Proposal and testing of dual-beam dynamic light
scattering for two-particle microrheology

Xin-Liang Qiu, Penger Tong, and Bruce J. Ackerson

A dual-beam dynamic light-scattering arrangement is devised to measure the time-dependent mean
squared relative displacement of a pair of tracer particles with a small separation of micrometers. The
technique is tested by the measurement of the relative diffusion of polymer latex spheres suspended in
a simple viscous fluid. The experiment verifies the theory and demonstrates its applications. The
dual-beam dynamic light-scattering technique, when combined with an optical microscope, provides a

powerful tool for the study of two-particle microrheology of soft materials. The advantages of the new
technique are its high statistical accuracy, faster temporal response, and ease of use. © 2004 Optical

Society of America
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1. Introduction

Of much fundamental interest in the study of micro-
rheology of soft materials or complex fluids is the
time-dependent mean sguared displacement (MSD)
of a tracer particle, (Ar®(1)), = (|r(t + 1) — r(t)?),
where r(¢) is the position of the particle at time #, 7 is
the lag time, and the angle brackets (- - -), indicate an
average over t. For particles suspended in a simple
fluid of viscosity m, their MSD is determined by the
Brownian diffusion by means of (Ar%(t)), = 6D,
where D, = kgT/(6mma) is the single-particle diffu-
sion constant given by the Stokes—Einstein relation.!
Here k5T is the thermal energy and a is the particle
radius. In complex fluids exhibiting both viscous
and elastic behavior, the Stokes—Einstein relation is
generalized2-5 to give

3kpT

(Ar*(s)) = wasCs)’

1

where s is the Laplace frequency, (Ar®(s)) is the
Laplace transform of (Ar?(r)), and G(s) is the projec-
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120.5820, 290.5850, 300.6480.

tion of the frequency-dependent complex shear mod-
ulus G*(w) in the Laplace space. The real part of
G*(w) is the elastic-storage modulus G'(w) and the
imaginary part is the viscous-loss modulus G"(w).

With the generalized Stokes—Einstein relation
(GSER), one can probe the viscoelastic properties of
complex fluids by simply measuring the thermal mo-
tion of micrometer-sized tracer particles embedded in
the material. Dynamic light scattering (DLS), diffu-
sion wave spectroscopy, laser deflection particle track-
ing, and multiparticle tracking (MPT) with video
microscopy have been used to measure the MSD of
individual tracer particles in various complex fluids
and biomaterials.6-11 Other methods of measuring
the one-particle MSD are cited in the recent
reviews.6~9 The one-particle microrheology offers two
potential advantages over conventional rheometers.
First, it provides a microscopic probe to study the local
properties of rheologically inhomogeneous samples.
Second, it requires only a minuscule sample volume,
making the technique particularly useful for biological
samples that are difficult to obtain in large quantities.
To fully utilize these advantages, one needs to ensure
that the tracer particles embedded in the sample are
inert, so that they do not perturb the local environment
of the material under study. Although one-particle
microrheology provides an accurate measurement of
G*#(w) for simple systems, its validity in common com-
plex systems is far from certain. The experimental
situation is often complicated by the adsorption and
depletion of macromolecules in the medium, electro-
static interactions, and other effects that are peculiar
to the system under study.1213



To overcome the experimental difficulties, Crocker et
al.13 recently developed two-particle microrheology,
which measures the relative diffusion of tracer particle
pairs within the sample. The correlated motion of the
particle pairs depends only on the separation [ between
the particles and is independent of the particle size.
This increase in length scale from the particle radius a
to the particle separation / means that two-particle
microrheology is insensitive to the sample inhomoge-
neities of sizes smaller than / and thus measures the
true microrheological properties of the sample, even if
one-particle microrheology does not. In two-particle
microrheology, one is interested in the mean squared
relative displacement (MSRD) of tracer particle pairs,
(Arg *(l, 1), = (rpy@ + 1) — v, = (Aryt, 7) —
Ar,(¢, 7)|?);, where ry; = ry — 1y is the distance between
the two particles and Ar; is the displacement vector of
the ith particle defined above. From this definition
one finds that MSRD contains both the self-diffusion
terms (Ar;?), (single-particle MSD) and the cross-
diffusion term (Ar, - Ary),. Because of the axial sym-
metry of the problem, the relative diffusion between
the particles is no longer isotropic, and both the longi-
tudinal and the transverse diffusion constants are
needed to describe (Ar, - Ary),. It has been shown5.13
that the GSER is still valid for (Ar, - Ar,),, except that
the particle radius a in Eq. (1) needs to be replaced
with the particle separation /. In the experiment,
Crocker et al.’® used the MPT method together with
video microscopy4 to obtain (Ar, + Ar,),.

