
Nonlinear Dyn (2021) 104:1613–1626
https://doi.org/10.1007/s11071-021-06316-3

ORIGINAL PAPER

Symmetry-breaking-induced rare fluctuations
in a time-delay dynamic system

Yin Wang · Wei Xu · Pik-Yin Lai · Penger Tong

Received: 20 June 2020 / Accepted: 20 February 2021 / Published online: 6 March 2021
© The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021

Abstract Inspired by the experimental and numeri-
cal findings, we study the dynamic instabilities of two
coupled nonlinear delay differential equations that are
used to describe the coherent oscillations between the
top and bottom boundary layers in turbulent Rayleigh–
Bénard convection. By introducing two sensitivity
parameters for the instabilities of the top and bot-
tom boundary layers, we find three different types of
solutions, namely in-phase single-period oscillations,
multi-period oscillations and chaos. The chaos solution
contains rare but large amplitude fluctuations. The sta-
tistical properties of these fluctuations are consistent
with those observed in the experiment for the mas-
sive eruption of thermal plumes, which causes ran-
dom reversals of the large-scale circulation in turbulent
Rayleigh–Bénard convection. Our study thus provides
new insights into the origin of rare massive eruptions
and sudden changes of large-scale flow pattern that are
often observed in convection systems of geophysical
and astrophysical scales.
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1 Introduction

As a classical model system, Rayleigh–Bénard convec-
tion (RBC) has been used for the study of a range of
hydrodynamic problems over a hundred years. It con-
sists of a fluid layer of thickness H , which is heated
at the bottom and cooled from the top with a constant
temperature gradient parallel to gravity. Once the tem-
perature drop�T across the fluid layer, or equivalently
the Rayleigh number Ra (dimensionless buoyancy), is
larger than a critical value Rac (� 1708), the bulk fluid
becomes unstable and convection sets in [20,26]. From
the onset of convection up to Ra ∼ 10Rac, periodic
flow structures form in the horizontal plane and cellu-
lar patterns can be observed from above [16,23]. With
further increase in Ra, the number of characteristic fre-
quencies increases and the flow steps into a chaotic
regime [36,47]. As a well-controlled hydrodynamic
system, RBC has become a paradigm for the develop-
ment of stability theory in hydrodynamics [20,26] and
for our understanding of pattern formation and spatial–
temporal chaos [8,23,33].

For even larger values of Ra (� 108), a large-scale
circulation (LSC) emerges with a size comparable to
the convection cell [18,41]. Driven by the thermal
plumes emitted from the unstable thermal boundary
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layers near the conducting plates, the LSC remains as a
steady state in a turbulent background [28,53,69,79].
Many studies of the LSC have been carried in upright
cylindrical cells of aspect ratio unity, in which the LSC
has a single roll structure occupying the bulk of the con-
vection cell. An intriguing feature associated with the
LSC is the observation of a well-defined oscillation in
the temperature [18,60] andvelocity [55] power spectra
at large Ra. The synchronized oscillations are related to
the dynamics of theLSC [31,52,54,56,81]. Theoretical
efforts were made to explain the origin of the coherent
oscillations, based on either stochastic or deterministic
differential equations [14,15,39,72]. For upright cylin-
ders, rectangular and cubic cells, the coherent oscilla-
tions were explained by the torsional [31] and sloshing
[81] modes of the LSC, resulting from a resonant oscil-
lation of the LSC in a potential well owing to the geo-
metric confinement of the LSC in a closed convection
cell [14,15].

Recently, a novel convection experiment was con-
ducted in a thin disk cell, whose circular plane is orien-
tated vertically parallel to gravity [65,73,75]. Owing
to its circular cross section that matches the single-roll
structure of the LSC, other secondary flowmodes, such
as sloshing and torsional oscillations, cannot be excited
in this quasi-two-dimensional (2D) system. Even in
such a simple quasi-2D system, strong in-phase oscil-
lations were found in the velocity and temperature
time series data obtained at two opposite positions in
the midplane of the cell. This coherent oscillation is
well described by the deterministic model proposed
by Villermaux [65,72]. In this model, the boundary
layer instabilities are triggered by the incoming thermal
plumes transported by the LSC. Consequently, the ther-
mal plumes are emitted simultaneously from the two
boundary layerswith a local frequency f0 � U0/(2H),
where U0 is the velocity of LSC, and thus, 2H/U0 is
the turnover time of the LSC.

Another interesting behavior of the LSC is its irreg-
ular cessation, which is a momentary breakdown of
the entire circulation flow followed by a newly formed
LSC in a randomly chosen direction [12,21,66,80]. It
is called cessation if the rotational direction of the new
LSC is the same as that of the original LSC. Other-
wise, it is called reversal. A number of stochastic or
deterministic models have been proposed to explain
the observed cessations and reversals of the LSC [5–
7,11,13,19,32,50,68]. Nonetheless, a general under-
standing of the phenomena has not been reached. So

far, most of the experiments devoted to testing the the-
oretical models were conducted in either rectangular
or cylindrical cells. Because the single-roll structure
of the LSC does not fit the geometry of these convec-
tion cells very well, secondary (corner) flows in the cell
cause complications of the LSC dynamics [68]. Con-
sequently, a general mechanism that causes the LSC
cessations and reversals has not yet been obtained.

