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Colloidal diffusion over a quenched
two-dimensional random potential

Yun Su,a Xiao-guang Ma,a Pik-Yin Lai*b and Penger Tong *a

A two-layer colloidal system is developed for the study of diffusion over a quenched two-dimensional

random potential. A mixture of bidisperse silica spheres is used to form a randomly packed colloidal

monolayer on the bottom substrate. The corrugated surface of the bottom colloidal monolayer provides

a gravitational potential field for the dilute diffusing particles in the top layer. The population probability

histogram P(x,y) of the diffusing particles is obtained to fully characterize the random potential

landscape U(x,y) via the Boltzmann distribution. The dynamical properties of the top diffusing particles,

such as their mean square displacement (MSD), histogram of the escape time, and long-time self-diffusion

coefficient, are simultaneously measured from the particle trajectories. A quantitative relationship between

the long-time diffusion coefficient and the random potential is obtained, which is in good agreement with

the theoretical prediction. The measured MSD reveals a wide region of subdiffusion resulting from the

structural disorders. The crossover from subdiffusion to normal diffusion is explained by the Lorentz model

for tracer diffusion through a heterogeneous space filled with a set of randomly distributed obstacles.

I. Introduction

Diffusion in disordered media is a common problem encountered
in many practical applications.1–3 Examples include diffusion of
lithium ions through the electrodes in lithium ion batteries,4

transport of molecules through porous media,5,6 and anomalous
relaxation in spin glasses and in macromolecules. It is also
relevant to many biological applications7,8 ranging from the
dynamics of molecular motors moving along heterogeneous
substrates9 to the motion of proteins inside the cells10–12 and
on cell membranes.13,14 There have been considerable theoretical
efforts aimed at solving the problem with various models being
proposed, such as the random barrier model,15–18 the random
trap model,19–21 and the continuous random walk model.22–24

In contrast to the large number of theoretical and numerical
studies, systematic experimental investigations aimed at testing
the theoretical predictions are quite limited. This is partially due
to the fact that it is quite difficult to find a well-characterized
system in which one can obtain both the energetic and dynamic
data simultaneously. In fact, the random potential involved
to describe the actual disordered media may have different
complex forms and does not always follow simple idealized
forms. In particular, the analytical results currently available

for diffusion in disordered media is often limited to one-
dimensional (1D), and the actual random fields encountered
in the experiment are often 2D and even 3D.

This situation is changed recently with the advancement of
new technologies in manipulating and tracking individual
colloidal particles. For example, Evstigneev et al.25 used ten
rotating optical tweezers on a circle to generate a 1D tilted
periodic potential for the study of colloidal diffusion. Hanes
et al.26 used a laser beam to generate a 1D random intensity
field and used it to study the diffusion dynamics of colloidal
particles in the 1D random field. More recently, laser speckle
patterns were used to generate a 2D random field.27,28 In a
different experiment,29 Ma et al. developed a two-layer colloidal
system and used it to study the diffusive barrier-crossing
dynamics over a periodic potential. The periodic potential is
provided by the bottom layer of colloidal spheres forming a
crystalline pattern on a glass substrate. The corrugated surface
of the colloidal crystal provides a 2D gravitational potential
U(x, y) for the diffusing particles on the top layer. Compared to
the laser-generated random field, the colloidal landscape has
an advantage that it is a pure potential field and does not have
any non-conservative component, as the laser beam does.30,31

In this paper, we report a systematic experimental study of
colloidal diffusion over a 2D quenched disordered potential. In
the experiment, a mixture of bidisperse silica spheres is used to
form a randomly packed colloidal monolayer on the bottom
substrate, which provides a disordered gravitational potential
field U(x,y) to the diffusing particles on the top layer. With the
techniques of optical microscopy and multiparticle tracking,
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we measure the population statistics of the top layer diffusing
particles and construct the potential U(x,y) via the Boltzmann
distribution. Using the simultaneously obtained energetics and
dynamics information, we test the theory and demonstrate the
applications of the newly constructed 2D random potential.

The remainder of the paper is organized as follows. We first
introduce the theory about diffusion over periodic and random
potentials in Section II. The experimental procedures and data
processing methods are described in Section III. The experi-
mental results and discussion are given in Section IV. Finally,
we summarize the work in Section V.

II. Theory
A. Colloidal diffusion over a periodic potential

The motion of a Brownian particle over an external 2D potential
U(r) can be described by the mean square displacement (MSD)
hDr2(t)i as a function of delay time t, where Dr = r(t + t) � r(t)
with r(t) being the particle position at time t. For some periodic
or random potentials U(r), the motion of the particle was found
to be diffusive at long delay time t.26,27,29,32 In this case, one has

hDr2(t)i = 4DLt, (1)

where DL is the long-time diffusion coefficient of the particle.
For a 1D periodic potential U(x + l) = U(x) of period l, Lifson
and Jackson21 obtained an analytical expression of DL using the
mean-first-passage-time (MFPT) approach,

DL ¼
D0

Rl
; (2)

where

Rl = heU(x)/kBTilhe�U(x)/kBTil, (3)

and h� � �il denotes a spatial average over the period l. In eqn (2),
D0 = kBT/x is the particle’s free diffusion coefficient without the
influence of U(x), kBT is the thermal energy of the particle and x
is its friction coefficient. The MFPT for a particle to travel from
the origin x = 0 to x = l is given by34

�t1 ¼
l2

D0
Rl: (4)

Eqn (2) can be extended to diffusion on a 2D lattice. In this
case, the particle trajectories consist of multiple steps of transi-
tions between the nearest neighbor sites through a quasi-1D
path X, and thus one has1,29

DL ¼
z

4

D0

Rl
; (5)

where z is the number of the nearest neighbour sites of the
2D lattice.

