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Small-angle neutron scattering experiments have been carried out to study the phase stability of a very
dilute water-in-oil microemulsion. At the fixed water to surfactant molar ratio of w = 30, we observed
a decrease in the microemulsion droplet radius and an increase in the polydispersity when the dispersed-
phase volume fraction, ¢, was dilute to less than 1%. Upon further dilution to below 0.1%, the droplets
disappeared. This suggested that in the concentration range, 0.1% < ¢ < 1.0%, a single-phase microemulsion
was unstable, and a phase separation, known as the emulsification failure, occurred. To understand the
interesting phase behavior, we have formulated an analytic solution for the droplet size distribution
function for a two-phase microemulsion based on the theory of Borkvec et al. (J. Colloid Interface Sci.
131, 366 (1989)). We found that the distribution function attained a simple Gaussian form, and the
width of the distribution function was inversely proportional to the renormalized elastic bending energy
of the microemulsion droplets. Other features predicted by the theory were also in good agreement with

the small-angle neutron scattering measurements.

I. INTRODUCTION

A microemulsion is a thermodynamically
stable three-component mixture of oil, water,
and surfactant. An example of such a mixture
contains decane (oil), water, and sodium di-
2-ethylhexylsulfosaccinate (AOT surfactant).
For certain compositions of these three com-
ponents, a homogeneous and optically clear
single-phase solution can be obtained at room
temperature. Many previous scattering exper-
iments (2, 3) have established that at mod-
erately low dispersed-phase (Water + AOT
surfactant) volume fraction, ¢ = 0.02, the mi-
croemulsion consists of surfactant-coated
spherical water droplets dispersed in the oil-
continuous medium. The size of the droplets
is rather uniform and it is determined by the
water to surfactant molar ratio (4, 5). At
higher concentrations, there are indications
that the microemulsion consists of densely
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packed droplets which exhibit interesting
glassy behaviors (6-8).

In contrast to the extensively studied mi-
croemulsions in the above mentioned droplet
concentrations, much less is known concern-
ing the structure of such a single-phase mi-
croemulsion when it is continuously diluted
such that the surfactant concentration is too
low to coat all the droplets. In this case the
microemulsion will have a phase separation
as signified by a precipitation of a water phase
from the bulk oil phase. The coexistence of a
microemulsion phase with an excess water
phase is known as type-1I microemulsion. The
transition of a single-phase water-in-oil mi-
croemulsion to type-II microemulsion is called
emulsification failure. A careful study of the
microemulsion in this region will not only give
us insights about the key factors which control
the emulsification process, but also provide a
quantitative measurement of thermodynamic
parameters, such as the elastic bending energy
(9), x, the spontaneous radius, R, and the
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critical micellar concentration (CMC), X¢.
Recently, Borkovec et al. (1) have proposed
a theoretical model to study the phase behavior
of the microemulsion in the emulsification
failure region. However, there are no prior ex-
perimental studies to compare with the theo-
retical predictions.

In this paper we present an experimental
study of this emulsification failure phenome-
non using the small-angle neutron scattering
(SANS) technique. The system under study
was an AOT microemulsion with the fixed
water-to-surfactant molar ratio of w ~ 30. We
found that at high dispersed-phase volume
fractions, ¢ = 1%, both the droplet size and
the polydispersity remained constant; at the
intermediate volume fraction, 0.1% < ¢ < 1%,
the microemulsion droplet size decreased and
the polydispersity of these droplets increased
as the sample was diluted; and at very low vol-
ume fractions, ¢ < 0.1%, the microemulsion
droplets apparently disappeared. The above
experimental observation is interesting, par-
ticularly for the intermediate concentration
range. For fixed water-to-surfactant molar ra-
tio and fixed surfactant monomer concentra-
tion (X §) in the oil, dilution decreases the sur-
face-to-volume ratio of the dispersed-phase
due to the finite CMC. Therefore, the microe-
mulsion droplet size is expected to increase in
the single-phase region. The fact that we ob-
served a reversed behavior in the intermediate
concentration range suggests that some of the
water molecules were removed from the mi-
croemulsion phase and this causes the phase
separation. To explain the experimental results
quantitatively we have derived an analytic
form for the size distribution function in the
two-phase region based on a model proposed
by Borkovec et al. (1). Our calculations
showed good agreements between the theory
(1) and the experiment, indicating that the
theory has captured the essential physics of
this three-component microemulsion. More
specifically, we found that the elastic bending
energy k was ~kgT, the spontaneous radius
R, was ~60 A, and the critical micellar mole
fraction X ¢ was ~2 X 10™* for our system.

We believe that this is the first time R; has
been measured experimentally for this system.
It is interesting to observe that the elastic
bending energy measured in our static scat-
tering measurement is smaller than that ob-
tained from the dynamic scattering (neutron
spin-echo) measurement (10). The difference
between the static and dynamic measurements
may be explained by the saddle-splay energy,
k, which normalizes both the elastic bending
energy, k, and the spontaneous radius, R;, as
suggested recently by Safran (11). We will
show later that in the static measurement one
actually measures a renormalized -elastic
bending energy and a renormalized sponta-
neous radius. For simplicity we still denote
them as x and R, respectively.

