
October 2008

EPL, 84 (2008) 28003 www.epljournal.org

doi: 10.1209/0295-5075/84/28003

Short-time self-diffusion of weakly charged silica spheres at

aqueous interfaces

Wei Chen and Penger Tong(a)

Department of Physics, Hong Kong University of Science and Technology - Clear Water Bay, Kowloon, Hong Kong

received 7 April 2008; accepted in final form 9 September 2008
published online 7 October 2008

PACS 82.70.Dd – Colloids
PACS 68.05.Gh – Interfacial properties of microemulsions
PACS 05.40.-a – Fluctuation phenomena, random processes, noise, and Brownian motion

Abstract – Optical microscopy and multi-particle tracking are used to study the short-time self-
diffusion of weakly charged silica spheres at a water-air interface. The measured short-time self-
diffusion coefficient DSS has the form, D

S

S/D0 = α(1−βn), where n is the area fraction occupied by
the particles and D0 is the Stokes-Einstein diffusion coefficient of individual particles in the bulk
fluid. The obtained values of α and β differ from those obtained for bulk suspensions, indicating
that hydrodynamic interactions between the interfacial particles have interesting new features
when compared with their three-dimensional counterpart.
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A monolayer of colloidal particles suspended at a water-
air (or water-oil) interface has served as a model system
to study a range of important issues at soft (liquid-
liquid) interfaces. Examples include two-dimensional
(2D) ordering [1], crystallization [2] and aggregation [3],
interactions between similarly charged particles [4,5],
and dislocation boundaries of a colloidal crystal ball [6].
These studies focused on the equilibrium properties of
the interfacial particles. Colloidal particles have also been
used as tracer particles to study the rheological properties
of soft interfaces. For example, Sickert and Rondelez [7]
measured the Brownian diffusion coefficient of 0.4μm
diameter polystyrene beads immersed in a monolayer
of surfactant molecules at a water-air interface. Prasad
et al. [8] extended the single-particle method to two-
particle microrheology by measuring the relative diffusion
between two micron-sized polystyrene beads suspended
at a protein-coated water-air interface.
While these measurements revealed interesting new

features of tracer diffusion in macromolecular films, inter-
pretation of the experimental results is not straightfor-
ward [9,10]. The measured diffusion coefficient is inversely
proportional to the drag coefficient felt by the interfa-
cial particles. The theoretical calculations, which connect
the measured drag coefficient to the surface rheological
properties of interest, such as the surface shear viscos-
ity ηs, consider idealized situations, whereas the actual
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systems used in the experiment often reveal interesting but
unexpected deviations. Therefore, direct measurements
of particle’s diffusion coefficient at interfaces without a
surfactant monolayer are needed as the first step to verify
the theoretical models for interfacial diffusion [10–12].
Compared to the large number of experimental (and

theoretical) studies of colloidal dynamics in 3D suspen-
sions [13], systematic experimental studies of colloidal
diffusion at interfaces are rather limited. The lack of
progress is partially due to a lack of well-controlled 2D
colloidal systems for the experimental studies. Early
experiments on colloidal diffusion at liquid-air inter-
faces [7,11] were carried out only for a few particles.
Because of the limited statistics, the measured diffusion
coefficient suffered large experimental uncertainties,
making it difficult to quantitatively compare with the
theoretical predictions [9,10,14]. In the experiment,
polystyrene (PS) latex spheres are often used as tracer
particles. The PS spheres are highly charged and show
a strong dipole repulsion when dispersed at the inter-
face [2,5,15]. The strong long-ranged repulsion could
affect the diffusion measurement at the interface.
The interactions and dynamics of colloidal particles

are known to be sensitive to weak forces (of order pico-
or femto-Newtons). This sensitivity is further magnified
at interfaces. As a result, the stability of interfacial
particles becomes extremely sensitive to impurities at the
interface [16]. Accurate measurements of particle motion
require well-controlled procedures to thoroughly clean the
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Table 1: Particle samples used in the experiment and the fitted value of the parameters in the linear fit: DSS/D0 = α(1−βn).
The numbers in the parentheses are obtained from the second-order polynomial fit: DSS/D0 = α(1−βn− γn

2).