In a more recent experiment [75], we found that ran-
dom cessations and reversals of the LSC could also
be realized and quantitatively studied in the specially
designed thin disk cell. This is a “simple but not sim-
pler” system, which retains main features of turbulent
convection [65] and provides a useful experimental
platform for the study of intrinsic stabilities of the LSC.
The experiment clearly showed that the LSC reversals
are caused by raremassive eruptions of thermal plumes,
which disrupt the existing LSC and reset its rotational
direction. It is found that the convective flow is in a
special chaotic state, i.e., it contains a steady “quiet
period” with a minute amount of heat accumulation for
a long time, followed by a short and intermittent “active
period”which releases the accumulated heat by trigger-
ing a massive eruption of thermal plumes. This finding
is against the common belief that the heat flux going
through a RBC system is always balanced at any given
time so that the flow can bemaintained at a steady state.
It thus represents a new kind of convective instability
for turbulent RBC thatmay have important geophysical
and astrophysical implications.

In thermal convection systems of geophysical and
astrophysical scales, one often observes massive erup-
tion events and sudden changes of large-scale flow pat-
terns. Examples include Earth’s outer core convection
associatedwith dynamogeneration, oceanic circulation
and the convective zone of sun and other stars [3,17,35,
38,48,57]. Owing to their complexmaterial parameters
and extreme conditions [1], our fundamental under-
standing of the geophysical- and astrophysical-scale
flow phenomena is often challenged by limited experi-
mental observations and oversimplified computer sim-
ulations. Turbulent RBC in the thin disk cell thus pro-
vides a unique system for the quantitative study of
large-scale flow reversals and massive eruption of ther-
mal plumes. It is of particular interest to know themech-
anism that triggers the massive eruptions in a closed
convection system.Are these eruptions caused by some
minute broken symmetry in the boundary conditions,
which may generate a small amount of heat accumula-
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tion continuously during the quiet period? Such a heat
accumulation can drive the system into a critical state,
at which the boundary layers become supersensitive
to turbulent disturbances that trigger the massive erup-
tion of thermal plumes. Or are these eruptions simply
triggered by some rare turbulent fluctuations with an
extremely large amplitude?

In this paper, we report a combined experimental,
numerical and theoretical study aimed at understand-
ing the physical mechanism of the LSC reversals and
rare massive eruption of thermal plumes in turbulent
RBC. In particular, we investigate the dynamic insta-
bilities of the two coupled nonlinear delay differential
equations (DDEs, see Eq. (5)) that was used to describe
the coherent oscillations between the top and bottom
boundary layers [65,72]. By introducing two different
sensitivity parameters, μt �= μb, to external perturba-
tions for the instabilities of the top and bottom bound-
ary layers, we study how the broken symmetry of the
boundary conditions near the top and bottom conduct-
ing plates affects the dynamic instabilities of the system
in a broad range of the parameter space. A central find-
ing of this investigation is that with μt �= μb, we find a
new class of chaotic solutions, which contain rare but
large amplitude fluctuations, whose statistical proper-
ties are consistent with those observed in the experi-
ment for the massive eruption of thermal plumes. The
study of the DDEs thus provides new insights into the
origin of the LSC reversals and rare massive eruption
of thermal plumes.

2 Experimental and numerical methods

2.1 Experiment

Details about the experimental apparatus and pro-
cedures that are used in this experiment have been
described elsewhere [65,73–76], and only some key
points are mentioned here. The convection cell used
is a thin circular disk with a diameter D = 188 mm
and thickness W = 20 mm, which correspond to an
aspect ratio Γ ≡ W/D = 0.11. The circular cross sec-
tion of the cell is aligned parallel to gravity. The top
and bottom 1/3 of the circular sidewall are made of 8-
mm-thick copper. The remaining 1/6 of the sidewall on
either side of the cell is made of 18-mm-thick transpar-
ent Plexiglas. The front and rear circular walls of the
cell are also made of the same Plexiglas. The bottom

conducting plate is heated uniformly using two silicon
rubber film heaters. The top plate is kept at a constant
temperature by using a cooling circulator with a tem-
perature stability of 10 mK. The temperature of the top
and bottom plates is measured using calibrated ther-
mistors with an accuracy of 5 mK.

The design of the thin disk cell has two advantages.
First, it has a quasi-2D circular shape so that 3D flow
modes, such as sloshing and torsional oscillations [14,
15,81], as well as corner flows [68] cannot be excited in
this system. Second, the thin disk cell allows us to use a
quantitative shadowgraphic technique to visualize the
LSC and plume dynamics and to detect the net heat flux
accumulation or loss across the entire cell.

In the experiment, the entire convection cell is placed
inside a thermostatic box, in which the temperature is
maintained at (40 ± 0.1)◦C to match the mean tem-
perature of the bulk fluid, and thus, the heat exchange
with the surroundings isminimized. For this system, the
Rayleigh number is defined as Ra ≡ αg�T D3/(νκ),
where α, ν and κ are, respectively, the thermal expan-
sion coefficient, kinematic viscosity and thermal dif-
fusivity of the convecting fluid, and g is the gravita-
tional acceleration. The temperature difference across
the cell is �T = Tb − Tt , where Tb and Tt are, respec-
tively, the temperature of the bottom heating plate and
top cooling plate. The Prandtl number is given by
Pr = ν/κ . In the experiment, the Ra range varied is
3× 109 � Ra � 1.2× 1010 and Pr is fixed for a given
fluid. Three working fluids are used: one is distilled
water (Pr = 4.4) and the other two are the 10 wt%
(Pr = 5.7) and 20 wt% (Pr = 7.6) aqueous solutions
of glycerin.

