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Abstract – A systematic study of turbulent Rayleigh-Bénard convection is carried out in two
horizontal cylindrical cells of different lengths filled with water. Global heat transport and local
temperature and velocity measurements are made over varying Rayleigh numbers Ra. The scaling
behavior of the measured Nusselt number Nu(Ra) and the Reynolds number Re(Ra) associated
with the large-scale circulation remains the same as that in the upright cylinders. The scaling
exponent for the rms value of local temperature fluctuations, however, is strongly influenced by
the aspect ratio and shape of the convection cell. The experiment clearly reveals the important
roles played by the cell geometry in determining the scaling properties of convective turbulence.
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Introduction. – The discovery of scaling laws in
the heat flux and temperature statistics [1] in turbulent
Rayleigh-Bénard convection, where a fluid layer of thick-
ness H is heated from below and cooled from the top,
has stimulated considerable experimental and theoretical
efforts [2–5], aimed at accurately determining and explain-
ing the effective power laws of the global and local quan-
tities in turbulent convection. Among them the global
quantities include the Nusselt number Nu(Ra, Pr), which
is a normalized total heat flux, and the Reynolds number
Re(Ra, Pr) associated with the large-scale circulation
speed U across the convection cell. There are two experi-
mental control parameters in Rayleigh-Bénard convection.
One is the Rayleigh number Ra= αg∆TH3/(νκ), where
g is the gravitational acceleration, ∆T is the tempera-
ture difference across the fluid layer, and α, ν, and κ are,
respectively, the thermal expansion coefficient, the kine-
matic viscosity, and the thermal diffusivity of the convect-
ing fluid. The other control parameter is the Prandtl
number, which is defined as Pr= ν/κ.
The theory of Grossmann and Lohse (GL) [3,6] explains

the scaling behavior of Nu(Ra, Pr) and Re(Ra, Pr) by a
decomposition of the thermal dissipation field ǫT (r) into
two parts. In one scenario [3], ǫT (r) is decomposed into
the boundary layer and bulk contributions, which have
different scaling behavior with varying Ra and Pr. More
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recently, a second scenario was proposed [6] with ǫT (r)
being decomposed into two different contributions: ther-
mal plumes (including the boundary layers) and turbulent
background. The latter scenario considered fluctuations in
turbulent convection and gave predictions on the statistics
of various local quantities, such as the rms value of local
temperature fluctuations. While the two scenarios involve
different physical pictures about the local dynamics of
turbulent convection, the calculated scaling ofNu(Ra, Pr)
and Re(Ra, Pr) using the two different models turns out
to be of the same form. The GL theory is capable of
providing a correct functional form of Nu(Ra, Pr) and
Re(Ra, Pr) for a large number of transport and velocity
measurements [1,7–18].
Up to now many of the convection experiments were

conducted in upright cylindrical cells with the cylinder
diameter D being comparable to its height H. These
experiments have resulted in a large body of knowledge
about the global heat transport [1,7–16], structure [17,18]
and oscillations [18–21] of the large-scale circulation,
boundary layer properties [22–25], local temperature [1,26]
and velocity [18,27] fluctuations, structure and statistics
of the local convective heat flux [28,29] and thermal dissi-
pation rate [30,31]. Our current theoretical understanding
of convective turbulence is largely built upon this body of
experimental results [5,32].
While the use of small aspect-ratio cylinders has the

advantages of simple cell geometry, better experimental

44001-p1



Hao Song and Penger Tong

Fig. 1: (Colour on-line) Assembly of the horizontal convection
cell. The top and bottom 1/3 of the circular sidewall of the
cylinder are made of copper, which is electroplated with a thin
layer of gold. Sandwiched in the middle of the circular sidewall
are two pieces of a thermal insulating (curved) plate made of
transparent Plexiglas.

control and relatively large Ra attainable for a given cell
diameter, a natural question regarding this system is: to
what extent can the experimental results and theoretical
predictions for small aspect-ratio cells be applied to later-
ally large systems? This is an important question because
one wants to understand which aspects of convection
are universal and which depend on the details of spatial
confinement [33]. Such an understanding is needed for a
large number of practical problems, ranging from the ther-
mal convection processes in buildings and metal produc-
tion to natural convection occurred in the atmosphere and
oceans and at geophysical and astrophysical scales, such
as convection in the Earth’s mantle and stars including
the Sun [5].
Experimental efforts have been made recently to address