Sample/Manu. d (μm) α (±7%) β (±10%) γ (±15%)

Si2/Duke Sci. 1.57± 0.06 1.19 (1.17) 1.6 (0.84) (5.56)
Si3/Bangs Lab 0.97± 0.05 1.45 (1.45) 1.84 (1.53) (6.61)
Si1/Duke Sci. 0.73± 0.04 1.18 (1.17) 2.89 (2.44) (5.75)

interface and colloidal samples, so that a well-dispersed
monolayer of particles can be routinely made at the
interface. Unstable particles form colloidal aggregates
or clusters at the interface, making the measurement of
individual particle motion inaccurate or impossible at all
if there are too many colloidal aggregates present in the
sample. In a recent experiment [5], we developed the exper-
imental procedures necessary to produce such a monolayer
of colloidal particles. With the well-controlled 2D colloidal
systems, one can carry out precise measurements of the
particles’ diffusion coefficient at different interfaces.
In this letter, we report key results of a systematic

experimental study of short-time self-diffusion of weakly
charged silica spheres at a water-air interface. As will be
shown below, this is a model 2D system in which the
silica spheres interact via a short-range repulsion. In the
experiment, we measure the mean squared displacement
(MSD) of a diffusing particle,

〈∆r2(τ)〉= (1/N)
∑

i

〈|ri(t+ τ)− ri(t)|
2〉t, (1)

as a function of lag time τ . Here ri(t) is the position of
the i -th particle at time t, N is the number of particles
included in the calculation, and the angle brackets 〈. . .〉t
indicate an average over t.
The diffusion of particles is characterized by two distinct

regimes. For low surface coverage and times much less
than the time, t0 = d

2/D0, for a particle to diffuse over its
own diameter d, the particle’s motion is not hindered by
direct interactions with neighboring particles and only the
hydrodynamic interactions with the surrounding fluid are
important. Here D0 = kBT/(3πηd) is the Stokes-Einstein
diffusion coefficient for a single particle with thermal
energy kBT fully immersed in a liquid of viscosity η.
At long times (τ ≫ t0), however, the particle’s motion is
impeded by direct interactions with neighboring particles
and thus the self-diffusion is affected by both direct and
hydrodynamic interactions. While the above arguments
were given originally for bulk diffusion of hard spheres [17],
we believe they are also applicable to interfacial diffusion
except that two minor changes are needed. First, for
particles with a short interaction range, d̃ (> d), the hard-

sphere diameter d should be replaced by d̃. Second, for
particles at a liquid-air interface, their hydrodynamic drag
is reduced, leading to a larger D0 compared with the bulk
suspension. For silica spheres at the water-air interface,
the two competing effects give rise to a modified t0,
which is approximately 50% larger than that for the bulk
suspension.

Here we focus on the new measurements of the short-
time self-diffusion coefficient DSS(n) as a function of area
fraction, n= πa2ℵ/A, occupied by the interfacial particles,
where ℵ is the total number of particles in the area A.
We follow the same procedures as described in ref. [5]
for the experimental setup and the sample preparation
and cleaning. The sample cell is made from a stainless-
steel disk (which is hydrophilic) with a central hole of
diameter 13mm. The bottom of the hole is sealed with
a 0.1mm thick glass cover slip, which also serves as an
optical window. The sidewall of the hole together with the
bottom glass slip forms a container, which has an effective
height of 1.0mm. The top of the container has a sharp
circular edge, which is used to pin the water-air interface
and reduce unwanted surface flow. The entire cell is placed
on the sample stage of an inverted microscope, so that
the motion of the interfacial particles can be viewed from
below and recorded by a digital camera.
Table 1 gives the value of the diameter d and the

manufacturer of three silica particle samples used in
the experiment. Dynamic light scattering [18] is used to
measure the bulk diffusion coefficient D0 in water for
each particle sample. The final results agree well with the
calculated D0. Great care is taken to clean the particle
samples and the water-air interface. Surface pressure
measurements reveal that no detectable impurity is found
in the cleaned particle samples. The particle-methanol
solution is then injected onto a cleaned interface using a
syringe pump. The silica spheres disperse well at the clean
water-air interface. Individual particles undergo vigorous
Brownian motion and remain stable at the interface
for days.
These particles remain in focus under high magnifica-