The calculation of Rl requires full knowledge of the potential
U(x), which is often difficult to obtain in many practical applica-
tions. When the energy barrier Eb associated with U(x) is much

larger than kBT, one may use the steepest-descent approximation
to calculate Rl and the final result is34

Rl ’
1

n1
eEb=kBT ; (6)

where

n1 ¼
U 00minU

00
max

�� ��1=2l2
2pkBT

; (7)

is the Arrhenius pre-factor. Eqn (6), which is called the Arrhenius–
Kramers equation,35,36 is known to be accurate only when
Eb/kBT \ 6–7.29,37,38

Because n1 contains the second derivatives of U(x) at the
potential minimum and maximum, information about U(x) is
still needed in order to accurately calculate n1. In a recent
experiment, Ma et al.29 measured the values of n1 for a periodic
potential U(x) with different barrier heights Eb. Fig. 1 shows
the measured n1 as a function of Eb/kBT. It is seen that the
measured n1 is well described by a linear function

n1 ’ b
Eb

kBT
; (8)

with b = 4.12 (solid line). In fact, one can readily show that
eqn (8) is valid for all the potentials with the scaling property
U(x) = ag(bx), where a and b are the scaling factors, and the
shape of the function g(x) determines the value of b.

For small values of Eb/kBT, the steepest-descent approxi-
mation is not accurate, and the Arrhenius–Kramers equation
was found to show deviations from the experimental results.29

In this case, one can expand Rl as a function of U(x)/kBT and
we find

Rl ¼ eEb=kBT e UðxÞ�Emax½ �=kBT
D E

l
e Emin�UðxÞ½ �=kBT
D E

l

’ 1

n2
eEb=kBT ;

(9)

where

n2 = 1 + Eb/kBT + (1/2 � c)(Eb/kBT)2 +� � � (10)

Fig. 1 Measured Arrhenius pre-factor n1 as a function of barrier height
Eb/kBT for a periodic potential U(x).29 The solid line is a linear fit of eqn (8)
to the data points with b = 4.12.
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In the above equation, Eb = Emax � Emin, and Emax and Emin are,
respectively, the local maximum and minimum of the
potential U(x). In the expansion of the exponential functions
in eqn (9), we used the relation hU2il � hUil2 = cEb

2. For a
sinusoidal potential U(x) = U0 cos(x/l), one has c = 1/8, whereas
for a square wave potential, we have c = 1/4. In general, we
expect 0 r c r 1/4. Except the numerical factor c, eqn (9)
and (10) do not require information about the functional form
of U(x).

To examine the accuracy of the calculated Rl under different
approximations, we compare the theoretical predictions with
the experimental results obtained for a periodic potential
U(x).29 In the experiment, the functional form of U(x) was
accurately measured. Fig. 2 shows a comparison between
the measured values of DL/D0 and the calculated values of
1/Rl under different approximations. The black circles are
obtained with the numerically calculated Rl using eqn (3)
and measured U(x) without any approximation. The data are
well described by eqn (5) with z = 3 for a hexagonal lattice
(solid line). The black diamonds are obtained using the
Arrhenius–Kramers equation [eqn (6)] and the numerically
calculated n1 given in eqn (7). As expected, the Arrhenius–
Kramers equation shows deviations from the exact result
(solid line) for small values of Eb/kBT (large values of 1/Rl),
and the data approach the solid line at the largest value of
Eb/kBT = 6.4 studied.29 The red squares and triangles are
obtained using the same eqn (9) but with different orders
of expansion for n2 [see eqn (10)]. The red squares are
obtained with n2 being expanded to the first order of Eb/kBT.
The red triangles are obtained with n2 being expanded to
the second order of Eb/kBT (with c = 1/8). It is seen that the
red squares are very close to the solid line for small values
of Eb/kBT (large values of 1/Rl) and deviations from the solid
line become larger for large values of Eb/kBT. With n2 being
expanded to the second order of Eb/kBT, we find that the
red triangles are in good agreement with the solid line. Fig. 2
thus provides an overall evaluation of different theoretical
approximations.

B. Colloidal diffusion over a random potential

For a 1D random potential, Zwanzig16 showed that

DL ¼
D0

Rr
; (11)

where Rr = heU(x)/kBTirhe�U(x)/kBTir, and h� � �ir denotes an average
over the random configurations. For the quenched 2D random
potential to be discussed below (see Fig. 7 below), we generalize
the above results and obtain

DL ¼
�z

4

D0

RX
; (12)

where %z is the mean number of the nearest neighbour sites, and
the factor RX is given by

RX = heU(X)/kBTiXhe�U(X)/kBTiX. (13)

In the above equation h� � �iX denotes an average over all the
quasi-1D paths X in the potential landscape (or ‘‘potential
paths’’ for short) that the top diffusing particles have gone
through. Fig. 13 below shows an example of such a potential
path, which is a 1D numerical representation of the random
potential field U(x,y) that the particle has sampled. The
hindering effect of the potential U(X) on long-time diffusion
is included in RX.

