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Relative Velocity Fluctuations in Turbulent Rayleigh-Bénard Convection
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High-Rayleigh-number turbulent convection has been studied using the technique of photon-
correlation homodyne spectroscopy to measure velocity differences at various length scales. The mea-
sured intensity correlation function G(g,t,L) is found to be of the scaling form G(qu(L)t), with
u(L)~L% being the characteristic turbulent velocity at the length scale L and g the scattering vector.
It is also found that the lower cutoff length /. of the scaling range obeys a power law /.~Ra %3, The
measured power-law exponents are in excellent agreement with theoretical predictions.

PACS numbers: 47.25.Qv, 05.40.+j, 42.25.—p

When a horizontal layer of fluid is heated from below,
Rayleigh-Bénard convection will occur if the temperature
difference AT across the layer exceeds a critical value
AT,. The control parameter in thermal convection is the
Rayleigh number Ra=agh3AT/vy, with a being the
thermal expansion coefficient, g the gravitational ac-
celeration, 7 the thickness of the fluid layer, and v and y
the kinematic viscosity and the thermal diffusivity of the
fiuid, respectively. In recent years much attention has fo-
cused on Rayleigh-Bénard convection both in the chaotic
regime, where Ra slightly exceeds a critical Rayleigh
number Ra, (proportional to AT,), and in the turbulent
regime, where Ra>>Ra,. In the latter case the tempera-
ture gradient across the fluid layer is concentrated in thin
thermal boundary layers near upper and lower surfaces.
The flow in the center of the cell is homogeneous and is
believed to be characteristic of free-convection flow.

The recent discovery [1,2] of scaling laws in the heat
flux and temperature statistics in turbulent convection
shed new light on the nature of convective turbulence.
These experiments have stimulated considerable experi-
mental [3] and theoretical [1,2,4-7] efforts, aimed at ex-
plaining the observed scaling laws in the temperature
field. However, in contrast to the great number of tem-
perature measurements, experimental information about
the velocity field in turbulent convection is limited. In
this Letter we report a light scattering study of high-Ra
turbulent convection, from which the probability density
function P(V,1) of the velocity difference ¥ (I,7), between
two points separated by a distance /, can be inferred. The
experiment suggests that P(¥,/) has the form

PW.N=0W/u))/ul), (1)

with the scaling velocity u#(/)~I%%. This is in excellent
agreement with the theoretical predictions by Procaccia
and Zeitak [4] and L’vov [5]

A unique feature of convective turbulence is its interac-
tion with the gravitational field at various length scales.
Temperature is not a passive scalar in the system. This is
absent in the normal barotropic turbulence such as that
in a pipe flow. According to the Kolmogorov theory [8]
of fully developed barotropic turbulence, turbulent kinetic
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energy is continuously transferred from the largest eddies
of size [y to eddies of smaller sizes, until it dissipates
when the size of the eddies becomes comparable to the
viscous dissipation length /;. In the inertial range, /g
<[ <y, the energy cascades at a constant rate € without
dissipation. As a consequence of the argument, the veloc-
ity difference V' (I,t) is expected to be scale invariant [9],
and its probability density function P(V,I) is a homo-
geneous function [10], as shown in Eq. (1). With a sim-
ple dimensional argument [8,9], one can show that the
scaling velocity u{(/)==(el)'”. For thermal convective
turbulence, on the other hand, velocity fluctuations pro-
duce temperature fluctuations of various sizes, and eddies
of different sizes can exchange different amounts of ener-
gy with the gravitational field. Therefore, the energy cas-
cade rate (/) becomes / dependent, which will be respon-
sible for the departure from the Kolmogorov scaling of
u(l). It has been shown [4,5] that for convective tur-
bulence, u#(/)~137. Since the high-Ra convection pro-
vides an interesting variation of turbulence, direct mea-
surement of the new exponent becomes fundamentally
important in testing the general scaling argument for the
description of turbulence.