Measurements of the net accumulation or loss of
heat flux across the entire cell are made using the
same shadowgraphic technique as that described inRef.
[75]. Themeasured intensity of the shadowgraph image
I (x, y, t) is proportional to the second-order spatial
derivative (Laplacian) of the refractive index variation
n(x, y, t), which in turn is proportional to temperature
fluctuations T (x, y, t) for small values of T (x, y, t) (�
25K) [25,64]. Therefore, we obtained [75]

ζ(x, y, t) ≡ I0(x, y) − I (x, y, t)

I (x, y, t)
= ξδ J (t), (1)

where I0 is the background intensity, and δ J (t) ≡
Jb(t)−Jt (t) is the net heat accumulationwith Jb(t) and
Jt (t) being, respectively, the instantaneous heat flow-
ing into the cell from the bottom conducting plate and
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going out of the cell from the top conducting plate. In
the above, ξ is an instrument constant, which is pro-
portional to γ = dn/dT . Equation (1) thus provides a
sensitive null test on whether the total heat flow δ J (t)
is balanced or not at any given time.

2.2 Direct numerical simulation

Details about the numerical code used in the numer-
ical study have been described elsewhere [76], and
here we only mention some key points. The governing
equations of the direct numerical simulation are the
incompressible Navier–Stokes equation and the con-
vective heat equation under the Boussinesq approxi-
mation, with

∇̂ · û = 0,

ût̂ + (û · ∇̂)û = −∇ p̂ + 1√
Ra/Pr

∇̂2û + T̂ ,

T̂t̂ + (û · ∇̂)T̂ = 1√
Ra · Pr ∇̂2T̂ , (2)

where the temperature, length and time are normal-
ized, respectively, by the temperature difference �T
across the cell, cell diameter D and free-fall time√
D/(gα�T ). Equation (2) is solved using the open-

source code Nek5000 [30], which uses a spectral ele-
ment method to accurately resolve the gradients in
the velocity field û(r, t) and temperature field T̂ (r, t).
More details about the numerical scheme and appropri-
ate grid resolutions can be found elsewhere [24,30,61].

Our direct numerical simulation is carried out at
fixed values of Ra = 5×109 and Pr = 4.4 in a vertical
thin disk having the same dimensions as those used in
the experiment. The non-slip boundary conditions are
used for the velocity field. For the temperature field,
isothermal boundary conditions are used for the bot-
tom and top conducting surfaces and adiabatic bound-
ary conditions are used for the other walls. The primary
mesh size and polynomial order within each mesh ele-
ment are chosen such that we have 8 grid points to
resolve the thermal boundary layer, which is the small-
est length scale for turbulent RBCwith Pr > 1. Totally,
there are 16,200 primary mesh elements and about 8.3
million grid points. The direct numerical simulation is
run over 1 h in real time to reach a steady state, fol-
lowed by another 5.7 h (15,500 free-fall times) contin-
uing evolution in order to obtain time series data with
adequate statistics.

(a)

(b)

Fig. 1 aExperimentally obtained time series data of the normal-
ized net heat accumulation η(t) over a 9-hour-long period of time
t (black curve). The red curve shows amoving average of the raw
data with a time window of 500 s. The measurements were made
at fixed values of Ra = 6.2 × 109 and Pr = 4.4 (adopted from
Ref. [75]). b Numerically obtained time series data of η(t) from
direct numerical simulation at fixed values of Ra = 5× 109 and
Pr = 4.4. (Color figure online)

3 Numerical and experimental results

The black curve in Fig. 1a shows the experimentally
obtained time series data of the normalized net heat
accumulation η(t) ≡ (δ J (t) − 〈δ J (t)〉)/σδ J , over a 9-
hour-long period with a sampling frequency of 10 Hz.
Here 〈δ J (t)〉 (� 0) is the mean value of δ J (t) and
σδ J is its standard deviation. It is seen that the LSC
is in a steady state (“quite period”) most of the time
so that the measured η(t) fluctuates around a constant
slightly less than zero. This is seen more clearly from
the red curve, which is a moving average of the raw
data with a time window of 500 s. A few large spikes
are observed in the measured η(t) (such as at t � 9000
s and t � 25,000 s), and they are associated with mas-
sive eruptions of thermal plumes across the entire cell.
These eruption events are rare and last for 1-5 minutes
each time (“active period”), during which the existing
LSC is destroyed [75]. The measured η(t) is positive
during the short active period, suggesting that a large
amount of heat is released during the massive erup-
tions. The released heat is accumulated during the long
quite period with a small negative mean value of η(t).

Figure 1b shows the numerically obtained time
series data of η(t) from the direct numerical simula-
tion over a 5.7-hour-long period of time t . The values of
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Fig. 2 Numerically calculated PDF P(η) (open squares) as a
function of the normalized net heat accumulationη at fixed values
of Ra = 5× 109 and Pr = 4.4. The solid line is a plot of Eq. (3).
The dashed line shows a plot of Eq. (4) with χ = −0.001, which
is the best fit to the experimentally measured P(η) for the data
shown in Fig. 1a [75]

Jt (t) and Jb(t) are obtained by numerically integrating
the temperature gradient at the top and bottom conduct-
ing surfaces, respectively. Unlike the experimental data
shown in Fig. 1a, fluctuations of η(t) obtained from the
direct numerical simulation are symmetric and no rare
massive eruption events were observed. This is clearly
shown from the resulting probability density function
(PDF) P(η) of η.