In this paper we show that, with a two-incident-
laser-beam arrangement and a new signal-processing
scheme, DLS can be used to measure the relative
motion between the tracer particles embedded in a
viscoelastic medium. The dual-beam DLS tech-
nique, when combined with an optical microscope
(hereafter referred as micro-DLS), provides a power-
ful tool for the study of two-particle microrheology of
various soft materials. Compared with the video-
based MPT methods, micro-DLS has the advantages
of better averaging, higher accuracy, faster temporal
response, and ease of use. It is a local probe that
measures the relative motion of the particles in real
time and is capable of mapping out the strain field in
a rheologically inhomogeneous sample by using the
scanning capability of the microscope stage.

The remainder of the paper is organized as follows.
Section 2 contains the theoretical calculation of the
intensity autocorrelation g(7) in the two-beam ar-
rangement. Experimental details appear in Section
3, and the results are presented and analyzed in Sec-
tion 4. Finally, the work is summarized in Section 5.

2. Theory

We consider the scattering by IV identical particles
suspended in a dilute solution. Figure 1(a) shows the
scattering geometry of the experiment. Two parallel
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Fig. 1. (a) Schematic diagram of the scattering geometry (z axis
is perpendicular to the paper): k;, incident wave vector; k,, scat-
tered wave vector; 6, scattering angle; g = k, — k;. (b) Schematic
diagram of the experimental setup: LB, incident laser beam; BC,
Bragg cell; L1, microscope objective; SC, sample cell; L2, collimat-
ing lens; FC, fiber-optic coupler; LS, He—Ne laser; PMT, photomul-
tiplier tube; FS, frequency shifter; DSA, dynamical signal
analyzer.

laser beams with a small separation [/ are directed
through the scattering sample. The frequency of one
of the incident beams is shifted by () (=40 MHz). The
polarization direction of the incident beams is perpen-
dicular to the scattering plane, which is defined by the
incident wave vector k; and the scattered wave vector
k.. The momentum-transfer vector is q=k -k,
and its amplitude is given by qg = (4mn/ )\)sm(e/ 2),
where 0 is the scattering angle, n is the refractive index
of the solvent, and \ is the wavelength of the incident
light. The photodetector records the scattered light
intensity I(¢) by the particles with the same polariza-
tion and momentum-transfer vector q (i.e., at the same
scattering angle 0) but from two spatially separated
locations. The collected signals from the two regions
(i.e., from two different particles with a separation /)
interfere such that the resultant light I(¢) becomes
modulated by ().

The intensity autocorrelation function g(t) is writ-
ten as

([E(E +7) + Ey(t + )|[E(2 + 1) + Byt + 1)]*[E(2) + Ex(t)][E(t) + Ey()])

g(r) =

([E(t) + Ex()]E\(@) + Ey(t)]*)* ’

(2)
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where E; and E, represent the scattered electrical
fields from each of the laser beams. The numerator
on the right-hand side of Eq. (2) contains 16 terms.5
Eight of these terms are of the form (£, E,*E,E,;*) or
(EyE{*EE{*), with one field contributed from one
scattering volume and three from the other. Be-
cause the particles that scatter the light are indepen-
dently positioned in the two scattering volumes, the
averaging over each volume may be carried out inde-
pendently to obtain (£, XE,*E,E,*). Because a sin-
gle field average (E,) is zero, all eight of these terms
may be neglected. There are two more zero-value
terms of the form (E*(¢ + 1) E{*(t) E5(t + 1) E5(t)) and
(E it + 1)E{@)ES*(t + 1) E5*(t)). These terms also
separate into independent averages for each scatter-
ing volume, and the averages for each scattering vol-
ume are zero for the same reason that (£,) is. Two
other terms are time independent and are equal to
2I,1,. Two of the remaining four terms are self-beat
terms within each of the scattering volumes, (I;(¢ +
7)I1(t)) and (I,(t + 7)I5(t)). The last two terms are
conjugated cross-beat terms, (E *(t + 7)E (t +
T)Eo*(t)E,(t)) + c.c., which contain information about
the hydrodynamic coupling between the two particles
separated by distance /.
Equation (2) then becomes