this issue. Large upright cylindrical cells with diame-
ter larger than 1m were made in several laboratories
[16,25,34], in order to increase the Rayleigh number Ra
and to vary the aspect ratio Γ=D/H. Here we take a
different approach to address this issue. Instead of using
a large upright cylinder, we make a new convection cell of
smaller size but with different geometry. The new cell has
a shape of horizontal cylinder as shown in fig. 1. The top
and bottom 1/3 of the circular sidewall of the cylinder are
made of copper. Sandwiched in the middle of the circular
sidewall are two pieces of a thermal insulating (curved)
plate made of Plexiglas. Kadanoff [35] first proposed to
build such a kind of cell in the hope that the circular cross-
section of the horizontal cylinder could better accommo-
date the large-scale circulation.
We have carried out a systematic study of the convec-

tive flow in the horizontal cylinder filled with water.
Global heat transport and local temperature and veloc-
ity measurements are made over varying Ra and spatial
positions in the cylinders of different length. In this letter,
we report key results of the experimental study focus-
ing on the geometry dependence of the scaling laws in

turbulent convection. Results obtained in the horizontal
cylinder are compared with those obtained in the upright
cylinder.

Apparatus and experimental methods. – The
convection experiment is conducted in two horizontal
cylindrical cells filled with water. The two cylindrical
cells have the same inner diameter D= 18.8 cm but their
lengths are different; one is L= 9.4 cm and the other is
L= 18.8 cm. The corresponding aspect ratio (Γ =L/D) of
the two cells is Γ = 0.5 and Γ= 1, respectively. Figure 1
shows the assembly of the horizontal convection cell. The
top and bottom 1/3 of the circular sidewall of the cylinder
are made of copper with a wall thickness of 0.5 cm. The
surfaces of the conducting plates are electroplated with a
thin layer of gold. Sandwiched in the middle of the circular
sidewall are two pieces of a thermal insulating (curved)
plate made of transparent Plexiglas. The two flat-end walls
of the cell are made of the same transparent Plexiglas
with a wall thickness of 2.3 cm. Two silicon rubber film
heaters connected in parallel are sandwiched on the back
side of the bottom 1/3 conducting plate to provide
constant and uniform heating. The top 1/3 conducting
plate is in contact with a cooling chamber consisting of
many squarely winded water channels of 1 cm in width.
These water channels are doubly winded with a channel
separation of 0.5 cm, so that the incoming cooler fluid
and the outgoing warmer fluid in adjacent channels can
compensate with each other and provide uniform cooling
on the top plate. A temperature-controlled circulator with
a temperature stability of 0.01 ◦C is used to maintain the
top-plate temperature. The entire cell is placed inside a
thermostat box, whose temperature matches the mean
temperature of the bulk fluid, which is fixed at ∼ 30 ◦C.
The Rayleigh number for the horizontal cylinder is

defined as Ra= αg∆TD3/(νκ), where the cylinder diam-
eter D is used as the cell height. In the experiment, the
value of Ra is varied in the range 108 �Ra� 1010, and
the Prandtl number is fixed at Pr≃ 5.4. The tempera-
ture of each conducting plate is measured using 4 ther-
mistors (Model 44006, Omega) of diameter 2.4mm and
time constant 1 s, which are embedded in the conduct-
ing plate. A digital multimeter is used to simultaneously
measure the resistance value of the thermistors. The local
temperature of the conducting fluid is measured using
a waterproof thermistor (AB6E3-B05, Thermometrics) of
diameter 0.3mm and time constant 10ms (in water). This
thermistor is connected to an ac transformer bridge as a
resistor arm and the other resistor arm is connected to a
variable resistor to balance the bridge. The bridge is driven
by a lock-in amplifier at a working frequency f0 ≃ 1 kHz.
The output signals are digitized by an A-to-D card at a
sampling rate of 40Hz. All the thermistors are calibrated
individually with an accuracy of 5mK. Typically, we take
8-h-long time series data (1.15× 106 data points) at a
fixed location for the statistical analysis of temperature
fluctuations.
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The vertical heat transport across the convection cell
is measured by the dimensionless Nusselt number, Nu=
(P/S)/[k(∆T/D)], where P is the net input power to the
convection cell and S (=LD) is the cross-sectional area
at the middle height of the cell. The net input flux P/S
is normalized by the conductive heat transfer k(∆T/D),
where k is the thermal conductivity of water, D is the
equivalent cell height (i.e., the cylinder diameter), and ∆T
is the temperature difference across the top and bottom
conducting plates. The net input power P is calculated
using the equation P = Pt−Pb−Ps, where Pt is the total
electric input power to the heaters, Pb is the leakage power
through the bottom plate, and Ps is the heat transfer
through the side and end walls. The back of the bottom
plate is wrapped with an insulating layer of rubber sheet
(Insulflex) to reduce heat leakage. Two thermistors are
placed across the rubber sheet to calculate the heat leakage
power Pb. The side and end walls of the cell are covered
with a layer of polystyrene foam of 15mm in thickness.
The heat transfer Pb is calculated using the known thermal
conductivity of Plexiglas.
Local velocity measurements are conducted using a laser