In the experiment, to be described below, the technique
of photon-correlation homodyne spectroscopy (HS) [11]
is utilized to probe the instantaneous velocity difference
V(/,1). With the HS scheme, small seed particles in the
fluid scatter light and follow the local flow. A photo-
detector records the scattered light intensity 7(¢), which
fluctuates due to the motion of the flowing particles. The
output of the detector is therefore modulated at frequen-
cies equal to differences in Doppler shifts of all particle
pairs in the scattering volume. With the so-called homo-
dyne method, one measures the intensity autocorrelation
function [11] g() ="'+ NAD?*=1+bG(g,1,L),
where b is an instrumental constant which is chosen so
that G(t=0)=1. The function G(q,t,L) has the form
[10]

GGt =J an® [ avPw.Deosigr), )

where A(/)=2(1 —//L)/L is the number fraction of par-
ticle pairs separated by a distance / in the thin scattering
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volume of length L, and V(/,t) is the component of
V(/,t) along the scattering vector q. The amplitude of q
is g =(4x/0)sin(6/2), with @ being the scattering angle
and A the wavelength of the light in the fluid. The func-
tion G{q,t,L) yields information about the velocity
differences in the q direction and at various scales / (eddy
sizes) up to L. If the velocity density function P(V,/) has
the form shown in Eq. (1), Eq. (2) then becomes [10]

L
Glqu@) = [ dl hDF g ), ©)

where F(gtu(/)) is the Fourier cosine transform of
QW/u(l)). The HS technique has been used to study
turbulent flows in a pipe and in a square tunnel [10,12].
The convection cell used in the experiment was a verti-
cal cylindrical cell with inner diameter 20 cm. The upper
and lower plates were made of brass, and the sidewall of

the cell was a cylindrical ring made of transparent Plexi- -

glas to admit the incident light and observe the scatter-
ing. Two cylindrical rings with heights 20 and 6.6 cm
were used respectively to extend the accessible range of
Ra. The temperature of the upper plate was regulated
within 0.05°C by passing cold water through the cooling
chamber fitted on the top of the plate. The lower plate
was heated uniformly at a constant rate with an electric
heating wire imbedded on the backside of the plate. The
electric current was provided by a regulated dc power
supply with 0.1% long-term stability. The temperature
difference AT between the two plates was measured by
two thermistors imbedded in the two plates. The vertical
heat flux through the cell was determined from the power
required to keep the lower plate at a constant tempera-
ture. Our measurements of the Nusselt number Nu (the
normalized heat flux) as a function of Ra are well de-
scribed by the power law Nu=0.16Ra? when Ra is in the
range between 4X107 and 10'%. The measured exponent
B8=0.29£0.015, which agrees well with previous mea- -
surements [1,3,13].
The cell was filled with water seeded with polystyrene
latex spheres of diameter 0.14 ym. The volume fraction
of the seed particles was ~10 "% At this particle con-
centration, the particle mean spacing is much larger than
their diameter (dilute solution) but much smaller than
the smallest turbulent scale (sufficient sampling). Mea-
surements of g(¢) were performed with a standard light
scattering apparatus and a multichannel correlator. The
incident beam from a 3-W argon-ion laser (Ag=514.5
nm) traversed through the center of the cell. The focused
incident beam had a typical diameter of 0.1 mm. The
laser beam was then imaged with three different magni-
fications onto a slit of variable width from 0.1 to 1.2 mm.
Three lenses with different focal lengths were used in or-
der to vary the magnification. With the three magnifi-
cations and the range of the slit widths, the real length L
of the thin cylindrical scattering volume viewed by a pho-
tomultiplier was varied between 0.1 and 17 mm. The
length L determines the maximum measurable eddy size,

I =L, to which g(¢) is sensitive. Light passing through
the slit fell on the photomultiplier, which recorded the
time-varying intensity 7(z). The photomultiplier was lo-

"cated far behind the slit (~80 cm), so that light was col-

lected from roughly one coherence area. Measurements
were made at the scattering angle §=90°.