2 I 2
glr) =1+ m Gq(7) + m Gs(7)
21,1,
@+ o
=1+ bGy(7), (3)

where G(1) « ([1(t + 7)I1(¢)) and Gy(1) < (L5t + 7)I5(2))
are two low-frequency self-beat terms, which will be
filtered out in the experiment described below. The

cross-beat correlation function, G.5(7) < (E{*( +
TV Eo(t + 7)Es*(t)E,(t)) + c.c., has the form

Gro(1) = iz E (exp(iq- {[rZ,i(t + 1) - rl,j(t +7)]
N2 <~

— [ro,(t) — vy ()]} — i27Q7)) + c.c.
= (expliq * Ary (1) ])cos(2mQr), 4)

where ry; = r, — r; is the distance between the two
particles residing in the different scattering volumes
and Ary (1) = ry.(t + T) — ry(¢) is the relative dis-
placement vector of the two particles over the delay
time 7. In deriving Eq. (4), we have assumed that
the particles are uniformly distributed in the scatter-
ing volumes. Equation (4) states that G5(1) is an
oscillatory function with its amplitude modulated by
an ensemble-averaged phase factor (exp(iq - Ary;))
over all the particle pairs across the two scattering
volumes.
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For particles undergoing Brownian motion, their
relative displacements are random and thus we have

(expliq* Ary(7)]) = exp — %<[q * Argy(1)]%)
~ exp — s K°[(Arf(l, 7))

X {(1 — cos 0)?)
+ (Ar% (1, T))sin® 0)]. (5)

In Eq. (5), Ary (1) is decomposed into two normal
modes: Arj in the longitudinal direction parallel to
k, (and ry;) and Ar, in the transverse direction per-
pendicular to k, (in the scattering plane). In deriv-
ing the last relation of Eq. (5), we have used the facts
that the ensemble average (ArjAr ) = 0 for random
diffusion and the amplitudes of k, and k; are equal
to £ = 2wn/N. In an ideal case, in which the photo-
detector sees only one pair of particles with ry; ex-
actly parallel to k, [i.e., when the length o of the
cylindrically shaped scattering volume (along the
beam propagation direction) viewed by the photode-
tector is infinitesimally small], the angle 6 in the last
relation of Eq. (5) is simply the scattering angle
shown in Fig. 1(a) and no average is needed for the
weighting factors (1 — cos 0)? and sin? . In most
experiments, however, the scattering volume viewed
by a photodetector always has a finite length o and
thus the position vector ry; between the two particles
has an angular spread 6 * 86 around k,. As aresult,
an average over the angular spread =86 at a given
scattering angle 6 is needed for (1 — cos 6)? and sin?®
0. We discuss details about the angular average in
Section 4.
Equation (4) then becomes

Gio(T) = eXp{—%kZ[@rf(l, 7))(1 = cos 6)%)
+ (A2 (1, 7))sin® 0)]}cos(2mQ7).  (6)

As mentioned in Section 1, the longitudinal and
transverse components of the MSRD, <Arf(l, 7)) and
(Ar? (1, 7)), contain both the self-diffusion contribution
from (Ar,%), and the cross-diffusion contribution from
(Ar, + Arq),. The self-diffusion contribution comes
from the single-particle MSD and is independent of
the particle separation [. Because the single-
particle MSD is isotropic, the self-diffusion gives a
common additive term to both (Arﬁ(l, 7)) and (Ar? (I,
7)). As a result, the phase factor (exp(iq - Ary;)) in
Eq. (4) becomes a product of two exponential func-
tions: One is due to the self-diffusion and the other
is due to the cross-diffusion, which depends on both /
and 7. In two-particle microrheology, we are actu-
ally interested in the T dependence of (Ar, - Ar;),
which is related to the complex shear modulus G*(w)
by the GSER.13 It is shown below that the decaying
function that is due to the self-diffusion can be mea-
sured independently by use of the same experimental
setup but with only one beam present in the scatter-
ing volume. Therefore the self-diffusion contribu-
tion can be readily divided out from the measured



G15(1) and the “corrected” G,5(7) becomes the basic
function for optical two-particle microrheology.

To further demonstrate the application of the tech-
nique, we now consider a simple system of uniform
spheres suspended in a homogeneous viscous fluid
(e.g., water). In this case, we havel6-19

<Arf(l, 7)) = 2Dy,

3a a®

where D) is the relative diffusion coefficient in the
direction parallel to k, (or ry;) and D, is the single-
particle free-diffusion constant. Similarly, we have

<Ar2L(l’ T)> = 2DLT’

D, =2D 1—3—“+@“—3 (8)
LoaTe 4] 2|’

for the relative diffusion in the direction perpendic-
ular to k, (or ry;) in the scattering plane. It is seen
from Egs. (7) and (8) that both D; and D, contain an
l-independent term, 2D, that is due to the self-
diffusion contribution discussed above. Because the
transfer of fluid into and out of the space between the
two spheres is needed, the relative diffusion is sup-
pressed compared with the free diffusion. This is
especially true for D|. In this case, the relative mo-
tion between the two spheres must squeeze out of the
fluid between them, producing extra resistance for
the particle motion.