Doppler velocimetry (LDV) system (TSI Inc.) together
with an argon-ion laser (Coherent Innova 90). The two
flat-transparent-end walls are used as optical winders to
admit the incident laser beams and observe the scattered
light by the seed particles. A pair of laser beams from the
LDV fiber optic transceiver is directed through the optic
window and focused onto a single point inside the convec-
tion cell. The fiber optic transceiver has receiving optics
to collect the scattered light in the backward direction and
feeds it to a photomultiplier tube. The laser focusing spot
has a cylindrically shaped probe volume of 1.31mm in
length and 0.09mm in diameter. Monodispersed polymer
latex spheres of 5.1μm in diameter are used as seed parti-
cles. Because their density (= 1.05 g/cm3) matches closely
to that of water, the seed particles follow the local flow
well.

Results and discussion. – Figure 2 shows the
measured Nusselt number Nu as a function of Ra in the
Γ= 1 (circles) and Γ= 0.5 (triangles) cells. The measured
Nu(Ra) curves can be well described by an effective
power law Nu=A1Ra

α. The fitted values of A1 and α
for both cells are given in table 1. The solid line shows
an example of the power law fit to the triangles. A large
number of heat transport measurements have been carried
out in the Γ= 1 upright cylinder. These measurements
were conducted in various convecting fluids with great
precision and over a wide parameter range of Ra and
Pr [1,7–16]. For comparison, we plot in fig. 2 a sample
Nu(Ra) curve obtained in the Γ= 1 upright cylinder [36],
Nu= 0.19Ra0.28 (dashed line). This example is chosen
because the experiment used the same convecting fluid
(water) and was conducted in a convection cell made of
similar materials. Such a comparison can reduce the effect
of possible systematic errors. It is seen from table 1 that
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Fig. 2: Measured Nusselt number Nu as a function of Ra in the
Γ= 1 (circles) and Γ= 0.5 (triangles) cells. The solid line is a
power law fit to the triangles:Nu= 0.25Ra0.27. The dashed line
indicates the measured Nu in the Γ= 1 upright cylinder [36]:
Nu= 0.19Ra0.28.

the obtained values of α in the horizontal cylinders agree
well with that for the upright cylinder. Figure 2 thus
demonstrates that the Ra scaling of the Nusselt number
in the horizontal cylinder remains unchanged. Evidently,
the boundary layer dynamics, which determine the global
heat transport, remain the same under different cell
geometry.
From a systematic flow visualization study [37], we

find that there also exists a large-scale circulation (LSC)
across the horizontal cylinder. The rotation plane of LSC
oscillates between the two long diagonal planes of the
horizontal cell. Figure 3 shows the measured vertical
velocity profile U(r) at the mid-height of the Γ= 1 cell.
The velocity measurements are made in one of the long
diagonal planes and is along the radial distance r away
from the cell center. The distance r is normalized by the
diagonal distance r0 (= 13.3 cm) from the cell center to
the corner of the horizontal cell. It is seen that the flow
in the rotation plane of LSC is like a flywheel with a zero
mean velocity at the cell center. The mean vertical velocity
increases linearly with the radial distance r in the bulk
region of the flow. In the corner region of the horizontal
cylinder, where thermal plumes accumulate, the mean
vertical velocity increases more rapidly with r, because of
the strong buoyancy forces exerted by the thermal plumes
in the region. A similar flow structure was also observed
in the Γ= 1 upright cylinders [17,18].
To study the Ra-dependence of the Reynolds number
Re, we measure the horizontal velocity at ∼0.8 cm above
the center of the bottom conducting plate. This is a
symmetric point in the cell, which always stays in the
rotation plane of LSC. When LSC oscillates between
the two long diagonal planes of the horizontal cell, its
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Table 1: Summary of the power law fits. The fits are all in the form: Quantity =Ai×Ra
index, where i= 1, 2, 3 and

index = α, β, γ. References are given in parenthesis for the values of Ai and the indices, which are obtained in the upright
cylinders.