Figure 2 shows a comparison between the direct
numerical simulation and experimental results. It is
found that the numerically obtained P(η) (open squares)
is well described by the standard Gaussian distribution
function (solid line)

P(η) = 1√
2π

e−η2/2. (3)

This result suggests that fluctuations of η in the direct
numerical simulation are caused primarily by indepen-
dent and random emission of thermal plumes from the
top and bottom conducting plates, a process to which
the central limit theorem applies. As a result, the net
heat flux passing through the convecting fluid is bal-
anced almost instantaneously and there is no long-time
heat accumulation, as observed in the experiment.

In contrast, the obtained PDF P(η) from the exper-
iment was found [75] to be highly non-Gaussian and
follow the generalized extreme value distribution

P(z) = 1

β
(1 + χ z)−(1/χ+1) e−(1+χ z)−1/χ

, (4)

where the variable z = (η − μ)/β, with β =
|χ |/[Γ (1−2χ)−Γ 2(1−χ)]1/2 andμ = β[1−Γ (1−
χ)]/χ . Here Γ (x) is the gamma function. The dashed
line in Fig. 2 shows a plot of Eq. (4) with χ = −0.001,
which is the best fit to the experimentally measured
P(η) for the data shown in Fig. 1a [75].

4 Theoretical model and analysis

The above results prompt us to think what causes the
disagreement between the direct numerical simulation
and experimental results. In the direct numerical sim-
ulation, the Oberbeck–Boussinesq approximation [44]
was used so that the entire convection system is sym-
metric by reflection and thus the top and bottom bound-
ary layers are identical. In the actual experiment, how-
ever, such a symmetry is broken because of the tem-
perature dependence of fluid properties, which is often
referred to as the non-Oberbeck–Boussinesq (NOB)
effect [2,78,84]. It was found in the recent experiment
[75] that the statistical properties of the LSC cessa-
tions and reversals depend sensitively on the proper-
ties of the convecting fluid. This finding suggests that
the LSC cessations and reversals might be triggered by
some minute asymmetry in boundary layer dynamics
owing to theNOBeffects of the convecting fluid, which
can cause the top and bottom boundary layers to have
different thicknesses and viscosities, for instance.

At the moment, we are unable to use Nek5000
to study the NOB effect on the LSC dynamics. This
is because the standard Nek5000 code is an open-
source solver for incompressible Navier–Stokes equa-
tions with constant fluid properties, and the asym-
metric boundary layers resulting from the NOB effect
require the fluid properties to be a function of the local
temperature. Numerically, the NOB effect makes the
coefficients of the Poisson equation space- and time-
dependent, which is difficult to solve in a computation-
ally efficient manner. To move forward, we consider
the Villermaux’s model [72], which consists of two
coupled DDEs to describe the instabilities in the top
and bottom boundary layers

Ȧ(t) = A(t){r − μt [A(t − t0) + cB(t − t0)]}
Ḃ(t) = B(t){r − μb[B(t − t0) + cA(t − t0)]},

(5)

where A(t) and B(t) represent the amplitude of insta-
bilities in the top (t) and bottom (b) boundary layers,
r represents their growth rate, and c (0 < c < 1) is
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a coupling constant having a typical value of 0.5. In
the above, μt (or μb) is a sensitivity parameter to set
the oscillation amplitude, and the delay time t0 reflects
the time interval for disturbances (thermal plumes) to
travel from one boundary layer to the other.

The nonlinear dynamics as described in Eq. (5) was
studied previously for a special symmetric case with
μt = μb [65,72]. In this case, linear stability analy-
sis predicts an in-phase oscillatory solution for A(t)
and B(t), once t0 exceeds a threshold (t0)c = π/(2r).
The corresponding oscillation frequency f0 is such that
2π f0 = r , leading to f0(t0)c = 1/4 in that limit.
This prediction has been verified in an early convec-
tion experiment conducted in the thin disk cell [65].
While the oscillatory solution of Eq. (5) captures the
primary mode of LSC, our fundamental understanding
of Eq. (5) remains limited and most of its parameter
space has not been explored.

We now examine Eq. (5) in a larger parameter space
for the asymmetric boundary layers. As will be shown
below, the long steady quiet period of the LSC is well
described by the in-phase oscillatory solution, and thus,
it should be treated as the primary instability of the
thermal boundary layers. Two parameters, r and t0, are
used to describe this common instability of the cou-
pled boundary layers. To describe the rare but large
eruptions of thermal plumes as a secondary instability
of the boundary layers, we consider the NOB effect
of the two boundary layers with a small difference in
μt �= μb. In this case, Eq. (5) has a fixed point

A∗ = r(μb − cμt )

μbμt (1 − c2)
, B∗ = r(μt − cμb)

μbμt (1 − c2)
, (6)

and the linear stability analysis near the fixed point
reveals that for t0 > (t0)c = π/(2r), the system
becomes unstable via a Hopf bifurcation, giving rise
to in-phase oscillations similar to the case of μt = μb

[65]. Because both A∗ and B∗ are positive numbers,
one has cμb < μt < μb/c. Physically, A∗ and B∗ set
the amplitudes (rms values) of A(t) and B(t). In par-
ticular, because of the NOB asymmetry, the amplitude
ratio of the emerged oscillations of A(t) and B(t) is
given by B∗/A∗ = (μt − cμb)/(μb − cμt ).