Substituting Eqs. (7) and (8) into Eq. (6), we have

G15(7) = exp{—k’[D{(1 — cos 0)*)
+ D (sin? 0)]t}cos(2mwQT)

= exp(—1/7¢)cos(2mOT), 9
with
B 1
7 RAD((1 — cos 0)%) + D (sin? 0)]
)
= (10)

1-3%4(1+ (sin?6/2))

In Eq. (10), t, = (2¢°D,) "' is the decay time in the
absence of hydrodynamic coupling (a/l — 0). It is
also the decay time for the single-particle self-
diffusion, which can be obtained independently by
use of the usual one-beam DLS arrangement.! By
measuring both the one-beam and two-beam correla-
tion functions, we can divide out the self-diffusion
contribution from the measured G,5(7) in Eq. (9). In
obtaining the last equality of Eq. (10), we have ig-
nored the effect of the angular average over +860 to
the momentum-transfer vector q. It has been
shown20 that such an average reduces the signal-to-
noise ratio of the measured g(1).

According to the Wiener—Khintchine theorem,5
the frequency power spectrum P(f) of the photocur-

rent is equal to the Fourier transform of g(7). There-
fore we have
1 (= .
P(f) = 2 f exp(i2mft)Go(T)dr
m
1
v

T 1+ 2mr)i(f— Q)2

In the experiment, we can obtain 7, more accurately
by plotting the measured 1/P(f) versus (f — Q)% and
by fitting the data to a linear function:

1/P(f) = o + B(f— Q)% (12)

From Eqs. (11) and (12), we obtain 1, = (3/a)Y/2/2%
from the two fitting parameters o and .

3. Experiment

Figure 1(b) shows the experimental setup and optical
arrangement. Incident laser beam LB from a solid-
state laser (Coherent Verdi) of wavelength \ = 532
nm is directed through Bragg cell BC. The incident
beam becomes multiple diverging beams when pass-
ing through the Bragg cell, which acts as an optical
grating. In the experiment we use only the zeroth-
order (unshifted) and the first-order (40-MHz shifted)
outgoing beams, and all the higher-order beams are
blocked. The Bragg cell is tilted slightly so that the
two outgoing laser beams have equal intensity. A
100X microscope objective L1 is used to direct the two
laser beams to sample cell SC. The distance be-
tween the objective and the beam-splitting point (in-
side the Bragg cell) is set to be equal to the focal
length of the objective, such that the two outgoing
beams become parallel at the measuring point. The
sample cell is a square cuvette with dimensions 1
cm X 1em X 4 cm. It is filled with a dilute aqueous
solution of uniform polymer latex spheres of radius «a,
which is varied from 0.07 to 0.95 pm. A long-
working-distance telemicroscope (Leica MZ8, not
shown) is used to view the incident laser beams di-
rectly from the top of the sample cell. Direct obser-
vation of the beam profile with the telemicroscope
reveals that the two incident beams at the measuring
point are separated by a distance / = 10.5 * 1.5 pm,
which is fixed in the experiment.

The scattered light from the two parallel beams is
collected by fiber-optic coupler FC, which consists of
two input and two output single-mode fibers fused
together. Only one input fiber is used in the exper-
iment, and the light coming from the input fiber is
evenly split into the two output fibers. A small col-
limating lens is installed at the front end of the input
fiber for better collection of light. With the aid of
extra collimating lens L2 (f = 2 cm), the input fiber
collects the light scattered by the particles with the
same polarization and at the same scattering angle
(6 = 90°) but from two spatially separated beams.
The two scattering spots viewed by the input fiber
have a cylindrical shape of diameter 0, = 6.3 £ 1.5
pm and length (along the beam propagation direc-
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tion) oy =12 = 2 pm. The collected signals from the
two regions (i.e., from two different particles sepa-
rated by /) interfere such that the resultant light
becomes modulated at the shift frequency = 40
MHz. This carrier frequency discriminates the self-
beat signals (between the particles in the same inci-
dent beam) from the desired cross-beat signals
between the particles across the two measuring vol-
umes. Because () is much larger than the self-beat
frequencies, we can readily remove the self-beat sig-
nals by using a high-pass filter.