Quantity Horizontal cylinder Horizontal cylinder Upright cylinder
Γ= 1 Γ= 0.5 Γ= 1

Nu A1 = 0.20± 0.02 0.25± 0.02 0.19± 0.01
α= 0.28± 0.01 0.27± 0.01 0.28± 0.06 [36]

Re A2 = 0.10± 0.01 0.020± 0.003 0.075
β = 0.46± 0.03 0.55± 0.03 0.46 [38]

σ/∆T A3 = 3.03± 0.30 82.1± 8.0 0.153
γ =−0.29± 0.03 −0.47± 0.04 −0.14 [26]
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Fig. 3: Measured vertical velocity profile in the long diagonal
plane of the Γ= 1 cell at Ra= 4× 109. The velocity measure-
ments are made at the mid-height of the cell along the radial
distance r away from the cell center with r0 (= 13.3 cm) being
the distance from the cell center to the corner of the horizontal
cell.

in-plane velocity U switches its direction from being
positive to negative in the horizontal direction. Using the
mean absolute value of the horizontal velocity U , we define
the Reynolds number as Re=UD/ν. Figure 4 shows the
measured Re as a function of Ra in the Γ= 1 (circles) and
Γ= 0.5 (triangles) cells. The measured Re(Ra) curves can
be well described by an effective power law Re=A2Ra

β .
The fitted values of A2 and β for both cells are given in
table 1. The solid lines in fig. 4 show the power law fits to
the circles and triangles, respectively.
For comparison, we also plot in fig. 4 the measured Re in

the Γ= 1 upright cylinder [38], Re= 0.075Ra0.46 (dashed
line). The obtained value of β in the Γ= 1 horizontal
cylinder agrees well with that obtained in the Γ= 1
upright cylinder. The measured value of β for the Γ= 0.5
horizontal cylinder shows a slightly larger deviation from
the classical value of β = 1/2 for the free fall velocity [39].
Some of the deviations may be caused by a continuous
evolution of the circulation path of LSC [40,41]. Figure 4
thus demonstrates that the Ra scaling of the Reynolds
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Fig. 4: Measured Reynolds number Re as a function of Ra in
the Γ= 1 (circles) and Γ= 0.5 (triangles) cells. The upper solid
line is a power law fit to the triangles, Re= 0.02Ra0.55, and the
lower solid line is a power law fit to the circles, Re= 0.1Ra0.46.
The dashed line indicates the measured Re in the Γ= 1 upright
cylinder [38]: Re= 0.075Ra0.46.

number in the horizontal cylinder remains approximately
the same as that in the upright cylinder, insensitive to the
change of cell geometry. Evidently, the buoyancy forces
which drive the large-scale flow are independent of the
cell geometry.
We now discuss the statistical properties of temperature

fluctuations at the center of the Γ= 1 horizontal cell.
Figure 5 shows the measured histograms, H(δT ), of the
temperature fluctuation, δT , at two Rayleigh numbers:
Ra= 1.0× 109 (squares) and Ra= 8.3× 109 (triangles).
The histograms obtained at different values of Ra can all
be brought into coincidence, once H(δT ) is normalized
by its maximum value H0 and δT is scaled by its rms
value σT . Here the temperature fluctuation is defined as
δT = T −〈T 〉 with 〈T 〉 being the local mean temperature
and σT = 〈(T −〈T 〉)

2〉1/2. Plots of H(δT )/H0 vs. δT/σT
remain unchanged in the Ra range studied and only σT
changes with Ra. The mean value of δT at the cell center is
zero, and temperature fluctuations are symmetric relative
to the zero mean. Over an amplitude range of almost six
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Fig. 5: Measured histogram, H(δT )/H0, of the normalized
temperature fluctuation, δT/σT , by its rms value σT . The
measurements are made at the center of the Γ= 1 horizontal
cell with Ra= 1.0× 109 (squares) and Ra= 8.3× 109 (trian-
gles). The solid line shows the stretched exponential func-
tion, H(δT )/H0 = exp[−b(δT/σT )

c], with the fitting values of
b= 2.59 and c= 0.68.

decades, the measured histograms have a universal form,
which can be well described by a stretched exponential
function,

H(δT ) =H0e
−b(δT/σT )

c

. (1)