To further simplify eqn (13), we divide the entire potential
path X into N pieces, and each piece Xi contains only one local
minimum and one local maximum of the potential. In this
case, we have

RX ’
1

N

XN
i

eUðXÞ=kBT
D E

Xi

1

N

XN
j

e�UðXÞ=kBT
D E

Xj

’ 1

N

XN
i

eUðXÞ=kBT
D E

Xi

e�UðXÞ=kBT
D E

Xi

’ eEb=kBT

n2 Ebð Þ

� �
Eb

;

(14)

where

eEb=kBT

n2 Ebð Þ

� �
Eb

¼
ð
eEb=kBT

n2 Ebð Þ
H Ebð ÞdEb; (15)

and H(Eb) is the probability density function (PDF) of the
barrier height Eb.

In writing the first equality, we have assumed that the path
length Xi of each piece is approximately the same. This approxi-
mation is valid for the 2D random potential to be discussed
below, in which the distance between any two nearest local
minima of the potential does not vary much. To obtain the
second equality, we have assumed that heU(X)/kBTiXi

and he�U(X)/kBTiXj

are statistically independent, so that the product of the two
averages is equal to the average of their product. To verify this
assumption, we calculate the normalized correlation coefficient
CN between the ith local potential maximum Ui

max and its

Fig. 2 Comparison between the measured DL/D0 and the calculated 1/Rl

under different approximations: (i) eqn (3) without any approximation
(black circles), (ii) eqn (6) with n1 given in eqn (7) (black diamonds), (iii)
eqn (9) with n2 = 1 + Eb/kBT (red squares), and (iv) eqn (9) with n2 = 1 + Eb/kBT +
(3/8)(Eb/kBT)2 (red triangles). The solid line is a plot of eqn (5) with z = 3.
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neighbouring jth local potential minimum U j
min averaged along

all the potential paths,

CN ¼
1

N

XN
fi;jg

Ui
max �Umax

� �
U j

min �Umin

� �
dUmaxdUmin

; (16)

where Ūmax (Ūmin) and dUmax (dUmin) are, respectively, the mean
value and the standard deviation of U i

max (U j
min). In the above,

only the neighbouring pairs {i, j} are taken in the average. In this
way, CN becomes significantly non-zero only when the fluctua-
tions of the local potential maximum U i

max relative to its mean
value Ūmax are correlated with the fluctuations of the neighbour-
ing local potential minimum U j

min. It is found that the correla-
tion coefficient is actually very small with CN C 0.01. Because the
values of heU(X)/kBTiXi

and he�U(X)/kBTiXj
are determined primarily

by the local maximum and minimum, respectively, in each
potential path, the small value of CN indicates that the two
quantities are essentially independent. The last equality in
eqn (14) is obtained using the results in eqn (9).

Substituting eqn (14) into eqn (12), we have

DL ¼
�z

4

D0

eEb=kBT

n2 Ebð Þ

� �
Eb

: (17)

In Section IVB2 below, we will compare the experimental results
with the predictions given by eqn (12) and (17).

III. Experiment

The experimental apparatus and procedures used in this
experiment are similar to those described previously,29,32 and
here we mention only some key points. Fig. 3 shows the sample
cell used in the experiment. It has a circular stainless steel
chamber (SC) with a central hole of 8 mm in diameter and
1 mm in depth, which is sealed from the bottom by a glass
cover slip (GC). The central hole is first filled with the colloidal
sample and extra solvent (water) is added to fill the entire
sample cell. After filling the fluid chamber, another glass cover
slip (GC) is used to cover the entire sample cell. In this way,
both sample evaporation and unwanted flow are minimized.

Plain silica spheres purchased from Bangs Laboratories are
used in the experiment. They are cleaned prior to use following
the same procedure as described in ref. 29. To make a 2D
disordered potential field, we use a mixture of bidisperse silica
spheres to form a randomly packed colloidal monolayer on the

bottom glass slide. There are two control parameters for the
binary mixture: the particle size ratio dL/dS and the area ratio
nL/nS. In addition, the total area fraction nb = nL + nS determines
how close the mixture is packed. Here we used the subscripts
L and S to indicate the large and small spheres, respectively. In
the experiment, one can vary nL/nS (and nb) to obtain different
particle configurations, including both the well-mixed (homo-
genous) states and those states with micro-structures.39–41 This
method thus provides a well-controlled and convenient way to
vary the 2D potential field with different disorders.

Hereafter, we report the experimental results obtained using
a fixed binary mixture of silica spheres with dS = 2.47 mm,
dL = 2.94 mm, and nL/nS = 0.16. This system is chosen in order to
obtain a well-mixed (homogeneous) particle configuration with-
out visible crystal patches of either size of particles. Fig. 4
shows the particle configuration of a relatively well-mixed state
of the silica sphere mixture. In the experiment, we prepare the
binary mixture with its concentration adjusted so that when the
suspension is filled into the central hole (B50 mL in volume) of
the fluid chamber, the particles settle on the glass substrate
under gravity and form a closely packed monolayer with
nb C 0.8. The sample is then left open for complete evaporation
of water in the solution and the remaining particles are
attached to the glass substrate by van der Waals forces. After
the formation of the fixed bottom monolayer of the silica
spheres on the substrate, we fill the central hole with a different
suspension of monodispersed silica spheres with a desired
concentration. It takes several minutes for the silica spheres
to settle down on top of the bottom layer of the randomly
packed particles.