To characterize the nonexponential decaying function
G(g,t,L), a decay rate I'(L) is defined as T ~'(L)
=[5°dtG(q,t,L). This definition of T'(L) emphasizes

‘the initial decay of G(q,¢,L) governed by L. With a sim-

ple dimensional argument one can show that T(L)
=qu (L), where u(L) is the characteristic eddy velocity
at scale L. Several hundred correlation functions have
been measured as a function of L and Ra. In the absence
of convection (Ra=0), G(q,t,L) still decays because of
the Brownian motion of the seed particles. The Brownian
motion contributes a factor exp(—2Dg?t) to G(q,t,L),
where D is the diffusion constant of the particles [11].

- The Brownian decay rate 2Dg? has been subtracted from

the measured I'(L), to be discussed below. This correc-
tion is especially important for the low-Ra data, because
the flow-induced decay rate in this case is comparable to
the Brownian decay rate.

The measured G(q,t,L) is found to be of scaling form
G(x), with k=T(L)t=qtu(L). Log-log plots of G(q,
t,L) for various values of L and Ra can be brought into
coincidence by sliding them horizontally with respect to
each other. The decay time I' "' (L) defined above quan-
titatively characterizes the amount of the horizontal
translation that is required to bring the correlation func-
tions into coincidence. Figure 1 shows typical G(x) as a
function of « for various values of Ra and L. As shown in
Eq. (3), a scaling G(qtu (L)) implies that the probability
density function P(V,/) has the form shown in Eq. (1).

- Our measurements thus suggest that the functional form
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FIG. 1. The measured correlation function G(x) vs «
=I'(L)r=qtu(L). The experimental conditions are L =4.1
mm, Ra=9.1x10% (solid triangles); L =6.8 mm, Ra=9.1x10°
(open squares); and L =13.5 mm, Ra=3.4x10° (open trian-
gles).
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FIG. 2. Variations of the decay rate I'(L) with the length L
measured at Ra=9.1x10? (top curve), Ra=2.2%10° (middle
curve), and Ra=3.7x10% (bottom curve). The solid lines are

power-law fits: 4.47L%¢ [I1/ms] (top line), 2.14L°%% [1/ms]
(middle line), and 0.63L %% [1/ms] (bottom line).

of P(V,I) and, hence, the turbulent structure are invari-
ant in Ra, and the statistical properties of V(/,z) over
varying length scales become identical under an appropri-
ate scaling of velocities.

The scale dependence of the scaling velocity is exam-
ined by measuring the L dependence of I'(L). Figure 2
shows the measured I'(L) as a function of L at three
different values of Ra. There are three important
features in this plot.

First, the decay rate I'(L) as a function of L obeys
a power law T'(L)~L¢ lie, u(L)~L?l. From the
straight-line segment (solid lines in Fig. 2), one finds the
exponent & =0.60233%. The power-law behavior of I'(L)
is found when 5%10”<Ra=<10'°. The velocity com-
ponent measured in the experiment is perpendicular to
the direction of the gravity. Our experiment, therefore,
directly confirms the theoretical prediction [4,5] that
£=%. The exponent & was also inferred from a tempera-
ture measurement by Wu et al. [2,5].

Second, Fig. 2 shows that there is a cutoff length /.,
below which I'(L) levels off. It is seen that the cutoff
length /. decreases as Ra is increased. The measured /.
as a function of Ra is shown in Fig. 3 (solid circles). The
result can be described by the power law (lower solid
line) [,=34.3Ra”~7 [cm]l. The exponent is y=0.30
+0.03, which agrees with the theoretical prediction [5]
that /. ~Ra —5/16 The scatter in the data is due to the
uncertainty in determining /. from the plot of I'(L) vs L.
Procaccia and Zeitak [4] have proposed that there may
be a length scale, [,==hkRa =3 28 below which a crossover
to Kolmogorov exponents is expected. However, such a
length scale is not observed in our measurements of I'(L).
This finding supports L’vov’s argument that in high-Ra
convective turbulence the entropy flux at various length
scales is constant [5,14]. Notice that below /. the mea-
sured I'(L) becomes L independent. This is an interest-
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FIG. 3. Variations of the cutoff length /. (solid circles) and
the thermal boundary layer thickness & (open triangles) as a
function of Ra. The upper solid line is a power-law fit
63.0Ra %3 [cm], and the lower solid line is 34.3Ra ~%3 [cml].