In the experiment, we find that the peak value
(σT /�T )max of the normalized temperature rms pro-
file near the top conducting plate is always larger than
that near the bottom conducting plate for all the con-
vecting fluids used and all the Rayleigh numbers stud-
ied [73]. Figure 3 shows a sample comparison of the

Fig. 3 Measured temperature rms profile σT (z)/�T as a func-
tion of z/δ near the bottom conducting plate (red circles) and top
conductingplate (black squares).HereσT (z) is normalizedby the
temperature difference �T between the two conducting plates,
and the distance z away from the conducting plate is normalized
by the thickness δ of the bottom and top thermal boundary lay-
ers, respectively. The measurements are made at Ra = 5.3×109

and Pr = 7.6 (20% glycerin–aqueous solution). The error bars
indicate the experimental uncertainties. (Color figure online)

measured temperature rms profiles σT (z)/�T near the
bottom and top conducting plates. This result suggests
that μt < μb, as the oscillation amplitude A(t) [or
B(t)] is inversely proportional to μt (or μb) [65].

As a time-delay system with t0 > 0, Eq. (5) can
be approximated by a system of ordinary differential
equations with an infinite number of dimensions, in
the sense that infinitely many initial conditions over the
continuous range−t0 < t < 0 are needed. Equation (5)
thus can be written as [42]

Ȧ0(t) = A0(t){r − μt [AN (t) + cBN (t)]}
Ḃ0(t) = B0(t){r − μb[BN (t) + cAN (t)]}
Ȧi (t) = N

t0
[Ai−1(t) − Ai (t)]

Ḃi (t) = N

t0
[Bi−1(t) − Bi (t)] 1 ≤ i ≤ N → ∞.

(7)

With the parameters discussed above, Eq. (5) can be
numerically solved using an open-source DDE solver,
XPPAUT [63]. Our numerical solutions are also veri-
fied by the numerical results of Eq. (7) with N between
400 and 500 using a homemade code. Therefore, we
conclude that our numerical results are reliable. In the
simulation, μt and t0 are chosen as two control param-
eters and the other parameters are fixed at μb = r = 1
and c = 0.5. Figure 4 shows the “phase diagram”
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Fig. 4 Phase diagram of the solutions of Eq. (5) in the (μt ,
t0) plane. The solutions of Eq. (5) can be categorized into three
regimes: (i) in-phase single-period oscillations (green dots), (ii)
multi-period oscillations (vertical blue bars), and (iii) chaos (red
crosses). Here μt is in unit of r and t0 is in unit of 1/r . (Color
figure online)

of the solutions of Eq. (5) in the (μt , t0) plane with
0.5 ≤ μt ≤ 1 and2 ≤ t0 ≤ 4.Hereμt is in unit of r and
t0 is in unit of 1/r . The solutions of Eq. (5) can be cat-
egorized into three regimes: (i) in-phase single-period
oscillations (green dots), (ii) multi-period oscillations
(vertical blue bars), and (iii) chaos (red crosses). This
phase diagram remains unchanged for different initial
conditions.

Similar to the previously studied symmetric case
[65], Eq. (5) with μt �= μb destabilizes as soon as
t0 > π/2, leading to an in-phase single-period oscilla-
tion solution for A(t) and B(t) (Regime (i) in Fig. 4).
Figure 5 shows a representative time sequence of A(t)
(black line) and B(t) (red line), which are obtained
with μt = 0.75 and t0 = 2.1. In this regime, when
t0 is just above the threshold π/2, the oscillation fre-
quency f0 satisfies the condition f0t0 = 1/4. When t0
is further increased, the value of f0t0 decreases grad-
ually from 1/4. From Fig. 5, we find the oscillation
amplitude ratio B/A � 1.425/3.564 � 0.4, which
agrees well with the theoretical prediction, B∗/A∗ =
(μt − cμb)/(μb − cμt ) = 0.4.

With further increase in t0, the system enters the
multi-period oscillation regime (Regime (ii) in Fig. 4),
in which the solutions of A(t) and B(t) have multiple
periods. Figure 6 shows a representative time sequence
of A(t) (black line) and B(t) (red line) when t0 just
enters the regime with μt = 0.75 and t0 = 2.3.
The obtained A(t) and B(t) both have two periods

Fig. 5 Numerical solution of Eq. (5) for A(t) (black line) and
B(t) (red line)withμt = 0.75 and t0 = 2.1. (Color figure online)

Fig. 6 Numerical solution of Eq. (5) for A(t) (black line) and
B(t) (red line)withμt = 0.75 and t0 = 2.3. (Color figure online)

and they compete with each other, so that the large-
amplitude period in A(t) always corresponds to the
small-amplitude period in B(t). This behavior contin-
ues for the solutions of A(t) and B(t) with more oscil-
lation periods. As the value of t0 further increases, the
solutions of A(t) and B(t) evolve from period-2 to
period-4 and so on, undergoing period-doubling and
eventually become chaotic.

In the chaos regime (Regime (iii) in Fig 4), both A(t)
and B(t) show an irregular time sequence. Figure 7
shows a representative time sequence of A(t) (upper
black line) and B(t) (lower red line) with μt = 0.75
and t0 = 3.0. In the plot, A(t) (B(t)) is normalized
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Fig. 7 Numerical solution of Eq. (5) for the normalized time
series, (A(t) − A0)/σA (upper black line) and (B(t) − B0)/σB
(lower red line), with μt = 0.75 and t0 = 3.0. Here A0 (B0) and
σA (σB ) are, respectively, the mean value and standard deviation
of A(t) (B(t)). The horizontal blue line indicates the threshold
value χc ≡ (Bc − B0)/σB = 5, which is used to determine the
eruption events with (B(t)−B0)/σB > χc. (Color figure online)

as (A(t) − A0)/σA ((B(t) − B0)/σB), where A0 (B0)
and σA (σB) are, respectively, the mean value and stan-
dard deviation of A(t) (B(t)). While both A(t) and
B(t) appear chaotic in amplitude, they still contain a
phase-synchronized oscillatory component with its fre-
quency being f0t0 � 1/6. This frequency is smaller
than those in the other two regimes. Note that there
exist small windows of multi-period oscillations in the
chaos regime, which is a common feature of determin-
istic chaos systems [62].