The solid curve in fig. 5 shows the fit to the triangles
with b= 2.59± 0.30 and c= 0.68± 0.03. Similar scaling
behavior has also been observed in the Γ= 1 upright cylin-
ders [1,26]. For the Γ= 1 upright cylinder, the measured
H(δT ) has a simple exponential form with c= 1, whereas
the measured H(δT ) in the horizontal cylinder has a
slightly stretched exponential form with a c value close
to but slightly less than unity.
While the cell shape appears not to affect the histogram

of temperature fluctuations very much, it does affect
the rms value of the temperature fluctuations. Figure 6
shows the normalized temperature rms value, σT /∆T , as a
function of Ra. The measurements are made at the center
of the Γ= 1 (circles) and Γ= 0.5 (triangles) cells. Here
we find large differences in the Ra-dependence of σT /∆T
between the Γ= 1 and Γ= 0.5 cells. The measured σT /∆T
in both cells can also be described by an effective power
law, σT /∆T =A3Ra

γ . The fitted values of A3 and γ are
given in table 1. The solid lines in fig. 6 show the power
law fits to the circles and triangles, respectively.
For comparison, we also plot in fig. 6 the measured
σT /∆T in the Γ= 1 upright cylinder filled with water [26]:
σT /∆T = 0.153Ra

−0.14 (dashed line). A similar scaling
result was also found in the Γ= 1 upright cylinder filled
with low-temperature helium gas [1]. Evidently, the power
law exponent γ varies considerably with the aspect ratio
and the shape of the convection cell. In an early exper-
iment [33], Daya and Ecke found that the value of γ
for a square convection cell is different from that for an
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Fig. 6: Normalized temperature rms value, σT /ΔT , as a func-
tion of Ra. The measurements are made at the center of the
Γ= 1 (circles) and Γ= 0.5 (triangles) cells. The upper solid
line is the power law fit to the circles, σT /ΔT = 3.03Ra

−0.29,
and the lower solid line is the power law fit to the trian-
gles, σT /ΔT = 82.1Ra

−0.47. The dashed line indicates the
measured σT /ΔT in the Γ= 1 upright cylinder [26]: σT /ΔT =
0.153Ra−0.14.
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Fig. 7: Normalized temperature rms value, σT /ΔT , as a
function of the aspect ratio Γ. The measurements are made
at the cell center with Ra= 9.6× 108 (circles) and 2.6× 109

(triangles). The upper solid line is the linear fit to the circles,
σT /ΔT = 5.4× 10

−3+2.1× 10−3Γ, and the lower solid line
is the linear fit to the triangles, σT /ΔT = 5.4× 10

−4+5.2×
10−3Γ.

upright cylinder. The above results clearly reveal that local
temperature fluctuations even at the cell center can still
feel the boundary effect of the container.
To further investigate how σT /∆T varies with the

aspect ratio Γ, we install a mobile piston inside the
cylinder, so that the working chamber of the horizontal cell
has a variable length L (and hence Γ). Figure 7 shows the

44001-p5



Hao Song and Penger Tong

measured σT /∆T as a function of Γ. The measurements
are made at the cell center with Ra= 9.6× 108 (circles)
and 2.6× 109 (triangles). In both cases, the measured
σT /∆T shows a linear dependence on Γ and the slope
changes with Ra. The solid lines in fig. 7 show the linear
fits to the circles and triangles, respectively. Figures 6
and 7 clearly reveal how the cell geometry influences
the statistics of the local quantities, such as temperature
fluctuations at the cell center.
In summary, we have carried out a systematic study

of turbulent Rayleigh-Bénard convection in two horizon-
tal cylindrical cells of different lengths filled with water.
The measured Nusselt number Nu(Ra) and the Reynolds
number Re(Ra) associated with the large-scale circula-
tion are found to be insensitive to the change of cell
geometry; their scaling over varying Rayleigh numbers
remains unchanged. Evidently, the boundary layer dynam-
ics, which determine the global heat transport, and the
buoyancy forces which drive the large-scale flow remain
the same under different cell geometry. However, the
scaling behavior of the amplitude of local temperature
fluctuations at the cell center is found to be strongly
dependent on the aspect ratio and shape of the convec-
tion cell. These findings suggest that large-scale trans-
port properties alone only provide a partial description
of the convective flow and small-scale fluctuations depend
more sensitively on the detailed structures of turbulent
convection. It is a challenge for the turbulence theory to
model the cell symmetry dependence of small-scale turbu-
lent fluctuations. It is also a challenge for the experiment
to further test whether this cell symmetry dependence will
remain or not at even higher values of Ra and in much
larger convection systems.
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