tion, indicating that the silica spheres are strongly bound
to the interface and their vertical position is determined
by an energy minimum, much larger than kBT , that keeps
them at the interface [2]. Because the gravitational energy
of the particles is much smaller than the relevant energy
of the interface, the particles can always choose an equi-
librium (vertical) position without introducing long-range
deformations to the interface. Therefore, the usual capil-
lary effect is not applicable to micron-sized spheres. Using
an estimated contact angle of 60◦ [19], we find approxi-
mately 3/4 of the silica particle (by diameter) is immersed
in water.
Phase contrast microscopy is used to obtain good

images of the silica particles. The particle trajectories are
constructed from the consecutive images using homemade
software with a spatial resolution of 60–100 nm. Typically,
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Fig. 1: Measured pair correlation function g(r) as a function
of r/d for Si1 (circles), Si2 (diamonds), and Si3 (triangles).
All the measurements are made at the same area fraction n=
0.018. Insert shows the interaction potential U(r)/kBT vs. r/d
obtained from the measured g(r) for Si2. The solid curve shows
a least-square fit to the screened Coulomb potential (see text).

we use 10 image sequences, each contains 100 images,
to calculate MSD, and the result is further averaged
over repeated runs (10–20 runs). This corresponds to an
average over 106 particles, ensuring that the statistical
averaging is adequate. Using the same image data, we also
calculate the pair correlation function g(r) [5].
Figure 1 shows the obtained g(r) for three silica samples

at low surface coverage. The measured pair correlation
functions overlap rather well once the inter-particle
distance r is scaled by d. Silica spheres represent an
important class of charged particles commonly used
in colloidal science and have anionic SiO− groups on
their surface [20,21]. These charged spheres at the
interface show a short-range repulsion with an effective
hard-sphere diameter d̃≃ 1.5d, in which g(r)≃ 0. This
value is about one-half of the mean particle separation,
ℓ= d[π/(4n)]1/2 ≃ 2.8d, for n= 0.1.
When the surface coverage is small (n� 0.018),

many-body corrections to g(r) are negligible [5] and the
phase interaction potential U(r) can be obtained via the
Boltzmann factor g(r)≃ exp[−U(r)/kBT ]. Insert of fig. 1
shows the resulting U(r)/kBT , which can be well
described by the screened Coulomb potential,

Uc(r) =
q2 exp[−(r− d)/λD]

4πǫ0ǫ[1+ d/(2λD)]2r
. (2)

The solid line shows a fit with the effective charge
q= (3300± 900)e and the screening length λD = (204±
20) nm. The fitting results are consistent with those
obtained previously for the bulk suspension of silica
spheres [20]. The surface charge density corresponding to
this value of q is ∼ 200 times smaller than that of the
polystyrene latex spheres [5].
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Fig. 2: Normalized mean-squared displacement 〈∆r2(τ)〉/d2 as
a function of τ/t0 for Si1 at n= 0.01 (circles) and n= 0.09
(triangles). The solid lines show the linear fits to the data points
(at small τ for the lower curve). Insert shows a magnified plot
of the same data for τ/t0 < 1.0.

In a separate experiment [22], we systematically studied
the effect of adding salt (NaCl) on the interaction between
silica spheres at the water-air interface. For the interface
made of fresh deionized water (the present experiment uses
fresh deionized water too), the potential U(r) was found to
be dominated by the screened Coulomb repulsion shown
in eq. (2). Weaker forces at one or two particle diameters
away show up only when λD becomes smaller than
100 nm (i.e., when the salt concentration C � 10μM). The
maximum amplitude of these weaker interactions is less
than 0.3 kBT . In particular, the amplitude of the long-
ranged electric-dipole repulsion mentioned above is less
than 0.1 kBT , which is too small to affect the measured
DSS(n) to be presented below.
Figure 2 shows the measured 〈∆r2(τ)〉 as a function

