must be characterized by at least
two parameters #{R) and u(R). It was also shown
that the function G{g?, L} 1s a homogeneous func-
tion of gti#( L), where #(L) is the characteristic ve-
Iocity associated with the small velocity fluctuations.
The L-dependence of @{L) indicates that the small
velocity fluctuations possess similar scaling charac-
ter as that in the active region. Our finding that
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P(V, R) is adequately represented by the product of
lorentzian and gaussian factors, is consistent with the
nation that F{R, ¢} arises from two distinct regions
of turbulent fluid [10].
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and correspondence with M. Nelkin and enjoyed a
continuing fruitful interaction with A. Onuki, We are
grateful for the collaboration of C.K. Chan and A.
Sirivat. We are indebted to R. Kraichnan for his val-
uable suggestions and comments. We also thank D.
Ronis for sending us a preprint containing a theo-
retical analysis of our measurements, This work was
supported by the National Science Foundation un-
der Grant no. 3-33090.
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