In the next section, we will present the the-
ory of Borkovec et al. (1) and our own cal-
culations, which we used to interpret our ex-
perimental results. The theory of the neutron
scattering from polydispersed spherical shells
is also briefly reviewed for the purpose of an-
alyzing the scattering data. Section III contains
experimental details, including the sample
preparation and the neutron scattering mea-
surements. Our results and the interpretations
also appear in that section. Finally the work
is summarized in Section IV.

II. THEORY

II.1 Thermodynamics of Water-in-Oil
Microemulsion

Formation of droplets in a dilute water-in-
oil microemulsion can be viewed as an aggre-
gation of water and surfactant monomers. To
described this process, Borkovec et al. (1) have
developed a statistical model which combines
features of thermodynamics of mixed micella
formation and the established characteristics
of the free energy of microemulsion. The pre-
dicted phase diagram is shown in Fig. 1. As
shown in the figure, for a fixed water to sur-
factant molar ratio, wg, the solution has three
different thermodynamic regions depending
on the surfactant concentration, X;. The
boundaries between these regions are char-
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Fi. 1. The emulsification failure phase diagram.
Emulsification failure phase boundary is plotted on a log—-
log scale of the water to surfactant molar ratio « vs. the
reduced surfactant concentration X;/X {. The solid curve
represents the emulsification failure phase boundary.
Above this curve the system is in the two-phase region
and below this curve the system is in the single-phase re-
gion. The horizontal dash—dot line shows w = 30. The
vertical dash line indicates the upper demixing point. As
shown in the figure, to produce a single-phase microe-
mulsion one needs more surfactant for larger w. (See Ref.
(1) for more details).

acterized by two surfactant concentrations: the
critical micellar concentration (CMC) X,
and the upper demixing concentration X .
(1) For X, < X ¢, the macroscopic water and
oil phases are at coexistence, each saturates
with a trace amount of the other components.
Because of very low surfactant concentration,
they are dissolved as monomers in both the
oil and the water phases. No aggregation oc-
curs in this region. (2) For X§ < X, < X,
water droplets coated by the surfactants start
to form. Though the system is still in the two-
phase region, known as a type-II microemul-
sion, the volume of the macroscopic water
phase decreases as more and more water mol-
ecules become solubilized in the oil phase in
the form of droplets as X; is increased. (3) For
X, > XU, all the water is solubilized in the oil
phase and a single-phase microemulsion
forms.

The above physical picture can be quanti-
tatively described by a distribution function
of the aggregation number, N, of surfactant
molecules. In terms of the dimensionless ra-
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diusp = \/-]\_f, the elastic bending energy «, and
the spontaneous radius ps, the size distribution
function can be written as (1)

flp)=p'e ¥, [1L.1.1]
where
g(p) = £p® + Anp® + 87Bk(1 — p/ps)*
— Bhpg. [IL1.2]

Here A (= 1.3)is the volume ratio of surfactant
to water molecules (12), 8 is the reciprocal of
ks T, and BAp, is a constant which determines
the total number of droplets present in the
system. The exponent v is used to characterize
contributions from the entropy of mixing and
the thermal undulations of the droplets. Ob-
viously, the size distribution depends on both
of these effects, since the former favors more
but smaller droplets and the later tends to have
a bigger effective radius. Because the dominant
contribution to f(p) is from the exponential
part, the particular value of » does not affect
the final results strongly. On the other hand,
in order for the distribution function, f{p), to
be zero at the origin, » must be a positive finite
number. The calculation below can be easily
generalized to any value of », but for the sim-
plicity we will take » = 1, in accordance with
Ref. (1) (13). The distribution function, f(p),
also depends on two other parameters:

£ = BAp, — log x, [11.1.3]

and

7 = BAuy — log x;, [II.1.4]

where Apg (Apy ) is the standard chemical po-
tential difference of surfactant (water) mole-
cules, and x, (x,,) is the mole fraction of sur-
factant (water) monomers. Physically, the pa-
rameter £ is the chemical potential difference
between a surfactant in the saturated oil / water
interfaces and a surfactant dissolved in the oil,
and it measures the concentration of free sur-
factant monomers. The parameter 5, on the
other hand, is the chemical potential difference
between a bulk water molecule and a water
molecule dissolved in the oil, and it measures

®

»
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the concentration of free water monomers.
Alternatively, £ and 7 can be viewed as La-
grangian multipliers which fix the overall mole
fractions of surfactant and water molecules,
respectively.

Using the distribution function, f(p), the
nth moment of the dimensionless radius, p,
can be defined as

( n>_f,:° dpf(p)p" .
T Ty 0

where the lower integration limit, p;, denoting
the smallest aggregation size, should be taken
to be greater than one. Since p = ﬁ, where
N is the surfactant aggregation number, the
actual radius R is related to the dimensionless

radius p by
Z
R= =0
p \/4: ,

where T (=60 A?) is the surface area per head
group of the surfactant (3).