of τ for Si1 at n= 0.01 (circles) and n= 0.09 (triangles).
The data are plotted in dimensionless units with 〈∆r2(τ)〉
scaled by d2 and τ scaled by t0. For low-concentration
samples (n� 0.05), we find the measured 〈∆r2(τ)〉 is a
linear function of τ over the entire range of τ , indicating
that the particles are undergoing free diffusion. For higher
concentration samples, however, the measured 〈∆r2(τ)〉
curves down slightly, as shown by the lower curve in fig. 2.
This downward curving effect becomes more pronounced
when n� 0.1.
Figure 3 shows the equilibrium configuration of

silica spheres (Si1) at two area fractions. As mentioned
above, the mean particle separation (center-to-center) is
ℓ≃ 2.8d when n≃ 0.1, indicating that the probability
for a tracer particle to encounter a neighboring particle
when it diffuses over its own diameter d (or over a
time period t0) is low. Therefore, one expects that the
Brownian motion of the interfacial particles will not be
hindered when τ � t0. Indeed, insert of fig. 2 shows that
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(a)

(b)

10 µm

Fig. 3: Equilibrium configurations of the silica spheres (Si1)
at (a) low surface coverage (n≃ 0.01) and (b) high surface
coverage (n≃ 0.12).

the measured 〈∆r2(τ)〉 remains the linear dependence on
τ when τ/t0 � 1. A similar behavior is also observed for
other silica samples.
From the initial slope of the linear fit (solid lines

shown in insert of fig. 2), we obtain the normalized short-
time self-diffusion coefficient DSS/D0 via the equation
〈∆r2(τ)〉/d2 = 4(DSS/D0)(τ/t0). Figure 4 shows how the
measured DSS(n)/D0 changes with n for Si1 (circles in
fig. 4(a)), Si2 (triangles in fig. 4(a)) and Si3 (circles in
fig. 4(b)). All the measured DSS/D0 follows the same trend
that it decreases with increasing n. At low surface coverage
(n� 0.1), the measured DSS/D0 can be fit to a linear
function,

DSS
D0
= α(1−βn), (3)

with the fitted values of α and β given in table 1. The
standard deviations for α are typically 7% and those for β
are 10%. The experimental uncertainties for α are mainly
from statistical errors. The relatively larger uncertainties
for β are caused in part by the fact that the fitted β also
varies with the range of n chosen for the linear fit.
The dashed curves in fig. 4 show the second-order

polynomial fit, DSS/D0 = α(1−βn− γn
2), to the data

points over the entire range of n. The fitted values of α, β
and γ are also included in table 1. The values of β obtained
from the second-order polynomial fit are somewhat smaller
than those obtained from the linear fit. It is of interest
to note that the second-order term is negative for all
the particle samples and its absolute value depends non-
monotonically on the size of the particles. Because three-
body interactions are involved in the second-order term,
the fitted values of γ are expected to be more sensitive to
the details of hydrodynamic interactions at the interface.
Figure 4 reveals two novel features of interfacial hydro-

dynamics. First, at the single particle level, the measured
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Fig. 4: (a) Normalized short-time self-diffusion coefficient
DSS/D0 as a function of area fraction n for three silica samples:
(a) Si1 (circles), Si2 (triangles) and (b) Si3 (circles). The
solid lines show the linear fits to the data points with n< 0.1.
The dashed curves are the second-order polynomial fits,
DSS/D0 = 1.17− 0.98n− 6.51n

2 (upper dashed curve in (a)),

DSS/D0 = 1.17− 2.86n− 6.73n
2 (lower dashed curve in (a)),

and DSS/D0 = 1.45− 2.22n− 9.58n
2 (dashed curve in (b)), to

the data points over the entire range of n.

DSS at the n→ 0 limit is directly related to the drag coef-
ficient ξ via the equation DSS(n= 0) = kBT/ξ. For interfa-
cial particles, one finds [12]