The top layer particles diffuse over a rugged surface formed
by the bottom colloidal layer and experience a gravitational
potential U(x,y). The values of U(x,y) are determined by the size
of the silica spheres in both layers.29 There is a small gap
between the two layers of silica spheres, which affects both the
diffusion dynamics of the particles in the top layer and the
potential field U(x,y). To obtain consistent experimental results,
we add 0.1 mM NaCl into the water to control the Debye
screening length of the silica spheres so that the gap distance
remains constant. To vary U(x,y), we change the size of the top
layer silica spheres, whereas the bottom layer of the randomly
packed particles remains unchanged. The dynamical properties

Fig. 3 Schematic diagram of the sample cell (side view): SC, stainless steel
chamber; GC, glass cover slip; orange and red particles, bidispersed silica
spheres forming a randomly packed colloidal monolayer on the bottom
glass substrate; blue particles, silica spheres of a different size diffusing on
top of the randomly packed colloidal monolayer.

Fig. 4 Particle configuration of the bottom layer particles at a relatively
well-mixed state with dL = 2.94 mm (red dots), dS = 2.47 mm (black dots),
nL/nS = 0.16, and nb C 0.8.
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of the top layer particles are obtained in the dilute limit with
the area fraction nt occupied by the top layer particles set at
nt C 0.05. A similar area fraction was used in a previous study
of colloidal diffusion over the periodic potentials.29,32

To obtain the occupation statistics of the top layer particles
and find the potential U(x,y), a higher area fraction nt t 0.3 is
used. In the previous study of colloidal diffusion over the
periodic potentials,29 two area fractions, nt = 0.15 and nt = 0.3,
were used to measure the population probability histogram
(PPH) P(x, y) of finding a diffusing particle at a location (x, y).
No visible difference was found in the two measured PPHs.
A lower area fraction, nt = 0.15, was used for the periodic
potentials, as an additional spatial average over the unit cell of
the lattice was used to improve the statistics of the measured
P(x,y). For random potentials, however, this spatial periodicity is
not available and a higher area fraction, nt t 0.3, is used to
improve the statistics of P(x,y). The interaction between the silica
spheres used here can be well described by a hard-sphere-like
potential with the interaction range r t 1.1d.33 This value of r is
smaller than the mean particle separation, l C d[p/(4n)]1/2 C
1.62d for nt = 0.3, indicating that the interaction effect on P(x,y)
is small and can be neglected in this case. Six colloidal samples
with different particle sizes are used in the experiment, and their
properties are given in Table 1.

The sample cell is placed on the stage of an inverted
microscope (Olympus IX71). The motion of the top-layer diffus-
ing particles is viewed from below using bright field microscopy
and recorded using a CCD camera (CoolSNAP, Media Cybernetics).
Before each movie taking, the level of the microscope/sample is
carefully adjusted to eliminate small drifts of the diffusing
particles, and adequate time (B1 h) is given to allow the sample
to reach equilibrium. Typically, each movie lasts for 2 h at a
frame rate 7 frames per second (fps). The recorded images have a
spatial resolution of 1392 � 1040 pixels and 4096 gray scales. A
homemade program based on the standard tracking algorithm42

is used to find the trajectory of the diffusing particles from
consecutive images. With this program we are able to obtain a
tracking accuracy of 1 pixel C 109 nm. More details about the
image processing were given in ref. 29.

IV. Experimental results
A. Quenched 2D random potential

We obtain the PPH P(x,y) by counting the occupation number
of the top layer particles within each pixel from two movies,
each containing (4–6) � 104 frames. The two movies contain
6� 107 particles in total. Fig. 5 shows a 3D plot of the measured
P(x,y) over a large area for sample S3. In the plot, P(x,y) is not
normalized so that one can directly see the number statistics.
The peak positions of the measured P(x,y) locate at the inter-
stices of the bottom particles. The valley regions in the mea-
sured P(x,y) correspond to the top of the bottom particles. The
shape and symmetry of the measured P(x,y) reflect the topo-
graphic variations of the underlying rugged surface. We also
find a number of fluctuations in the measured P(x,y), which are
caused by the limited statistics of the particles in certain
locations. The relative error s(x,y) of the measured P(x,y) can
be estimated as s(x,y) = [ni(x,y)]�1/2, where ni(x,y) is the number
of particles counted in the ith pixel. Typically, we have speak C
10% in the peak region and svalley C 20% in the valley region of
P(x,y), which corresponds to an energy uncertainty of �0.2 kBT.