ing phenomenon which will be discussed elsewhere [15].
We now address an important issue concerned with the

relationship between coherent structures and the velocity

scaling. It was found [3,16] that the main coherent struc-

_tures in the convective turbulence are plumes, which con-

sist of a column of buoyant fluid emanating from the
boundary layer and culminating in a cap, and thermals,
which are free plumes not connected to the boundary lay-
er. Because they are generated from the boundary layers,
the smallest size of these coherent structures (the diame-

- ter of the thermal plumes, see Fig. 1 of Ref. [16]) is natu-

rally controlled by the thermal boundary layer thickness
é. In Fig. 3 we plot 8 (open triangles), which is obtained
from the measured Nusselt number Nu, using the rela-
tion §=h/2Nu. The data are well described by the
power law 6§ =63.0Ra %3 when 5x10"<Ra=<10' It
turns out that the value of our & is very close to that mea-
sured directly from the temperature profile in a similar
convection cell [16]. It is seen from Fig. 3 that the two
length scales, /. and §, have similar power-law behavior.
The values of the two exponents are the same within our
experimental uncertainties. The numerical values of the
two length scales only differ by a factor of 2. We there-
fore conclude that the measured cutoff length /. in the ve-
locity scaling is determined by the smallest size of the
coherent structures in the core region of turbulent con-
vection.

The third feature in Fig. 2 is that at a fixed L, the mea-
sured I'(L) lor equivalently u(L)] is also a function of
Ra. In Fig. 4(a) the Reynolds number Re(L) (the nor-
malized velocity) is plotted as a function of Ra for two
different values of L, where Re(L)=hF(L)/g(vy)'?
=hu(L)/(vy)'2. The measured Re(L) as a function of
Ra is well described by the power law (solid lines)
Re(L)~Ra%’. The uncertainty for the exponent is
+0.03. Combining Figs. 2 and 4(a), we have Re(L)
~L%5Ra%, This result appears to be different from the



VOLUME 69, NUMBER {4

PHYSICAL REVIEW LETTERS

5 OCTOBER 1992

108 1010

—r T T

Re(L)

108
Ra
FIG. 4. (a) The measured Reynolds number Re(L) as a
function of Ra at L=13.5 mm (solid circles) and L =5.4 mm
(open circles) in the #=20 cm cell. The solid lines are the
power-law fits by Re(L) ~Ra%®’. (b) The measured Re(L) at

L =13.5 mm {open circles) in the cell with #=6.6 cm. The_

solid line is the power-law fit by Re(L)~Ra%’. The dashed
line shows the extrapolation of the measured Re(L) in the
h =20 cm cell with the # ~** correction.

theoretical prediction [5] that Re(L)==(L/h)¥Ral/2,
One possible reason for this deviation from the predicted
scaling exponent in Ra is the anisotropic nature of con-
vective turbulence at length scales comparable to the size
h of the cell. Fluctuations of the velocity difference
V(l,t), between two points separated by /==h, in the
direction parallel to the gravity are certainly different
from those in the perpendicular direction. The above pre-
diction, on the other hand, is obtained by assuming the
velocity fluctuations are isotropic when L==h. Put in
another way, the local Rayleigh number Ra(Z) should be
used as a scaling variable rather than the global Rayleigh
number Ra. This argument can explain the observation
that the # dependence of the measured Re(L) is also
different from the theoretical prediction. Figure 4(b)
shows the measured Re(L) as a function of Ra at
L=13.5 mm in the h =6.6 cm cell (open circles). The
solid line in the plot is the power-law fit Re(L) ~Ra%%’.
The dashed line shows the extrapolation of the measured

3

Re(L) in the =20 cm cell with the predicted h ~%*
correction. Figures 4(a) and 4(b) show that Re(L) is
larger for smaller values of # when the other experimen-
tal conditions are kept unchanged. However, the data
fail to show the predicted # ~3/° dependence.
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