ξ = (η1a)f(z/a,B), (4)

where z is the distance between the sphere’s north pole
and the interface (i.e., z = 0 when the sphere is in contact
with the interface from below). The Boussinesq number
B is defined as B = ηs/[(η1+ η2)a], where ηs is the shear
viscosity of the interface and η1 and η2 are, respectively,
the viscosities of the lower and upper phase fluids forming
the interface. For a water-air interface, one has η2 ≃ 0.
The correction factor f(z/a,B) accounts for all the effects
of the interfacial hydrodynamics at the single-particle
level and thus is a key quantity for understanding the
rheological properties of liquid-liquid interfaces.
Because the water-air interface is thoroughly cleaned,

we expect the Boussinesq number B to be small in our
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case. Therefore, one has [12] f(z/a, 0) = k(0), where k(0) is
the zeroth-order correction factor and is determined solely
by z/a. The numerically calculated k(0) in ref. [12] for
the liquid-air interface is an increasing function of z/a
from the minimum value of k(0) = 0 at z/a=−2 to the
maximum value of k(0) ≃ 0.7856(6π)≃ 14.81 at z/a= 0.
For particles fully immersed in water (z/a→∞ limit), one
has k(0) = 6π.
From eqs. (3) and (4), one finds the measured value

of k(0) is 6π/α. By comparing the measured value
of k(0) ≃ 13.0 for Si3 with the calculated k(0) as a
function of z/a in ref. [12], we find that the vertical
position of Si3 spheres is located at z/a≃−0.564. The
contact angle corresponding to this vertical position is
θ= cos−1(1− |z/a|)≃ 64.1◦, which is very close to the
independently measured value of θ≃ 60◦ [19]. The experi-
ment thus demonstrates that the measured single-particle
self-diffusion together with the calculated k(0) can provide
a useful technique to determine the contact angle of
well-behaved colloidal particles at the interface.
The obtained value of k(0) ≃ 15.97 for Si1 and Si2

is ∼ 7.9% larger than the maximum value allowed,
suggesting that these silica spheres experience a larger
drag force at the interface. The discrepancy between
the measurement and theory is beyond the experimental
uncertainties. What causes these particles to feel larger
drag force at the interface? One possibility is due to
surface contaminations, which are known to hinder the
motion of interfacial particles [5,16]. However, such effect
is expected to be random, but our measurements show
consistent results for all three particle samples. In the
experiment, great care is taken to clean the interface and
the fitted value of α for each particle sample is extrapo-
lated from 20–30 independent measurements conducted at
different times with separately prepared water-air inter-
faces. The measurements with different particle samples
thus indicate that the larger drag forces experienced by
Si1 and Si2 are unlikely caused by surface contaminations.
Another possibility is that the difference in surface

chemistry between Si3 and Si1 (or Si2) may introduce
additional drag forces due to the pining of the inter-
face or meniscus deformation in the immediate vicinity
of the contact line between the interface and particle.
The numerical calculation by Fischer et al. [12] assumed
that the interface is flat and incompressible but did not
consider any complication near the contact line. The Si3
particles were purchased from Bangs Laboratories and
are non-porous silica spheres. These non-porous parti-
cles show the normal behavior of interfacial diffusion and
sit on the interface with the expected value of z/a (or
contact angle). The Si1 and Si2 particles were purchased
from Duke Scientific and were synthesized by the Stöber
method, followed by a sintering process at 900 ◦C to drive
off all organic materials and water [23]. The Stöber silica
is known to be somewhat porous [21], which may intro-
duce meniscus deformation or interface pining near the
contact line.

The third possibility is that the Si1 (or Si2) particles
may immerse into the water deeper than a flat interface
allows but still remain in contact with the (curved) inter-
face [24]. As a rough estimate, we take the calculated value

of k(0) to be 15.97 and find the corresponding value of
z/a≃ 0.5 from ref. [12]. This estimation suggests that the
measured k(0) ≃ 15.97 could be accounted for if the parti-
cles dip into the water by a quarter of its own diameter
deeper than a flat interface allows. While at the moment
we do not know exactly what would cause such dipping,
the electric-field–induced capillary effect [25] could be a
candidate for this phenomenon. Because of the large differ-
ence in dielectric constant across the interface, there is an
inhomogeneous pressure exerted on the interface, result-
ing in an effective force pulling the particle into the water.
Clearly, a further understanding of the interaction between
the particle surface and the interface is an important issue,
which affects a range of problems associated with tracer
diffusion at soft interfaces [10–12,26].
The second new feature shown in fig. 4 is that the