Finally, by denoting the overall surfactant
(water) mole fraction as X; (Xy), the mass
conservation law for both surfactant and water
molecules can be simply expressed in terms of
the second and the third moment of p,

X, = e 8% 4 (pPVxy,  [IL1T]
[1L.1.8]

where x4 is the droplet mole fraction which is
defined as

[1L.1.6]

X, = e £ A p S xq,

Xq = f dof(p). [I1.1.9]
Pl
Here the lower integration limit, p;, corre-
sponding to the smallest aggregates, should be
V2. As it stands, the first terms on the right
hand side of Eq. [II.1.7] and [11.1.8] are orig-
inated from monomers, whereas the second
terms are contributions from the droplets.
Equations [IL.1.1]-[11.1.9] complete the
description of the three-component micro-
mulsion in terms of its physical parameters,
and they can also be used to determine the

phase boundaries for a given system. To cal-
culate the distribution function, f(p), we need
first to evaluate the two Lagrangian multipliers
£ and n using Eq. [11.1.7] and [I1.1.8] for given
X; and X,,. Once £ and 7 are determined the
distribution function itself is uniquely defined.
It is interesting to note that the distribution
function f(p) has very different asymptotic
behaviors in the single-phase and in the two-
phase regions because of different thermody-
namic constraints. In the single-phase region,
since both §£ and 7 are nonzero, the large drop-
lets are inhibited by the energy cost (~np?)
of water cores of the droplets, therefore f(p)
decays as ~e~™ for p = 0. On the other
hand, in the two-phase region, since £ is non-
zero but 7 is zero, the existence of large drop-
lets is only inhibited by the surface energy cost
(~&p?) of the surfactants on the interfaces,
therefore f(p) decays as ~e %" for 0 —> 0.

In the rest of the paper we will focus on the
two-phase region and seek an analytic solution
in this region using the theory outlined above.
In the two-phase region, water molecules in-
side the droplets can exchange freely with the
water reservoir, hence we have n = (. By re-
laxing this thermodynamic constraint the so-
lution of Egs. [I1.1.7] and [II.1.8] is greatly
simplified, because these two equations be-
come decoupled and { can be solved from Eg.
[I1.1.7] alone. Physically it means that the dis-
tribution function is uneffected by the amount
of water present in the reservior. We notice
that in this thermodynamic region the distri-
bution function, f(p), is peaked at

7k

max = POs ~ II.1.
g P 07 + 8B [ILL10]

and has a half width

Ps

% V2(Ep? + 8ubr)

For 876k > £p2, we have (14) pmax/0 =
V167 8k > 1. This allows us to further simplify
Egs. [I1.1.5] and [I1.1.9] by extending the
lower integration limit from a finite value, py,
to the minus infinity. Such an approximation

[IL.1.11]
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sacrifices little numerical accuracy since the
integrand decays exponentially fast for p < pi,
(see II1.3 for more discussions). Therefore we
can write { p”)Xq in an analytical form,

(p"yxg=(n+ 1)!%

1
X exp[ﬁA/.Ld — 87Bk + ———]
2y

P n+2
X |—— . , 1
(16”5’0)) Gni1(¥), [IL1.12]
where y and G,(y) are given by

_ £pl + 8wpk
=gz 0 L3
and
E(n/2) 1 y k
Ga(y) = Eo m(i), [11.1.14]

respectively. Since {p°) = 1, from Egq.
[I1.1.12] we obtain the mole fraction of drop-
lets x4 as

2
Ps N~
= —— 2
X4 (167Bky)? 24

1
X exp 6Aud—87rﬂx+§ . [I1.15]

Using Egs. [I1.1.12], [I1.1.14], and [IL.1.15]
we can write the first three moments of pin a
parametric form:
. Ps 1+y
(p) = 1678 y
2 1+3
o Ps y
)= Hompey ¥

[IL1.16]

[I.1.17]

and

3 2

K 1+6y+3y

(p*) = 3 3 :
(167Bk) y

Finally the variance of the distribution e, which

is the square of the polydispersity of the drop-
lets, can be written as

e o 1-y
€=-<p—>5 l—y(1+y)2.
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[1L.1.18]

[11.1.19]

This last equation can also be expressed in
term of {p) by eliminating y using Eq.
[I1.1.16]. The final result is

1 Ps

1678k {p)

The above equation should be compared
with that for a single-phase microemulsion.
Safran (15) and Borkovec et al. (1) have cal-
culated the variance ¢ when the total surfactant
mole fraction is relatively high so that the sur-
factant monomer concentration can be ne-
glected. Their result is

1

487rBK(1 - zﬂg)
3 ps

X (1 4+ O(e)),

where pq is the Schulmans radius which is re-
lated to the mean droplet radius by {(p) =
poll — 2¢ + O(e?)]1 (1). For a system with a
stiff surfactant layer 488k > 1, (p) = po.

It should be pointed out that for a single-
phase microemulsion the system consists, in-
trinsically, of two length scales po and ps,
whereas for a two-phase microemulsion the
system has only one length scale p;. This
makes the two-phase region particularly useful
for measuring the spontaneous radius, ps, for
a given system. Physically the spontaneous ra-
dius p characterizes the natural bending cur-
vature of surfactant molecules, and to a large
extent ps only depends on the surfactant mo-
lecular shape and the solvent condition. The
Schulmans radius, pp, on the other hand,
characterizes the ultimate size of the droplets
at high volume fraction (1) and depends solely
on the water to surfactant molar ratio, w. It
should also be pointed out that in the limit of
very small polydispersity e = 0, i.e., when «
is very large, the mean droplet radius { p ) ap-
proaches two different limiting values in the
different phases. In the single-phase region
{p) = poand in the two-phase region (p)y—>
ps. Therefore in the limit of small polydisper-
sity we can replace po by {p in Eq. [11.1.21]
and write € as

(1 —0(e?). [IL1.20]

€ =

€=

[IL1.21]

!