We now present the solutions of A(t) and B(t) in a
different way. Figure 8 shows the characteristic phase
portraits of B(t) versus A(t) in the three dynamic
regimes. In the plot, we fix the value of μ0 = 0.75
and vary the value of t0 systematically. As shown in
Fig. 8(a), the phase portrait for in-phase single-period
oscillations is a straight line, indicating that A(t) and
B(t) are proportional to each other. Figures 8(b) and
8(c) show the phase portraits for multi-period oscil-
lations, which have an even number of loops. The
number of loops is doubled when the value of t0 is
increased from 2.3 to 2.7. With a further increase in
t0, the number of loops doubles and the oscillations in
A(t) and B(t) are no longer in-phase anymore. Finally,
when t0 = 3.0, the number of loops in the phase por-
trait becomes so large that the system enters the chaos
regime. This is shown in Fig. 8(d). In Fig. 4, we define

(a) (b)

(c) (d)

Fig. 8 Phase portraits of B(t) versus A(t) at a fixed value of
μ0 = 0.75 and different values of t0: a t0 = 2.1 (period-1), b
t0 = 2.3 (period-2), c t0 = 2.7 (period-4), and d t0 = 3.0 (chaos)

the multi-period oscillation regime by setting the num-
ber N of loops in the phase portrait to be in the range
of 2 ≤ N ≤ 50. The chaos regimes are defined for
N > 50.

To further examine the dynamic behavior of the solu-
tions of A(t) and B(t) in different regimes, we com-
pute their Lyapunov exponent using the idea of the
Wolf algorithm [77]. For our purpose, only the max-
imal value of the Lyapunov exponent, λmax

L , is needed
to identify the dynamics [62]: λmax

L < 0 for no oscilla-
tion (fixed point), λmax

L � 0 for periodic motion (limit
cycle) and λmax

L > 0 for chaos (strange attractor). Fig-
ure 9(a) and 9(b) shows the calculated λmax

L as a func-
tion of t0 at a fixed value of μ0 = 0.75. It is found
λmax
L < 0 for t0 < π/2, which is in good agree-

ment with the stability analysis discussed above. As
the value of t0 increases, we find λmax

L � 0 for the
ranges π/2 ≤ t0 < 2.75 and 3.05 � t0 � 3.7, and
λmax
L > 0 for 2.75 � t0 < 3.05. The calculated values

of λmax
L provide further support to the phase diagram

depicted in Fig. 4. Note that Fig. 9(b) reveals a special
point t0 � 2.85, at which λmax

L � 0. This corresponds
exactly to the small window of the multi-period oscil-
lation regime embedded in the chaos regime as shown
in Fig. 4.

One can also obtain the local maximum values Bp

from the time series B(t) and investigate how the statis-
tics of Bp evolve in different dynamic regimes. Fig-
ure 9(c) shows the bifurcation diagram of Bp as a func-
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(a)

(c)

(b)

Fig. 9 Calculated maximal value of the Lyapunov exponent,
λmax
L , as a function of t0 in the ranges: a 1.0 � t0 � 2.0 and

b 2.0 � t0 � 4.0. The calculation is made at a fixed value of
μ0 = 0.75, c Corresponding bifurcation diagram of the local
maximum values Bp of the time series data B(t) as a function of
t0

tion of t0 at a fixed value of μ0 = 0.75. In the single-
period oscillation regime with π/2 � t0 � 2.25, Bp

has only one value for a given t0, which gives rise to a
single-valued curve in the bifurcation diagram. In the
range of 2.25 � t0 � 3.04, the number of the Bp val-
ues doubles repeatedly with increasing t0 and finally
becomes a very large number, indicating that the period
number in B(t) becomes so large that the solution of
B(t) is chaotic. Figure 9(c) thus confirms that the sys-
tem evolves toward chaos through a period-doubling
route [62]. Furthermore, we find that the region of t0
with a large number of the Bp values, as shown in
Fig. 9(c), overlaps with the region having λmax

L > 0,
as shown in Fig. 9(b). This result further confirms the
existence of the chaos regime.

To compare the dynamic behavior of A(t) and B(t)
with the experimental results, we calculate their cross-
correlation function

C(t ′) = 〈(A(t + t ′) − A0)(B(t) − B0)〉
σAσB

, (8)

where 〈...〉 denotes an average over time t . Figure 10
shows a comparison between the calculated (black line)
and measured (red line) C(t ′) as a function of the nor-
malized delay time t ′ f0. It is seen that the calculated
C(t ′) reveals a well-defined oscillation of frequency f0
between A(t) and B(t), which overlaps with the mea-