measured DSS(n) shows an interesting concentration
dependence, which is directly related to interfacial
hydrodynamic interactions between the particles. The
fitted values of β for the three silica samples are not the
same, with the larger particles having a smaller value
of β. The difference between the fitted values of β is
clearly beyond the experimental uncertainties. The extra
d -dependence of the measured β suggests that smaller
particles experience a larger resistance (dissipation)
than larger particles. Such an effect was also observed
in a different colloidal monolayer system consisting of
nearly hard spheres (polymethylmethacrylate (PMMA)
particles) at a decalin-water interface with a contact
angle close to 180◦ [27]. Peng et al. found that the fitted
values of β for two PMMA samples of different sizes also
decrease with increasing d. These results indicate that
the additional d -dependence of the measured DSS/D0 is a
general feature of interfacial diffusion. An intriguing ques-
tion arising from the above observations is: What causes
the d-dependence of the measured β? Currently, there
is no analytical theory or numerical simulation available
to explain the effect. From the experimental point of
view, there are several candidates which may explain
why large and small particles feel different hydrodynamic
interactions at the interface.
One possibility is that the large and small particles may

have slightly different wetting conditions at the interface.
For example, larger particles are bound more strongly to
the interface than smaller particles. In the experiment, we
also found that it gets increasingly difficulty to disperse
small particles (< 0.4μm) at the interface. Figure 1 showed
that the three silica particles experience a repulsive inter-
action with minute differences. The short-range repulsion
could increase the effective area fraction n, making the
value of the effective β smaller. This issue of interaction is
further complicated if one considers that the silica spheres
are weakly charged and the counter-ions are distributed
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in the immediate vicinity of the particle surface in contact
with the water. While these effects may be very small for
the equilibrium properties of the colloidal monolayer, such
as the pair correlation function and the contact angle,
the dynamic properties of the monolayer, such as the
measured DSS , could be more sensitive to these small vari-
ations. As mentioned above, because the relevant surface
energy is large, a small change in contact area may result
in a large change in the surface energy (and hence the dissi-
pation), much larger than kBT . Another possibility comes
from possible surface contaminations. While we have tried
the best we could to clean the interface, we do not
have direct knowledge of whether our cleaning is perfect.
Non-perfect cleaning may give rise to a non-zero Boussi-
nesq number B, providing another channel for viscous
dissipation (or drag).
For bulk suspensions, it was found [17] that DSS/D0 =

1−β3φ, where φ is the volume fraction of particles and the
coefficient β3 ≃ 1.83 is independent of d. The measured
value of β3 agrees well with the theory of two-body
hydrodynamic interactions in the bulk suspension [13,17].
One may have a simple estimate of β3 by examining
the concentration dependence of the effective viscosity,
ηeff = η(1+β

′

3φ), of the suspension, where η is the solvent
viscosity. Assuming ξ ≃ 6πηeffa, one obtains D

S
S/D0 ∝

(1−β′3φ). Einstein showed β
′

3 = 5/2 [28], which is slightly
larger than the measured β3 ≃ 1.83. This is because the
concept of effective viscosity applies only to the situation
for one big tracer particle in a suspension of many small
particles. By contrast, DSS is measured with one tracer
particle in a bath of many particles of the same size. The
local viscosity felt by smaller tracer particles is less than
that felt by bigger tracer particles [29].
Compared with the bulk suspensions, hydrodynamic

interactions between interfacial particles are much less
understood. At the moment, we are not aware of any
theoretical calculation for β at the interface. The motion
of the colloidal monolayer is complicated because it is a
coupled system of the interface with the lower fluid phase.
If the Boussinesq number B is large enough, the effective
viscosity, ηeff = η(1+β2n), of a 2D colloidal system is
increased with β2 = 4 [30]. Because smaller particles are
separated by a smaller distance (ℓ= d[π/(4n)]1/2) as
compared to the larger particles at the same area fraction
n, they may feel more 2D-like hydrodynamic interactions
than the larger particles do [30,31]. This could explain
why small particles experience more hydrodynamic
resistance (drag) with increasing surface concentrations.
Clearly, a detailed calculation of two-body hydrodynamic
interactions at the interface is needed in order to further
understand the concentration dependence of the measured
DSS(n).
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