One of the output fibers is connected to a photo-
multiplier tube (PMT), whose analog output is fed to
frequency shifter FS (TSI Model 9186A). The fre-
quency shifter is a phase-sensitive downmixer, which
further shifts the 40-MHz optical carrier frequency
down to a desired electronic carrier frequency (), in
steps of 0, 2, 5, 10, and 20 kHz (other higher-
frequency steps are not used in the experiment).
The stability of the frequency shifter is better than
99.5%. The actual carrier frequency (), used for the
output signals is chosen to obtain the highest fre-
quency resolution possible. This signal is then fed to
dynamical signal analyzer DSA (HP 35665A), which
measures the intensity autocorrelation function g(t)
and the frequency power spectrum P(f). In the
measurement of g(t), we choose (), = 0. An oscillo-
scope is also connected to the output of the frequency
shifter to view the signals directly. The frequency-
shifting scheme allows us to measure low-frequency
phase fluctuations accurately and at the same time
filter out unwanted noise. The other output fiber is
connected to He—Ne laser LS, which is used for opti-
cal alignment. With the reversed He—Ne light com-
ing out of the input fiber, we can align the input fiber
and directly observe the scattering volumes viewed
by the PMT. The intersections between the output
He—Ne beam and the two parallel incident beams
define the scattering volumes. A beam stop is in-
stalled in the PMT housing to block the He—Ne light
when the laser is on.

4. Results and Discussion

Figure 2 shows a typical trace of the scattered light
intensity by particle pairs across the two scattering
volumes. The signal is obtained directly from the
analog output of the frequency shifter. It is seen
that the signal has a carrier frequency of (), = 5 kHz
and its amplitude fluctuates at lower frequencies.
To resolve the low-frequency fluctuations that are
due to the Brownian motion of the particle pairs, we
first set (), = 0 and measure the intensity autocor-
relation function g(t). Figure 3 shows the measured
g(7) — 1 as a function of delay time 7. The circles are
obtained when two incident beams are used, and the
squares are obtained when only one incident beam is
present. We achieve this experimentally by simply
turning on and off the Bragg cell.

As shown in Eqgs. (9) and (10), g(t) — 1 becomes a
simple exponential function when () is set at zero.
(Experimentally, this is equivalent to setting Q, = 0.)
The decay time of the measured g(t) — 1 is given by

3386 APPLIED OPTICS / Vol. 43, No. 17 / 10 June 2004

0.2 T T T T

0.0

voltage (v)

-0.2 ! 1 | I 1 1
0 4 8

t (ms)

Fig. 2. Typical trace of the scattered light intensity across two
scattering volumes separated by / = 10.5 pm. The particle size is
0.14 pm, and the electronic carrier frequency (), is 5 kHz.

to = 1/(2¢°D,) for the one-beam arrangement and is
increased by a factor of 1/[1 — (3a/41)(1 + {sin? 6/2))]
when the two-beam arrangement is employed.
These features are clearly shown in Fig. 3. The two-
beam measurement shows a slower decay than does
the one-beam measurement. The solid curves are
the simple exponential fits to the data. We find that
the difference in decay time between the two curves
increases with the particle size. Evidently the hy-
drodynamic coupling between the particles increases
with a/l.

To obtain the intensity autocorrelation function
g(7), the dynamical signal analyzer used in the ex-
periment actually measures the frequency power
spectrum P(f) first and then Fourier transforms it
back to g(t). Figure 4(a) shows the P(f) measured
directly with (), = 0. In this case, we obtain only a
partial P(f) for f = 0, because we cannot measure
P(f) at negative frequencies. In fact, we could also
set the electronic carrier frequency (), to a value
slightly larger than the characteristic frequency 1/¢,
of the relative diffusion [see Eq. (10)] and obtain a full

T T TTTIm T T 1 T

0.1

g(t) - 1

0.0

TN NI N ATT A B SR HT || B A TEIT
10° 104 107 102 107!
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Fig. 3. Measured intensity autocorrelation function, g(t) — 1, as
a function of delay time 7 for particles of size 1.6 pm. The circles
are obtained when two incident beams are used, and the squares
are obtained when only one incident beam is present. The solid
curves are the simple exponential fits to the corresponding data
points.
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Fig. 4. (a) Measured frequency power spectrum P(f) of the scat-
tered light intensity when two incident beams are used (open
circles). The solid curve is a fit to a Lorentzian function. In the
measurement, (), is set to zero and the particle size is 1.6 pm.
The inset shows a linear plot of 102/P(f) versus (f — Q,)? for the

same data set. (b) Corresponding log—log plot of 10®/P(f) versus
(f - Qo)2~

P(f) for both f < Q, and f = Q,. As shown in Eq.
(11), the power spectrum P(f) is a symmetric func-
tion of f — ,, and thus the measurement of a full
P(f) helps only in data averaging.