The measured P(x,y) is related to the potential U(x,y) by the
Boltzmann distribution,

P(x,y) B e�U(x,y)/kBT. (18)

With eqn (18) we calculate the 2D potential, U(x,y)/kBT = �ln
P(x,y), where a normalization factor is chosen for P(x,y) so that
U(x,y) = 0 at the lowest potential minimum. Fig. 6 shows a 3D
plot of the resulting U(x,y)/kBT for sample S1. The unit of x and
y has been converted from pixel to micrometer using 1 pixel =
109 nm for our microscope setup. Compared to 1D random
fields, the 2D colloidal landscape provides a larger sampling
area, better particle statistics, and a longer time at equilibrium
for the diffusing particles to explore different energy configura-
tions without being overwhelmingly trapped to some deep
potential minima.

A homemade programme is used to divide the obtained 2D
potential field into different states, which are defined by the
yellow polygons as shown in Fig. 7. Each of the polygons is

Table 1 Six colloidal samples used in the experiment with different
diameters dt for the top layer particles. Also shown are the normalized
long-time diffusion coefficient DL/D0 and the potential landscape para-
meters, including the mean value of the barrier height hEbi, the numerically
calculated values of [RX

�1]1 using eqn (13) and [RX
�1]2 using eqn (14). These

quantities are obtained in the present experiment

Sample dt (mm) DL/D0 hEbi/kBT [RX
�1]1 [RX

�1]2

S1 1.57 0.59 0.93 1.42 1.48
S2 1.85 0.58 0.95 1.38 1.48
S2a 1.85 0.63 0.96 1.37 1.48
S3 2.01 0.55 1.08 1.66 1.66
S3a 2.01 0.52 1.11 1.63 1.71
S4 2.14 0.43 1.28 1.96 2.02
S4a 2.14 0.39 1.34 1.97 2.15
S5 2.47 0.29 1.60 3.26 2.99
S6 2.94 0.061 2.50 10.86 11.45

a Results obtained from a different measurement of the same sample.

Fig. 5 3D plot of the measured PPH P(x,y) for sample S3. The PPH is not
normalized and the height shows the number statistics in each pixel. The
color bar indicates the scale of ln P(x,y).
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centred around a peak of the measured P(x,y) (red dots), which
is a local minimum of U(x,y) and serves as a trap to the
diffusing particles. The boundaries of the polygon are defined
by the intersecting lines, which connect the centres of two
adjacent bottom particles. There is a potential ridge between
two adjacent traps (red dots), and it has a local maximum
(saddle point) of the potential U(x,y). The potential difference
between a local potential minimum and its nearby saddle point
defines the energy barrier Eb. The diffusing particles in each
trap need to cross an energy barrier in order to move to a
different state. With the construction as shown in Fig. 7, one
can convert the particle trajectories in position to the potential
paths of the numbered states that the diffusing particles have
gone through. There are some locations in the viewing area,
which the diffusing particles have never visited. These unvisited
locations, however, do not affect the results presented below, as
the ensemble averages used below are all based on the parti-
cle’s paths and the unvisited locations are simply not included
in the ensemble averages.

Because the potential field is random, the obtained values of
Eb vary among different locations. Fig. 8(a) shows the normalized
histogram [or probability density function (PDF)] H(Eb) of the
measured barrier height Eb for six different samples. Because the

potential energy of the top diffusing particles is proportional to
its own volume dt

3,29 the measured H(Eb) extends toward large
values of Eb for bigger particles. Nonetheless, all of the measured
H(Eb) curves collapse onto a single master curve, as shown
in Fig. 8(b), once Eb is normalized by its own mean value hEbi
(see Table 1). Thus the functional form of H(Eb/hEbi) is deter-
mined uniquely by the configuration of the bottom layer particles
and is independent of the size of the top layer particles. The shape
of the measured H(Eb/hEbi) is asymmetric with a long tail for large
values of Eb/hEbi and can be approximately described by an
empirical function of gamma distribution,

H Eb= Ebh ið Þ ¼ a2ð Þa1
G a1ð Þ

Eb

Ebh i

� �a1�1
e�a2 Eb= Ebh ið Þ; (19)

with a1 = 3.8 and a2 = 4.2 (solid line).

B. Diffusion dynamics over the quenched 2D random
potential

1. Escape time tE and its distribution. From the particle
trajectories, we find that the particles spend most of their time
diffusing around local minima of the potential. Only after a
long time tE, they will escape to a nearby potential minimum.
Hereafter, we call the potential minima as traps. As shown in
Fig. 7, we convert the particle trajectories in position to the

Fig. 6 3D plot of the obtained potential field, U(x,y)/kBT = �ln P(x,y), for
sample S1.

Fig. 7 Top view of the 2D random potential field for sample S1. The
background is a 2D plot of the measured P(x,y) in gray-scale. Brighter
regions are the lower potential regions. The red dots indicate the location
of the potential minima (traps), which are the peak positions of the
measured P(x,y). The yellow polygons divide the 2D potential field into
different states, each has a potential trap located at its center.

Fig. 8 (a) Measured histogram H(Eb) of the barrier height Eb for six
colloidal samples. (b) Measured histogram H(Eb/hEbi) as a function of the
normalized barrier height Eb/hEbi, where hEbi is the mean value of Eb. The
data are the same as those shown in (a). The solid line shows the gamma
distribution in eqn (19) with a1 = 3.8 and a2 = 4.2.
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potential paths of the numbered states and measure the escape
time tE for each trap, which is the time that the particle has
stayed before crossing the boundary of the trap. Special care is
taken to those trajectories starting from or arriving at the
immediate neighbourhood of the boundaries. A new state is
assigned only after the particle has crossed the boundary and
moved away from it over a specified distance (typically 10% of
the distance between the two nearby traps). By doing so, those
rapid crossings of the boundary due to thermal fluctuations are
not counted in the measured tE. Fig. 9(a) shows the measured
histogram P(tE) of the escape time tE for sample S3a (blue line).
It has a shape similar to a stretched exponential function.