Fig. 10 Comparison between the calculated (black line) and
measured (red line) cross-correlation function C(t ′) as a func-
tion of the normalized delay time t ′ f0. The numerical solution
of Eq. (5) is obtained with μt = 0.75 and t0 = 3.0. The mea-
sured C(t ′) is obtained from two local temperature signals in the
convecting fluid: one is obtained at the mid-plane and 2 cm away
from the sidewall of the thin disk cell and the other is obtained
from the opposing sidewall of the thin disk. The local tempera-
ture measurements are made at Ra = 1.1 × 1010 and Pr = 7.6
(20% glycerin-aqueous solution). Because temperature fluctu-
ations produced by warm plumes at one position and by cold
plumes at the opposing position have a sign difference [65], a
correction of sign is introduced in the measured C(t ′). (Color
figure online)

sured C(t ′) for temperature fluctuations at two oppo-
site locations in the mid-plane of the vertical disk. The
experimental data contain random fluctuations result-
ing from the turbulent background, which is a natural
source for “dephasing” (or “decoherence”). As a result,
the measuredC(t ′) has a smaller correlation amplitude
and a shorter correlation time compared with the calcu-
lated C(t ′). The obtained A(t) and B(t) from Eq. (5),
on the other hand, lack this dephasing noise even in the
chaos regime, which we believe is the main reason for
the long-time correlation (or non-decaying behavior)
of the calculated C(t ′). This type of cross-correlation
functions was also observed in other spatiotemporal
dynamic systems with time delays [82]. The largest
value of the calculated C(t ′) is located at t ′ f0 = −1,
instead of the origin, which is caused by the compe-
tition of the oscillation amplitudes between A(t) and
B(t). As shown in Figs. 6 and 7, the largest amplitude in
A(t) is always against the smallest amplitude in B(t),
which seems to be a generic property of this dynamic
system.
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By a careful examination of the time series data of
the measured temperature fluctuations, we find that the
in-phase oscillation in the measuredC(t ′) is associated
with a simultaneous and periodic emission of cold and
warm plumes from the top and bottom thermal bound-
ary layers, respectively. This periodic emission of ther-
mal plumes has been studied in detail in a previous
experiment [65]. Figure 10 thus demonstrates the exis-
tence of a direct coupling between the top and bottom
boundary layers, which is mediated by the LSC and
is responsible for a global oscillation, in the absence
of other possible mechanisms. It also suggests that the
above calculations indeed capture the essential physics
of this system.

As shown in Fig. 7, the normalized amplitude of
B(t) has larger fluctuations compared with that for
A(t). To find connections between the large-amplitude
spikes in B(t) and themassive eruption events observed
in Fig. 1(a), we set a threshold value χc ≡ (Bc −
B0)/σB = 5 (horizontal blue line in Fig. 7), so that all
the spikes with an amplitude larger than χc are counted
as eruption events. Here we use a normalized (dimen-
sionless) threshold value χc, so that it can be used con-
sistently for different values of the control parameters
μt and t0. With this definition of eruption events, we
compute the time interval τ between successive erup-
tion events and study how its probability density func-
tion (PDF or normalized histogram) P(τ ) changeswith
different values of μ1 and t0.

Figure 11 shows the calculated PDF P(τ )/P0 for
two sets of values of μ1 and t0, where P0 is the max-
imum value of P(τ ). It is seen that the two sets of
data can all be well described by a simple exponen-
tial function, P(τ )/P0 � exp (−τ/τ0), with the mean
time interval τ0 being the only fitting parameter. The
results shown in Fig. 11 are in good agreement with
the experiment [75], in which the measured PDF P(τ )

for the massive eruption events shows an exponential
form.The sameprocedure is also applicable to A(t) and
we find that the PDF P(τ )/P0 for successive eruption
events in A(t) also has a simple exponential form (not
shown). There exists a minimum value (χc)min � 5.0
for the threshold χc, and the obtained PDFs have a sim-
ple exponential form only when χc > (χc)min .

To verify that the exponential PDF P(τ ) shown in
Fig. 11 is indeed relevant to turbulent RBC, rather
than for some generic extreme events often observed
in chaotic systems [59,83], we examine how the fitted
values of the mean time interval τ0 change with μt and

Fig. 11 Calculated PDF (or normalized histogram) P(τ )/P0 of
the time interval τ between successive eruption events in B(t).
The calculations are made with μt = 0.65, t0 = 3.00 (black
squares) and μt = 0.80, t0 = 3.00 (red circles). The colored
solid lines are the exponential fits, P(τ )/P0 � exp (−τ/τ0), to
the data points with τ0 = 89.3 (black line) and τ0 = 220.4 (red
line). (Color figure online)

t0. Figure 12 shows the fitted values of τ0 as a function
of μt at a fixed value of t0 = 3.0 for three different
values of the threshold χc. It is seen that for all val-
ues of χc, τ0 increases with μt and the rate of increase
becomes larger for lager values of χc. This result sug-
gests that eruption events occur more frequently (i.e.,
with smaller values of τ0) when the top and bottom
boundary layers become more asymmetric (i.e., for
smaller values ofμt ). This is a general trendwhich also
holds for other values of t0. This finding is consistent
with the experimental observation that the frequency
of massive eruptions of thermal plumes increases in
the aqueous solutions with increasing glycerin con-
centration [75]. The increase in glycerin concentration
enhances the NOB effect [2,78,84] and so does the
asymmetry between the top and bottom boundary lay-
ers. At theminimum threshold value (χc)min � 5.0,we
find the value of τ0 is approximately four times of the
in-phase oscillation period, i.e., τ0 f0 � 4. This value
of τ0 f0 increases considerably with increasing χc.