It is seen from Fig. 4(a) that the measured P(f)
decays slowly for more than three decades with a very
small baseline (noise level). This is because the
frequency-shifting scheme used in the experiment fil-
ters out most low-frequency noise. The measured
P(f) is well described by a Lorentzian function P(f)
=[a + B(f — Qy)?] ! (solid curve), where « and B are
two fitting parameters. To determine the values of
o and B more accurately, we plot 1/P(f) versus (f —
Q,)?, as shown in the inset of Fig. 4(a). In this plot,
a« and B become, respectively, the intercept and the
slope of a linear function. Note that the value of « is
very small and is hard to see in the linear plot. To
view a more clearly, we show a log—log plot of 1/P(f)
versus (f — Qy)? in Fig. 4(b). Using Egs. (11) and
(12) we obtain the decay time 7, = (8/a)"%/2m from
the fitted values of « and B. It is found that the
value of 7, obtained from P(f) agrees well with that
obtained from g(7).

Figure 5 compares the decay time obtained in the
dual-beam arrangement (solid circles) with that ob-

1, (ms)

2a (um)

Fig. 5. Measured decay time 7, as a function of particle size 2a.
The solid circles are obtained when two incident beams are used.
The open circles are obtained when only one incident beam is
present. The solid curveis afit tor, = t,/(1 — vya/l), withy =4 =
1. The dashed line shows the one-beam decay time ¢, =
(29°Dy) .

tained in the one-beam arrangement (open circles).
As discussed in Section 2, the one-beam decay time is
given by ¢, = (2¢®D,)" ! (dashed line), which is a
linear function of the particle size 2a. Itis seen from
Fig. 5 that the calculated ¢ is in good agreement with
the one-beam measurements. The measured dual-
beam decay time increases with 2a more rapidly, and
thus the difference between the two sets of measure-
ments, resulting from the cross-diffusion contribu-
tion, becomes larger for larger particles. As shown
in Eq. (10), the effect of the hydrodynamic interaction
between the particles increases with a/[ (I is fixed in
the experiment), and this is clearly seen in Fig. 5.
For example, the two-beam measurement for parti-
cles of size 1.6 wm results in an ~45% increase in T,.
For particles of size 0.14 pm, however, the two-beam
measurement gives essentially the same result as
does the one-beam measurement, indicating that the
interparticle hydrodynamic coupling is negligible in
this case.

The solid curve in Fig. 5 shows the fitted function
To = to/(1 —va/l),withy =4+ 1. From Eq.(10), we
expect y = (3/4)[1 + (sin® 0/2)] = (9/8)[1 — {cos 6)/3].
At the 90° scattering angle employed in the experi-
ment, cos 0 is an odd function and its angular average
over m/2 * 30 is zero ({(cos ) = 0). Therefore we
have y = 9/8, which is approximately 3.6 times
smaller than the fitted value. In deriving Eq. (10)
we have assumed that all the particle pairs in the
scattering volumes have the same separation /. Be-
cause of the finite size of each scattering volume, the
actual separation of the particle pairs may vary in the
range [ = ¢, (10.5 = 6.3 pm). Such a variation in
particle separation will give rise to a correction factor
to the fitted y. To calculate the correction factor, we
need to know the intensity profile of each scattering
volume.2!

Another source of experimental error comes from
the optical alignment. To focus the two incident la-
ser beams in a small region, we used a 100X micro-
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scope objective. Because of the tight focusing, the
two laser beams become parallel to each other in only
a very small waist region of size o = 12 um. In this
case, the detecting optics is required to have high
accuracy in locating the proper scattering regions.
Although we are able to detect the desired signals by
using the convectional light-scattering apparatus,
the overall optical arrangement used in the present
experiment is not fully optimized. As shown in Fig.
5, the two-beam data have relatively larger error
bars, which are estimated based on the scatterer of
the measured MSRD values from run to run. The
experimental uncertainties are largely related to the
optical alignment. The use of strongly focused laser
beams for illuminations introduces uncertainties for
the momentum-transfer vector q and thus compli-
cates the analysis of the scattering geometry.20.22
This may also affect the final result for .