As shown in Fig. 8, our 2D potential has many traps of
different barrier heights, which give rise to a distribution f (%tE)
of the mean escape time (or residence time) %tE associated with
each trap. Notice that %tE is related to MFPT %t1 in eqn (4) via
%tE = %t1/z,34 if each trap has z nearest neighbor traps of equal
energy barrier Eb. Fig. 9(b) shows the measured histogram f (%tE)
for sample S3a. It has a dominant peak and a small and broad
secondary peak in the tail part of the measured f (%tE). The
measured f (%tE) for other samples has a similar shape. It is seen
from Fig. 7 that the trap regions (bright areas) in the potential
field can be roughly divided into two groups. One group is
shallow and small with its local structure not deviated very

much from the crystal structure. The other group is much
deeper and larger resulting from the large mismatched struc-
tures. These two groups of potential traps give rise to the two
peaks in the measured f (%tE). The two arrows in Fig. 9(b) indicate
the range of the measured f (%tE) with continuous non-zero
values of %tE above the noise background.

For a single barrier with a large enough value of Eb/kBT, tE

obeys the simple exponential distribution with a constant
escape rate.34 The total distribution P(tE) can be written as a
superposition of different exponential distributions weighted
by the measured f (%tE),

P tEð Þ ¼
ð
f �tEð Þ

1

�tE
e�tE=

�tEd�tE: (20)

The red dashed line in Fig. 9(a) shows the numerically calcu-
lated P(tE) using eqn (20) and measured f (%tE). The calculated
P(tE) overlaps well with the measured P(tE) at small values of tE

over almost three orders of magnitude. While the difference
between the two curves is comparable to the scatters of the
measurement, there are two sources of error which may con-
tribute to the small but systematic deviations at large values of
tE. One is the statistical error of the measured histogram, which
is inversely proportional to the total counts in each bin of the
histogram. This error causes the histogram to level off for
tE \ 100 s. The other source of error comes from the fact that
for small energy barriers, the distribution of the escape time tE

from a single barrier may not be a simple exponential function,
as assumed in eqn (20). Because there is no clear time separa-
tion in this case, the escape events cannot be treated as a
Poisson process any more.

For our 2D random potential, a single trap may have several
exits of different barrier heights. The measured mean escape
rate 1/%tE from the trap is a sum of the individual escape rates
1/(%tE)i across the ith exit. Therefore, one can estimate the value
of the escape time (%tE)i for particles to cross a single exit of
barrier height (Eb)i as

�tEð Þi ’
m

mi

�tE; (21)

where mi is the number of escape events across the ith barrier
and m is the total number of escape events from the trap. In the
experiment, we follow the particle’s potential paths and obtain
the values of mi, m, %tE, (Eb)i, and the distance li between the two
nearby traps across the energy barrier (Eb)i. Fig. 10 shows the
obtained individual escape rate (%tE)i/(t0)i as a function of barrier
height (Eb)i/kBT (orange dots). In the plot, (%tE)i is normalized by
the free diffusion time (t0)i = (li/2)2/D0 over the lateral distance
li/2 between the potential minimum and its nearby maximum.
Because the number statistics of the escape events across each
exit is quite limited, the data points scatter considerably.
Nonetheless, after a running average of all the data points
from the six colloidal samples, we obtain a smooth curve of
(%tE)i/(t0)i (black curve).

For large values of Eb/kBT, eqn (4), (6) and (8) are valid, and
we find they fit the data well in the region Eb/kBT \ 3 with the
fitting parameter bC 4.12 (blue dashed line). For shallow traps

Fig. 9 (a) Measured histogram P(tE) of the escape time tE for sample S3a

(black dots). The error bars indicate the standard deviation of the mea-
surements. The red dashed line shows the numerically calculated P(tE)
using eqn (20). (b) Measured histogram f (%tE) of the mean escape time %tE for
sample S3a. The two arrows point to the locations of the minimal value
(%tE)min (left arrow) and maximal value (%tE)max (right arrow) of the measured %tE.
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with Eb/kBT t 2, we find deviations between the two curves. In
this case, eqn (6) and (8) are no longer valid. In addition, the
mean escape time %tE (or MFPT %t1) is not well defined in the
experiment, as it depends sensitively on the beginning and
ending points of the particle trajectories. For example, the
MFPT %t1 in eqn (4) is defined as the time for a particle to move
from the center of a trap to a nearby center of the trap. When
the potential barrier is large enough, %t1 (or %tE) is determined
primarily by the waiting time for the particle to cross over the
potential barrier. The shallow traps will not affect the determi-
nation of DL in eqn (1), as it is measured over a time much
longer than %tE (see more discussions below).