»
4
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1
[~
487r61<(1 — %%2)

X (1+ 0(e?)). [I1.22]
Because the polydispersity is a continuous
function of the droplet size, Egs. [11.1.20] and
[1L. 1.22] should be equal at the phase bound-
ary, and hence we find the emulsification fail-
ure condition {p) = p,. This phase stability
limit for the small polydispersity is consistent
with that obtained by Safran and Turkevich
(16) using a different approach.

I1.2 SANS from a Distribution of
Polydispersed Spherical Shells

To test the above theoretical calculations
we have used the small-angle neutron scatter-
ing technique to determine the mean ra-
dius of droplets, (R) = {p)VZo/4m, and the
polydispersity, Ve, at different droplet concen-
trations. The structural information of the
droplets in real space can be obtained by de-
convoluting the measured neutron scattering
intensity I( Q) based on certain reliable scattering
models.

First, let us consider the neutron scattering
intensity, 7(Q), from a set of identical parti-
cles; this is given by

1(Q) = N, P(Q)S(Q),

where N, is the number density of the scat-
tering particles, P(Q) is the particle form fac-
tor, and S(Q) is the structure factor. Unlike
an aqueous solution, the interaction between
the droplets in a water-in-oil microemulsion
is mainly due to a hard-core repulsion. For
the hard-sphere interaction we found, using
the Percus-Yevick approximation (17), that
the first maximum in S(Q) is about 1.01 for
the highest concentration (¢ = 2%) used in
the experiment. This suggests that the inter-
action between the droplets is negligible and
the scattering intensity is dominated by the
form factor P(Q). For a spherical shell with
the inner radius R; and the outer radius R,,

[11.2.1]

the form factor P(Q) can be calculated using
a linear superposition of scattering amplitudes
F(QR;) and F(QR,) of solid spheres with ra-
dius R; and R,,, respectively. This gives

P(Q) = [F(QR,) — F(OR)1?, [1L2.2]
where
4nR?
F(QR) = =5 (7~ Bs)
% sin(QR;) — OR;cos(OR;) (112.3]

(OR)* ’

where j stands for either i (inner) or o (outer
radius). In Eq. [11.2.3], p; and p, are the neu-
tron scattering length densities of the sphere
and the solvent, respectively.

Next, we consider the scattering from a dis-
tribution of particles with different sizes. We
assume the size of the scattering particle can
be characterized by a distribution function
f(R). In this case we can differentiate Eq.
[11.2.1] and write dN, = N, f(R)dR, where
dN,/ N, represents the fraction of droplets with
the radii in the interval between R and R +
dR. Integrating over the scatterings from par-
ticles of all sizes we obtain the total scattering
intensity:

I(0)=N, fow P(Q)f(R)dR. [11.2.4]

For simplicity, hereafter, we use the Schultz
distribution function f;(R) to model the size
distribution of AOT microemulsion droplets
(3). Such an approximation has been used
previously, and has been shown to be consis-
tent with various analysis procedures, such as
inverse Laplace transformation and histogram
method, for neutron scattering and light scat-
tering data (2, 3). Simple form of Schultz dis-
tribution function also allows an analytic cal-
culation of the scattering intensity for various
shapes of scattering entities. For spherical
scattering objects the Schultz distribution
function is given by
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B (Z_|_1)2+1 R \?
AR - G ()

X exp[—(z + 1) [IL.2.5]

@)
(R ]’
where (R is the mean droplet size and z is
related to the polydispersity by e = 1/(z + 1).
The final expression for the total scattering in-
tensity, 1(Q), is given in the Appendix (18).

III. EXPERIMENTAL
II1.1 Sample Preparation

The surfactant, sodium di-2-ethylhexylsul-
fosaccinate, was purchased from Fluka
Chemical Company. The surfactant was
treated with the activated charcoal and then
twice recrystallized from methanol. It was
stored in the vacuum before usage. Our pre-~
vious measurements indicated that with such
a purification process the experimental results
were reproducible within each batch, and
variations could occur among different
batches.

We have used deuterated water, D,O (19),
as the internal phase of the microemulsion and
used deuterated decane (19), C;yDy,, as the
solvant. The scattering length densities of D,O
(bpo = 6.33 X 107 A™?) and C;Dn
(Pewp = 6.36 X 107 A™?) are closely
matched and they are very different from the
scattering density of the surfactant tail, which
consists mainly of hydrocarbons, (pw; =
—0.49 X 1075 A~2). Therefore the scattering
entities in the sample are spherical shells with
only the surfactant “tails” being visible to the
neutrons. As mentioned in our earlier publi-
cation (5), such a scattering sample is superior
to a sample consisting of solid-spheres with
normal water, H,O, as the internal phase of
the microemulsion. This is because the spher-
ical-shell sample has a very low hydrogen in-
coherent scattering and the coherent scattering
intensity as a function of the scattering wave-
number exhibits a sharp minimum, which en-
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tailed a tight fit for both the mean radius and
the polydispersity of the droplets.