On the theoretical side, Hinch and Nitsche?? pro-
posed that the nonlinear hydrodynamic effect can
lead to an additional mean force of interaction be-
tween two Brownian spheres, which may change the
value of y in Eq. (10). The calculation for the rela-
tive diffusion of particle pairs in Eqgs. (7) and (8) uses
the linear Stokes equation, and the nonlinear term is
not included in the calculation. More accurate mea-
surements are needed in order to test the theory by
Hinch and Nitsche.

5. Proposal of Microdynamic Light Scattering

To overcome the experimental difficulties and further
improve the accuracy of the dual-beam DLS for small
samples, we herein devise a dual-beam DLS arrange-
ment on an inverted microscope, which provides the
best optics possible. Recently, Kaplan et al. have
devised a one-beam DLS arrangement on an inverted
microscope.?? By the introduction of a coaxial laser
beam along the optical axis of the microscope, the
one-beam DLS collects the scattered light at the back
focal plane (BFP) of the microscope objective. The
collected signals from a point in the BFP have the
same momentum-transfer vector q. By use of an
objective with a large numerical aperture, the one-
beam DLS can measure g(1) at a scattering angle 6 up
to ~65°, which is determined simply by the distance
between the measuring point and the center of the
BFP.

Figure 6 shows the optical arrangement for the
dual-beam micro-DLS. This design is similar to
that for the one-beam DLS22.2¢ except that Bragg cell
BC and collimating prism CP are added before lens
L1, which is placed at a position conjugate to con-
denser CO. The two outgoing diverging beams from
the Bragg cell, with one of the beams frequency
shifted, become parallel after the collimating prism.
The two parallel beams are further projected onto
sample SA by both L1 and the condenser, which re-
duce the beam separation and diameter simulta-
neously by a factor proportional to the focal-length
ratio between L1 and the condenser. In addition, a
frequency shifter is used to process the electronic
signals.
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BC CP L1

Fig. 6. Optical design of the dual-beam DLS microscope: IF,
incident fiber; BC, Bragg cell; CP, collimating prism; L.1, lens; DM,
dichroic mirror; CO, condenser; SA, sample; OB, objective; BFP,
back focal plane; TO, tube optics; SP, scattering plane; CF, collect-
ing fiber; PMT, photomultiplier tube; F'S, frequency shifter; DSA,
dynamical signal analyzer.

This design has several new features. First, with
the aid of the microscope we can directly view the two
incident laser spots on the sample. The size of each
spot can be reduced down to the diffraction limit
(~0.2 pm) and the separation / between the two laser
spots can be adjusted down to ~1 pm. Using the
microscope, we can also record the intensity profile of
each laser spot with a CCD camera and carry out
optical alignment in real time. Second, because the
dual-beam DLS measures the relative displacement
directly from the cross-beat signals, the accuracy of
the two-particle MSRD measurement becomes as
high as that of the one-particle MSD measurement
made with the standard one-beam DLS. An alter-
native way of obtaining MSRD is to measure the
position of individual particles separately and then
get the difference between the particle positions by
data subtraction. This is the approach employed by
laser deflection particle tracking3-1° and video-based
MPT11.13.16.19 methods. With these methods the
measured MSRD may suffer large experimental un-
certainties in certain cases in which the interparticle
hydrodynamic coupling is weak and the signal is
dominated by the uncorrelated motion. This is es-
pecially true when the particle motion is influenced
by a large background noise that is due to vibration or
velocity drifts.

Finally, the dual-beam micro-DLS wuses a
frequency-shifting scheme, which selects the right
particle pairs and measures their relative motion ac-
curately. Because the cross-beat frequency between
the particles across two measuring regions is shifted
to a frequency (2 = 40 MHz) much higher than the
self-beat frequency, we can easily pick up the cross-
beat signals by using a bandpass filter. The optical



mixing at the high frequency also discriminates all
sorts of low-frequency electronic noise, making the
technique particularly useful for samples with small
MSRD. By using the best digital correlator avail-
able in the market, we can have a temporal resolution
in many decades of a time span down to 50 ns. The
fast digital correlator also allows us to measure g(7)
in real time. As a result, the dual-beam micro-DLS
offers wider frequency range, higher accuracy, and
better averaging compared with the video-based
MPT methods. It is a local probe and requires a
small sample volume. Measurements of the relative
motion of the particles in a rheologically inhomoge-
neous sample, such as a live cell, can be carried out by
a scan of the laser beams over an area of interest.
This can be accomplished readily by use of the fine
scanning capability of the microscope stage.