2. Mean square displacement and long-time diffusion.
From the particle trajectories, one can also calculate the
MSD hDr2(t)i as a function of delay time t. Fig. 11 shows
log–log plots of the measured MSD hDr2(t)i as a function of t
for six colloidal samples. The measured MSD curves can be
generally described by7,8

hDr2(t)i B tg, (22)

where the exponent g is used to classify the particle’s motion as
normal diffusion (g = 1), sub-diffusion (g o 1) or super-
diffusion (g 4 1). It is found that for short delay times with
t o (%tE)min, most particles rattle around the potential minima
and their motion is diffusive with g = 1 (lower left solid line). At
long delay times with t4 (%tE)max, the particles have experienced
(or hopped over) many potential barriers, and their trajectories
are randomized without much correlation (see Fig. 9(b) for the
definition of (%tE)min and (%tE)max). In this case, we find that the
measured MSD hDr2(t)i obeys eqn (1) (upper right solid line),
from which we obtain the long-time diffusion coefficient DL.

In the crossover region (%tE)min t t t (%tE)max, the particle’s
motion becomes heterogeneous and undergoes anomalous
subdiffusion with g o 1. By comparing the measured MSD
curves from different samples, we find that the anomalous
subdiffusion becomes more pronounced for the colloidal sam-
ples with a larger value of Eb and with a wider distribution of %tE.
The two arrows in Fig. 11 indicate the range of the measured %tE

for sample S6. In this case, the trajectory randomization time tL

for the measured hDr2(t)i to become diffusive again is increased
to more than 5 times larger than the measured (%tE)max. This is
very different from the situation for a period potential, in which
case the measured MSD becomes diffusive right after %tE

(i.e., tL C %tE).29 Such a crossover behavior of MSD has been
observed previously for colloidal diffusion over the random
potentials generated by holographic optics.26,27 It was also
observed in dense fluid systems, such as colloidal diffusion
near its glass transition.43,44 Membrane proteins in live cells
were also found to exhibit anomalous subdiffusion.13,14 Further
analysis on anomalous subdiffusion will be given in the next
section.

The measured values of DL are shown in Table 1, which
indicates that DL decreases with the mean barrier height hEbi.
When compared with the periodic potential with similar values
of the barrier height,29 we find that the quenched randomness
of the potential significantly reduces the diffusion rate. This
suggests that the long tail portion of the measured barrier
height distribution H(Eb), as shown in Fig. 8, serves as a kind of
bottle-neck for determining the long-time diffusion behaviour.
We now test the theoretical predictions for long-time diffusion
constant DL. Fig. 12 shows a comparison between the measured
values of DL/D0 and the calculated values of 1/RX. The black
circles are obtained with the numerically calculated RX using
eqn (13) and the potential U(X) obtained from the n = 0.05
sample without further approximation. The data are well
described by eqn (12) with the mean number of the nearest
neighbour sites %z = 3.4 (solid line). The obtained value of %z from
direct counting of the 2D potential U(x,y) is %z = 3.3 � 0.13,
which agrees with the above fitted value within the experi-
mental uncertainties.

Because a particle stays in a deep trap for a longer period of
time, its occupation may affect the probability for other particles
to visit the occupied site at high particle concentrations. To
further examine the concentration effect, we compute RX again

Fig. 10 Measured individual escape rate (%tE)i/(t0)i as a function of barrier
height (Eb)i/kBT (orange dots). The data points are obtained from all the six
colloidal samples. The black curve shows the average value of the orange
dots. The blue dashed line is a fit of eqn (6) and (8) to the data points in the
region Eb/kBT Z 3 with the fitting parameter b C 4.12.

Fig. 11 log–log plots of the measured MSD hDr2(t)i as a function of delay
time t for six colloidal samples. The black solid lines indicate the relation-
ship hDr2(t)iB t with a slope of unity in the log–log plot. The two arrows
point to the locations of (%tE)min (left arrow) and (%tE)max (right arrow),
respectively, for sample S6.
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using the potential U(x,y) obtained from the concentrated sample
(n = 0.3). The blue diamonds in Fig. 12 show the high concen-
tration results. While there are some slight differences between
the black circles and blue diamonds, Fig. 12 confirms that these
differences are negligibly small. With this experimental verifica-
tion, we used the potential U(x,y) obtained from the n = 0.3 sample
for the data analyses shown in Fig. 6–10, to further improve the
statistical accuracy and reduce the sampling errors.

In the calculation of RX in eqn (13), the average h� � �iX is
conducted over all the ‘‘path area’’ occupied by the potential
paths that the particles have gone through. Fig. 13(a) shows an
example of a 20 min-long single-particle trajectory (green
curve), which is superimposed on the measured P(x,y) in gray
scale. It is seen that the particle spends most time in the
low-potential regions (white areas). The path area is defined
when the value of the measured P(x,y) becomes larger than a
threshold value Pc, which is carefully chosen for each sample to
ensure that the fraction of the path area visited by the particles
is approximately the same for all the samples (typically 62.5%
of the view area). For sample S1, we set the highest threshold Pc,
under which there are still more than 90% of the particle
trajectories located in the path area. With this definition, we
find that most of the particle trajectories follow a narrow path
over the 2D potential, so that our assumption about the quasi-1D
potential paths is justified. In this way, we effectively ignored
those areas in the 2D random potential, which the particles
never or seldom visit.