All the scattering samples, with the dis-
persed-phase (D,O + AOT) volume fraction
of =2,1,0.5,0.2,0.1, and 0.05%, have the
fixed water to surfactant molar ratio of w ~
30. This was achieved by successively diluting
a master solution of ¢ = 2%. To convert the
volume fraction ¢ to the surfactant mole frac-
tion X, we use the equation (20)

A¢

X Bt c(i-9)

[IL1.1]

where 4 = 194.9 cm®/mol, B = 6042.4 cm?/
mol, and C = 936.6 cm?/mol.

IIT.2 Small-Angle Neutron Scattering
Measurements

The small-angle neutron scattering experi-
ment was performed on a high resolution
spectrometer of the High Flux Beam Reactor
at Brookhaven National Laboratory. The in-
cident neutron wavelength, A, was 5.3 £ 0.3
A. We successively used a set of collimating
pinholes of diameters 10, 8, and 6 mm, with
the 6-mm pinhole being closest to the sample.
The distance between the sample and the de-
tector was 1800 mum, which gives a usable Q-
range of 0.01 A™' < 0 < 0.2 A, Here the
magnitude of the scattering wave-vector Q is
related to the scattering angle # by Q = (4«/
A)sin(6/2). The neutron scattering intensity
was measured by a two-dimensional detector,
and a circular integration over the scattering
intensity at the fixed scattering angle was per-
formed to give better statistics. We subtracted
out the background scatterings due to quartz
windows and the solvent. The incoherent
scattering from hydrogens in AOT molecules
was also subtracted out. Further precaution
was taken to eliminate inhomogeneities in the
detector’s sensitivities at different pixels by
normalizing all the scattering intensities with
that from a 1-mm water sample. Therefore
our scattering data are given in the absolute
units of water scattering intensity.

»
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II1.3 Experimental Results and
Data Analysis

Three set of the SANS data measured at ¢
=2, 0.5, and 0.1% are shown in Fig. 2. Two
distinct features must be emphasized: first, all
the data contain a minimum, which is a char-
acteristic of the scattering from the spherical
shells. The location of this minimum moves
to larger Q as the solution is diluted. This in-
dicates that the size of the droplets is decreased
at lower surfactant concentration. Secondly,
the scattering intensity peak at g = 0 becomes
broader and the second scattering peak be-
comes less pronounced at lower surfactant
concentrations. This suggests an increase in
the polydispersity as the sample is diluted. Us-
ing a non-linear least-squares fitting routine
(21), we obtained good fits to the spherical
shell-model (Egs. [11.2.2]~-[11.2.5]), and they
are shown by the solid lines in the figure. The
thickness of the shell determined by the sample
with ¢ = 2% is ~8 A, which is close to our
earlier measurement (5). This thickness was
kept fixed for the fittings to the rest of con-
centrations.

For the sample with the lowest surfactant
concentration, i.e. ¢ = 0.05%, the scattering

102 ¢
101 F %,

100 F

Q)

1071 |

102

1073 : :
000 005 010 015 020

Q (1/R)

FiG. 2. The neutron scattering intensity I(Q) vs. wave-
number Q. Scattering intensities are measured at the fol-
lowing dispersed-phase volume fractions ¢ (or surfactant
concentrations X,): 2% (3.75 X 107%), 0.5% (1.01 X 107%),
and 0.1% (2.07 X 10™%). They are indicated by diamonds,
triangles, and circles, respectively. The solid curves are
obtained by the non-linear least-squares fit using Egs.
[I1.2.4] and [I1.2.5].
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FIG. 3. The Inverse of the variance 1/¢ vs. the mean
droplet size ( R ). The circles are obtained from the SANS
data. The size of error bars is equal to two standard de-
viations determined by the non-linear fitting routine (21).
As shown in the figure, the data can be described reasonably
well by Eq. [I1.1.20]. A linear fit to the data, as shown by
the solid line, gives a value of 0.53 £ 0.04 A™' for the
slope of the straight line. The two dash lines indicate the
uncertainties in determining this slope.

intensity decreases dramatically and the data
(not shown) is essentially flat on the scale of
Fig. 2. This suggests that there is no aggrega-
tion at this concentration and the scattering is
from the surfactant monomers only. From this
observation we conclude that the CMC value
is in the range 0.05% < ¢ < 0.1% (or 1.04 X
1074 < X, <2.07 X 107%).

The mean droplet radius, {(R), and the
polydispersity, V—e, extracted from the above
fitting can be used to check the theoretical
prediction of Eq. [11.1.20]. In Fig. 3 we plot
1/ vs. (R, where we expect a linear curve
with a slope of 16mB«/R, and an intercept of
zero. Qur experimental data can be fit reason-
ably well to a straight line with the slope of
0.53 A~!. The two dash lines in the figure in-
dicate the errors, £0.04 A}, of the slope.
From the measured slope, if either value of
the elastic constant, «, or the spontaneous ra-
dius, R, is known, the other value can be de-
duced.