Figure 13 shows the fitted values of τ0 as a function
of t0 at a fixed value of μt = 0.8 for three different
values of the threshold χc. It is seen that for all values
of χc, τ0 decreases almost exponentially with increas-
ing t0, indicating that the eruption events occur more
frequently with increasing delay time t0 for thermal
plumes to travel from one boundary layer to the other.
This is a general trendwhich also holds for other values
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Fig. 12 Fitted values of the mean time interval τ0 between suc-
cessive eruptions as a function of μt at a fixed value of t0 = 3.0
for three different values of the threshold: χc = 5.0 (black
squares), χc = 5.3 (red circles), and χc = 5.5 (blue triangles).
(Color figure online)

of μt . This finding is consistent with the experimen-
tal observation that the frequency of massive eruptions
of thermal plumes decreases with increasing Ra [75].
In a previous experiment [65], the delay time t0 was
found to scale with the traveling time D/U0 of the
LSC across the cell, where U0 ∼ Ra1/2 is the speed of
the LSC. Thus, we have t0 ∼ Ra−1/2, which suggests
that an increase in Ra will result in a decrease of t0.
This decrease in t0 will in turn result in an increase in
τ0 so that the frequency ofmassive eruptions of thermal
plumes is reduced. Our understanding of this effect is
that as Ra increases, the convective flow becomes more
effective in keeping the system at its primary instability
state with in-phase oscillations between the two cou-
pled boundary layers, so that the global heat transport
is balanced and thus the frequency ofmassive eruptions
is reduced.

5 Summary

Time delays occur ubiquitously in nature due to finite
speeds of signal propagation or memory effects, and
also in engineering due to processing delays. Time-
delay systems can be described by relatively simple
DDEs, which in general lead to a dynamical system
of infinite dimensions and hence can give rise to a
rich array of complex dynamical behaviors [29] and
a broad range of applications. DDEs have been used

Fig. 13 Fitted values of the mean time interval τ0 between suc-
cessive eruptions as a function of t0 at a fixed value of μt = 0.8
for three different values of the threshold: χc = 5.0 (black
squares), χc = 5.6 (red circles), and χc = 6.4 (blue triangles).
(Color figure online)

to describe a number of physical phenomena involv-
ing evolution of a variable that depends not only on
the current value of the variable but also on its value
at time t0 in the past. Examples include the time-
delayed feedback in laser systems [46] and control of
chaos in Belousov–Zhabotinsky reactions [37]. DDEs
also have a broad range of applications in biologi-
cal systems [58], including epidemic spreading such
as the ongoing COVID-19 pandemic [4,45], propaga-
tion of action potentials between neurons [9,51], tumor
growth [71], population dynamics [42,70] and respira-
tory model [22]. Other DDE applications in engineer-
ing and technology include electrical transmission lines
[10], electrodynamics of interacting charged particles
[27], machine tool vibrations [34], control of robotic
machines [40,43,49] and model of shimming wheels
[67]. Because DDEs have an infinity number of dimen-
sions [62], our understanding of the DDEs, and par-
ticularly their stability boundaries and corresponding
routes to chaos, is often limited to a small region of
parameter space.

In thiswork,wehave carried out a systematic numer-
ical study of two coupled nonlinear DDEs, as shown in
Eq. (5). These two DDEs are a low-dimensional model
for the instabilities of the top and bottom boundary lay-
ers in turbulent RBC, which are coupled by the LSC
[65,72]. Because turbulent RBC contains many more
degrees of freedom, such as those turbulent fluctuations
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as shown in Fig. 1, which are absent in the DDEs, one
would not expect a one-to-one correspondence between
themodel calculation and actual data. Our primary goal
here is to use the model to capture the essential features
of the instabilities (or the “slow modes”) in turbulent
RBC with a proper physical interpretation. The non-
Oberbeck–Boussinesq (NOB) effect [2,78,84], which
breaks the symmetry between the top and bottom
boundary layers, is considered by introducing two dif-
ferent sensitivity parameters, μt �= μb, in Eq. (5).

Three different types of solutions are identified and
their dynamic behaviors are summarized in the phase
diagram of the system as a function of the sensitivity
parameter μt of the top boundary layer and the delay
time t0 for thermal plumes to travel from one boundary
layer to the other. It is found that for small values of
t0 (� π/2r ), the convective flow is at a critical state
near the global instability threshold, having a stable in-
phase oscillation between the two coupled boundary
layers. The long steady quiet period observed in the
convection experiments [65,75] is well described by
this in-phase single-period oscillatory solution, which
is associated with alternate emission of thermal plumes
between the two boundary layerswith a local frequency
f0 � U0/(2H), where U0 is the velocity of LSC. This
oscillatory solution serves as a primary instability of
the thermal boundary layers, which in turn balances
the global heat transport in turbulent convection.

For larger values of t0, the system enters the multi-
period oscillation state first followed by the chaotic
state. In the latter case, we find that the amplitude of
B(t) for the instabilities in the bottom boundary layer
has large fluctuations (see Fig. 7). By a careful compar-
ison between the numerical and experimental results,
we find that the large amplitude spikes in B(t) exhibit
the same statistical properties as the massive eruption
of thermal plumes during the short active period, as
observed in the experiment. This conclusion is sup-
ported by the numerical result that the distribution of
the time interval τ between successive eruption events
has a simple exponential form in good agreement with
the experimental finding. Furthermore, the obtained
mean time interval τ0 between two successive eruption
events is found to decrease (i.e., eruption events occur
more frequently) when the top and bottom boundary
layers becomemore asymmetric orwhen the delay time
t0 becomes longer. These numerical results are consis-
tentwith the experimental findings. The solutions of the
two coupled nonlinear DDEs, as shown in Eq. (5), thus

provide new insights into the mechanism that triggers
the massive eruption of thermal plumes in turbulent
RBC.
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