6. Summary

We have devised a dual-beam DLS scheme to mea-
sure the MSRD, (Ar,,%(l, 7)), of tracer particle pairs.
With two parallel laser beams, the new technique
measures the cross-beat signals between two tracer
particles across the two incident laser beams. Be-
cause it is based on the same optical beating princi-
ple, the dual-beam DLS works in a way similar to the
standard one-beam DLS. The only difference is that
the beat signals in the dual-beam scheme result from
particle pairs across two different scattering regions
with a small separation [ (cross-beat). In the stan-
dard one-beam DLS, however, the signals come from
the beating of the individual particles in the same
scattering volume (self-beat).

To find optimal experimental conditions for the
dual-beam DLS, we measure the relative diffusion of
uniform latex spheres suspended in a simple viscous
fluid. The experiment verifies the working principle
of the dual-beam DLS and demonstrates its applica-
tions. It is found that the dual-beam DLS measures
MSRD with the same high accuracy and high statis-
tical averaging as the one-beam DLS does for the
MSD of individual tracer particles. To obtain the
highest spatial resolution and the best optical align-
ment, we devise a new optical arrangement to carry
out the dual-beam DLS on an inverted optical micro-
scope (referred to as micro-DLS). Micro-DLS will
have wide use in the general area of soft condensed-
matter physics, especially in the study of two-particle
microrheology of complex fluids and biomaterials.

From the definition of MSRD, we have (Ar,,%(l, 7))
= 2(Ar;%), — 2(Ar, - Ar,),, where (Ar;%), is the single-
particle MSD, which changes with the particle radius
but is independent of the particle separation /. The
cross-diffusion term (Ar, - Ar;), depends on both / and
the delay time 7. In two-particle microrheology, we
are actually interested in the 7 dependence of
(Ar, + Aryq),, which is related to the complex shear
modulus G*(w) by the GSER.13 Because the self-
diffusion term contributes only a multiplicative factor
exp[—q*(Ar;%),] to the intensity correlation function
G15(7), its effect can be readily divided out from the
measured Gi5(1). We do this by measuring the

single-particle correlation function exp[—q*(Ar,?),]
independently by using the same experimental setup
but with only one beam present in the scattering
volume. The corrected G5(7), which is proportional
to exp[g*(Ary - Ar,),], thus becomes the basic function
for optical two-particle microrheology.

The new technique of micro-DLS should be com-
pared with the video-based MPT methods, which
have been used increasingly in recent years.6-?
With the aid of video microscopy, MPT follows the
motions of several hundreds of micrometer-sized par-
ticles in each frame of a video simultaneously and
obtains the ensemble average (Ar,-Ar;), or MSD
from each of the individual particle trajectories.
The ability to uniquely identify each particle in each
frame of a video and accurately determine the center
of the two-dimensional particle images is critical to
the method. MPT requires postprocessing of the
video images by sophisticated image-analysis pro-
grams, and therefore (Ar, - Ar,), cannot be obtained
in real time. The frequency range of the measured
(Ar, + Ary), is limited by the frame rate of the camera
(typically, 15-30 frames/s). Because the relative
displacement between two particles is obtained
through the subtraction of the particle positions, the
measured (Ar, + Ar;), becomes sensitive to the back-
ground noise, such as that from sample vibration and
velocity drifts.

Micro-DLS, on the other hand, is a local probe,
which measures (Ar,,%(, 7)) (and hence (Ar, * Ar,),)
at a point of size 1-10 pwm. Measurements of
(Ary,%(, 7)) in a rheologically inhomogeneous sample
is carried out by a scan of the probe over an area of
interest. By use of two parallel incident laser beams
of different frequencies, the technique picks up the
scattering signals from the particle pairs across the
two incident beams and measures (Ary,%(l, 7)) di-
rectly and precisely by means of optical mixing.
With a fast digital correlator, we can measure the
intensity autocorrelation function g(t) in real time
and obtain (Ar,,%(/, 7)) over a time span from hours to
50 ns. Photon correlation spectroscopy is a mature
technology that provides excellent sample averaging
and is easy to use. Consequently, micro-DLS offers
a wider frequency range, higher accuracy, and better
averaging compared with MPT. Its ability of mea-
suring (Ar,,2(/, 7)) in real time and the precise optics
and fast electronics available for photon correlation
spectroscopy make micro-DLS a particularly useful
and convenient tool for the experimental study of
two-particle microrheology of soft materials.
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