In Fig. 4 we plot, for various surfactant con-
centration X;, the mean droplet radius, (R ),
and the polydispersity, V'e, simultaneously. We
find that the microemulsion droplet size de-
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60 " — — 60 SANS experiment gives measurements for
I (R) and ¢ as a function of X;, we can self-
50 ¢ o 190 consistently determine all these parameters.

: As shown by the solid curves in Fig. 4, our
<40 I 140 %  experimental data can be well fitted to the the-
€ : | 30>w ory using the following set of parameters: G«

: =0.6 £0.1, Ay, = —8.5 £ 0.1, and BAuy =

20 '\M__,_:__,_ 120 —17 %= 3. Since we already knew the ratio
| 1678« /R = 0.53 from Fig. 3, we obtain the

10 AT RN (PN spontaneous radius for our system to be R; =
100 10! 57 = 14 A. By the definition of CMC (1),
Xa/Xs Xexp(—BAus) = 1, we obtain X$ = 2.0 X

FIG. 4. The mean radius (R (circles) and the poly-
dispersity Ve (triangles) vs. the reduced surfactant con-
centration X;/X ¢. The vertical dash line indicates the cal-
culated emulsification failure boundary. As shown in the
figure, in the two-phase region the microemulsion droplet
size decreases and the polydispersity increases as the CMC
is approached, i.e., when X,/ X §{ — 1. In the single-phase
region both the droplet size and the polydispersity remain
constant. The solid curves are the theoretical fits which
show good agreements with the measurements.

creases while its polydispersity increases when
the surfactant concentration is decreased be-
Jow X, <2.0X 1073 (X,/ X< 100r ¢ < 1%).
Above this concentration both (R) and Ve
remain approximately constant. To compare
these results to the theoretical calculations in
Egs. [11.1.16] and [IL.1.19], one has to deter-
mine the value of the Lagrangian multiplier £
using Eq. [I1.1.7]. Before solving this equation
we have to fix as many physical parameters as
possible from previous measurements. These
include the surface area per AOT surfactant
head group (3) 2y = 60 A?, the specific vol-
ume of water molecule v, = 30.3 A3, and the
chemical potential of water molecule SAu,, =
—8, which was measured by the solubility of
water in isooctane (22). It should be pointed
out that while 8Aw,, is an important parameter
in determining the phase boundary of the mi-
croemulsion, it is an irrelavent parameters for
computing the droplet size distribution func-
tion in the two-phase region because n = 0.
For fixed ratio of Bx/R;, determined by the
slope in Fig. 3, we are left with only three fitting
parameters, Ok, SAus, and BApy. Since our
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10~* for our system. Using @ = 30 and the
parameters obtained above, we are able to de-
termine the phase boundary, X, between the
single-phase and the two-phase region by Eqs.
[I1.1.5] and [I1.1.7]. This gives X ~ 2.4 X
1073, which is shown by a vertical dash line
in Fig. 4. This calculation is consistant with
the observation that above X; ~ 2 X 1073, (¢
= 1%), the mean droplet radius and the poly-
dispersity remain constant as expected for a
single-phase microemulsion.

We also examine the mole fraction x4 of the
droplets as a function of X;. Here x4 is pro-

Xs/%s®

FIG. 5. The mole fraction of droplets x4 vs. the reduced
surfactant concentration X;/X ¢. The mole fraction of
droplets x4 decreases as the reduced surfactant concentra-
tions X,/ X ¢ decreases. The droplets disappear at X;/X §
= 1. The solid curve is a theoretical calculation based on
Eq. [IL.1.15]. Large deviation at the highest surfactant
concentration, (X,/X ¢ = 12, or ¢ > 1%), is expected be-
cause the system is already in the single-phase region. The
vertical dash line indicates the calculated emulsification
failure boundary.

a
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portional to the total number, N, of scattering
droplets in the scattering volume, i.e., xq =
CN,. Using the calculated x4 at different sur-
factant concentrations and NN, obtained from
the measured scattering intensity, we find the
proportional constant C ~ 8 X 107'*. In Fig.
5 we plot both the measured and the calculated

x4 as a function of X,/ X§. We find that the ’

mole fraction of droplets x; decreases dra-
matically as the surfactant concentration de-
creases, and vanishes as the CMC is ap-
proached (X;/X§ — 1). As it can be seen in
Fig. 5, our measurement is consistent with the
theory except at the highest surfactant con-
centration (¢ = 2%), where the deviation is
expected because the microemulsion is already
in the single-phase region in which our cal-
culation is not applicable.

Finally, we compare the Schultz distribution
function with the statistical model at volume
fractions ¢ = 0.1 and 1%. These concentra-
tions represent the two extremes in the two-
phase region as shown in Fig. 4. For ¢ = 0.1%
the system is close to the CMC; the microe-
mulsion droplets attain the minimum size
((R)=~30 A) and the maximum polydisper-
sity (V_e ~ 26%). For ¢ = 1% the system is
close to the single-phase region; the micro-
emulsion droplets attain the maximum size
((R)) = 50 A) and the minimum polydis-
persity (V; ~ 19%). In Fig. 6 we plot the
Schultz (dash—-dot curves) and the statistical
(solid curves) distribution functions together
for the two concentrations. We find that even
though these two distribution functions have
the same mean and variance, the peak posi-
tions are slightly different (the difference is ~4
Aat¢=0.1%and ~1 A at ¢ = 1%), with
the Schultz distribution being consistently
lower than the statistical one. This is because
the Schultz distribution function has a slower
fall-off at large radius. Overall, however, the
Schultz distribution function mimics the sta-
tistical model reasonably well. From Fig. 6 we
also find that dilution shifts the peak position
of the distribution functions toward smaller
values of R, while the width of the distribution
functions is almost constant. Therefore the

f(R) (x1078) (A7)

0 20 40 60 80 100
R (&)

FIG. 6. The size distribution functionr f(R) vs. the
droplet radius R. The solid curves show the statistical dis-
tribution and the dash-dot curves show the Schultz dis-
tribution function. The dispersed-phase volume fraction
¢ (or the surfactant concentrations X;) is 0.1% (2.07 X
10*) for the two left curves and 1% (1.97 X 1072) for the
two right curves.

apparent increase of the polydispersity at the
lower concentration is mainly due to the de-
crease of the microemulsion droplet size. Note
that even at the lowest surfactant concentra-
tion, the statistical distribution still decays very
fast toward the small droplet radius, which
justifies the approximation we made earlier
for obtaining Eq. [II.1.5] by extending the
lower integration limit to minus infinity.

In passing, we want to mention that a sim-
pler derivation for the mean droplet radius,
(R),asa function of the dispersed-phase vol-
ume fraction, ¢, was given by Safran recently
(23). Assuming zero solubility of water in oil,
Safran found (24)

log[gﬂ(cb—d))]
R 0
( >=1+ v ,

R, 8nBx

[IIL.3.1]

where v (=47r<R>3 /3) is the mean volume of
the droplets and ¢, is the volume fraction at
the CMC. Using v, = 30.3 A® and Eq.
[II1.1.1], we obtain ¢g = 0.065%. By fitting
the measured ( R) with Eq. [IIL.3.1] (see Fig.
7), we find Bk ~ 1 and R, ~ 92 A. Considering
the simplicity of Safran’s theory, the obtained
numerical values for 8« and R, are still rea-
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60

(R) &)

0.005 0.010 0.015
[ 2

20
0.000 0.020

FIG. 7. The mean droplet radius <R> vs. the dispersed-
phase volume fraction, ¢ — ¢,. Here ¢ is the volume
fraction at the CMC. Circles are experimental data, and
the solid curve is the fit to Eq. [IIL3.1].

sonable. However, we expect the calculation
to be less reliable for systems with higher CMC
values.

111 4 Discussions

It is interesting to note that the elastic bend-
ing energy obtained from our scattering mea-
surement ( B« ~ 0.6) is approximately six times
smaller than that measured by the neutron
spin-echo (NSE) technique (10, 25). Safran
(11) pointed out recently that the large differ-
ence in k can be reconciled if the saddle-splay
energy x of the microemulsion droplets is
taken into account explicitly. Without loss of
generality, we write the elastic free energy,
Fiena, for the microemulsion droplets as

Foena = 5 f (Ci+ C, — 2/R,)*dS

+ % f C\CdS, [IL4.1]

where C; and C; are the principal radii of cur-
vatures and the integration is over the entire
surface of the droplet. The Gauss—Bonnet
theorem implies that the saddle-splay contri-
bution is a topological constant and in the case
of uniform-sized spherical droplets it gives
47kn, where n is the number of droplets.
However, with the constant-surface and con-
stant-volume conditions, varying the polydis-

Journal of Colloid and Interface Science, Vol. 148, No. 1, January 1992

persity varies the number of droplets; conse-
quently the k term in Eq. [1I1.4.1] cannot be
neglected. Furthermore, we know that for a
spherical microemulsion to be thermody-
namically stable ¥ has to be negative. Statically,
a negative x tends to favor a larger number of
droplets and hence increases the polydisperisty
(25). Dynamically, on the other hand, a neg-
ative ¥ means that the bending of a spherical
surfactant film against its natural curvature
(i.e., making the droplet surface rippled) will
be energetically costly. Consequently, the
droplet shape fluctuations are greatly inhib-
ited. The enhancement of the equilibrium
polydispersity and the suppression of the shape
fluctuations make the effective elastic bending
energy obtained from the static measurements
smaller than its bared value (see Eq. [11.1.20])
and NSE measurement. Safran (11) has cal-
culated the effective elastic bending energy, «,
and the effective spontaneous radius, Rj, by
taking into account the saddle-spray elastic
energy . For spherical droplets since C; = C;
= 1/R, Eq. [1IL.4.1] is simplified and we obtain

Funa =% [ 2/R=2/R)?S

+ Const, [IIL4.2]
where
i
K = K(l + —) , [I1.4.3]
2k
R, = Rs(l ¥ i) . [UL4.4]
2k

Because the SANS technique measures pre-
dominantly the static component of the fluc-
tuations (26), our measured elastic bending
constant, «, and the spontaneous radius, R;,
should be identified as ' and R, respectively,
and they are smaller than the bared values.
Combining the static (SANS) and the dynamic
(NSE) measurements we find k ~ —1.7« which
is consistent with Ref. (25).

Finally, we want to point out that because
the statistical model involves many parame-
ters, it is impossible to determine all of them

S
™
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in one experiment. Our strategy in the inter-
pretation of the experimental data is to use the
minimum number of those parameters which
have the most physical significance while
keeping the others fixed. The fixed parameters
include the geometrical constants for the sur-
factant, 2o, and water, v,,, molecules and the
chemical potential of water in oil, Au,. The
aumerical value for these parameters were de-
termined in previous experiments and are ex-
pected to be valid for the present experiment.
The most uncertainty in our calculation is the
assumption that » = 1. According to the lit-
erature (1), » can have a range of values de-
pending on theoretical models. However, by
setting » = 2 and following the same calcula-
tion we found that our main results are not
affected significantly. In this case both S« and
R, only increase by ~3%, which is less than
the uncertainties in the data itself. This cal-
culation demonstrates the internal consistency
of the theory and suggests that the true value
of » may be close to what we have used. In
fact, by combining the theoretical analyses of
Lothe-Pound (27, 28) for the entropy of mix-
ing and of Helfrich (29) for the thermal fluc-
tuations of droplet interfaces we find » = 2.2,
in agreement with our expectation.

1V. CONCLUSIONS

We have performed small-angle neutron
scattering experiments for a very dilute water-
in-0il AOT microemulsion. At the fixed water-
to-surfactant molar ratio of w = 30, we ob-
served a decrease in the microemulsion droplet
radius and an increase in the polydispersity
when the dispersed-phase volume fraction was
diluted to less than 1%. This interesting phase
behavior was investigated in terms of emul-
sification failure process. In doing so, we have
derived an analytic solution for a three-com-
ponent microemulsion in the two-phase region
based on the theory of Borkovec et al. (1).
This solution allows us to make a connection
between the thermodynamic phase behaviors

"and various physical parameters. Among them

the elastic bending energy, &, the spontaneous

radius, R,, and the critical micellar concen-
tration, X ¢, are of great theoretical and prac-
tical interests. Our calculations show that in
the two-phase region the microemulsion
droplet size is governed by a single length scale,
namely the spontaneous radius R;. While in
the single-phase region there are two relevant
length scales, namely the spontaneous radius
R, and the Schulman radius Ro. This unique
feature of the two-phase microemulsion allows
us to make a quantitative measurement of the
spontaneous radius R, which we found to be
R, = 57 = 14 A for AOT microemulsion. Our
calculations also show that near the critical
micellar concentration (CMC) all the physical
parameters, such as the mean droplet radius,
the polydispersity, and the number density of
the microemulsion droplets, are extremely
sensitive to the surfactant concentration. This
entails a reliable measurement of the CMC
value for the microemulsion. Experimentally
we found X ¢ = 2.0 X 107*. The CMC value
determined by the SANS measurement com-
pares favorably to that of AOT in variety of
hydrocarbon solvents (30). Finally, we find
that the effective elastic bending energy for this
AOT microemulsion is «8 ~ 0.6. A plausible
mechanism is proposed which explains the
large difference in the elastic bending energy,
&, measured statically and dynamically.

APPENDIX

The neutron scattering intensity distribu-
tion I(Q) from a dilute polydispersed sample
is given by

Q)= N, [ POISRIAR, [A]

where N, is the number density of the scat-
tering particles, P(Q) is the particle form fac-
tor, and f( R) is the particle size distribution
function. For a concentric spherical shell with
an inner radius R; and an outer radius R,,
P(Q) can be written as

P(Q) = [F(QR,) — F(QR)1?, [A2]
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where  yesin((z + 1)v+)}
2y (z+1)/2
4wR? _  _ (1 +u?)
F(QR) = — ~(p; — Ps)
+ y?p(z + 2)[M
sin(QR)) — QR;cos(OR;) (1 + u2)=72

[A.3]

(OR)*

Here p; and p; are the neutron scattering

length densities of the sphere and the solvent,

respectively. For a spherical-shell sample the

matching condition for the scattering length

densities is given by p; = ps # po. Using the
Schultz distribution function,

(z+ 1)*! R ¥

(RYT(z+ 1) \(R)

X ex —(z-l~1)i [A.4]

p <R k) .

the scattering intensity distribution I(Q) in Eq.
[A.1] has the following form (18):

1(Q) = (po = p5)*0*[p°(OR:)

+ 5(0QRo) — 213(QRo, p)].  [AS]

Here v(=4wR3/3) is the volume of the drop-
let, p(=R;/R,) is a thickness parameter, and
1, and f3 are functions which are defined as

S(R) =

9
L(y) = 2+ 1y°

cos((z + 1)w)
(1 +4u2)(z+1)/2

2ysin((z + 2)w)
- (1 + 4u2)(z+2)/2

X {(z+ 1)[1 -

]+y2(z+2)

+3
and
9
t3(y:p)=m[(z+ 1)

cos((z+ 1)v_) cos((z+ 1)vy)
[(1 T ui)(z+1)/2 - (1+ ui)(z+l)/2:|

y-sin{(z + 1)v_)
(1 + y2)=rhr2
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+(z+ 1)[

+ cos((z + 3)v+)” IAT]

( 1 + ui)(z+3)/2

In the above, the new variables are y. = (1 *
DYy, u=y/(z+ 1), w= arctan(2u), u. = (1
+p)y/(z+ 1), and v, = arctan (u.).
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