Fig. 13(b) shows an example of the potential path U(X) along
a segment of the quasi-1D trajectories that the particle has gone
through, as marked by the red lines in Fig. 13(a). With the
above definition of the path area, the average h� � �iX in eqn (13)
becomes

heU(X)/kBTiX = hheU(X,Y)/kBTiYiX, (23)

where the average h� � �iY is conducted over the ‘‘width’’ of the
quasi-1D potential path inside the path area.

To check the validity of eqn (17), we numerically calculate
the average h� � �iEb

in eqn (14) using the measured H(Eb) as
shown in Fig. 8. Because the measured H(Eb) is concentrated
mainly in the small-Eb range (0–2)kBT, we choose n2 = 1 + Eb/kBT.
The final results are shown in Fig. 12 (red triangles) and the
numerical values of RX

�1 obtained in the two different ways are
given in Table 1. It is seen that the red triangles are in good
agreement with the theoretical prediction given in eqn (17).
Fig. 12 thus provides a direct experimental support for the
theoretical modeling discussed in Section IIB.

3. Further analysis of anomalous subdiffusion. To further
understand the crossover behaviour and anomalous scaling in
the subdiffusion regime, we compute additional statistical quan-
tities from the measured particle trajectories. The first quantity
is the non-Gaussian parameter K(t), which is defined as

KðtÞ ¼ 2
Dr4ðtÞ
	 

Dr2ðtÞh i2 � 4 ¼

Dx4ðtÞ
	 

Dx2ðtÞh i2 � 3: (24)

For normal diffusion, the displacement Dx(t) follows the Gaus-
sian statistics for all delay times t, which gives rise to a vanishing
K(t). Fig. 14 shows the obtained K(t) as a function of t for three
representative samples with low, intermediate and high energy
barriers, respectively. It is seen that the measured K(t) shows a
broad peak with its maximal value located in the middle range of
the crossover region. The value of K(t) decays toward zero both
in the short-time and long-time limits, in which the measured
MSDs show normal diffusion. For samples with larger values of
hEbi, the amplitude of their non-Gaussian peak increases with
hEbi and the peak position shifts toward larger values of t.

Fig. 12 Comparison between the measured DL/D0 and calculated 1/RX

under different approximations: (i) eqn (13) together with the potential U(X)
obtained from the n = 0.05 sample without further approximation (black
circles), (ii) eqn (13) together with the potential U(X) obtained from the
n = 0.3 sample without further approximation (blue diamonds), and
(iii) eqn (14) with n2 = 1 + Eb/kBT (red triangles). The error bars show the
experimental uncertainties of the measured DL/D0. The solid line is a linear
fit of eqn (17) to the black circles with %z = 3.4.

Fig. 13 (a) Measured 20 min-long trajectory (green curve) of a diffusing
particle over a quenched 2D random potential for sample S5. The back-
ground is a 2D plot of the measured P(x,y) in gray-scale with white areas
indicating the low-potential regions. (b) An example of the potential path
U(X) along a segment of the quasi-1D trajectories that the particle has
gone through [red lines marked in (a)].
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Because K(t) involves the fourth moment of Dr(t), it is more
sensitive to the statistical noise compared to the MSD hDr2(t)i.
For long delay times in the range 103 s t t t 104 s, the sample
statistics is reduced considerably and we can only obtain reliable
MSD curves, as shown in Fig. 11, but not K(t) for sample S6. As a
result, the measured K(t) for sample S6 has not reached the
diffusion limit yet (K(t) = 0).

For comparison, we also show, in Fig. 14, the measured K(t)
for particles diffusing over a periodic potential with a single
value of barrier height Eb (dashed lines). In this case, the
measured K(t) shows similar features to those for the random
potential, except that the width of the non-Gaussian peak is
narrowed considerably. By comparing the values of the barrier
height involved in both cases, we find that the range of the
crossover regime for the random potential is determined primarily
by the long tail part of the barrier height distribution H(Eb), as
shown in Fig. 8.

We now compare our results with the predictions of the
Lorentz model,45 which considered tracer diffusion through a
heterogeneous space filled with a (fixed) set of randomly
distributed obstacles. The diffusion dynamics in a heteroge-
neous space is determined by two aspects of the underlying
structure.46 One is how the accessible space s(l) for diffusion
over varying lengths l is embedded in the physical space, which
is characterized by the fractal dimension df as s(l) p ldf. The
other aspect is how the accessible space s(l) is visited by the
random walkers, which is described by the relation s(l) p td.
Combining these two aspects, one finds l ptd/d

f � tg/2, where g
is the subdiffusion exponent in eqn (22).

In the Lorentz model, when the density r of the obstacles
becomes larger than a critical value rc, the void space where the
tracers are allowed to diffuse through decomposes into clusters
of varying (finite) size l. The correlation length x is defined as
the linear dimension of the largest finite void cluster, which
diverges when r approaches rc. In this case, the tracers will all
be trapped in some clusters of size l. The void space thus can

be thought of as a percolating space with a fractal dimension
df = 91/48 for 2D.47,48 When a tracer diffuses in a fractal space, it
has a higher probability to encounter the forbidden region
occupied by the obstacles with increasing displacement
(or delay time t). As a result, the tracer motion is slowed down
with increasing t, making it subdiffusive with the exponent
g = 0.695 based on the percolation theory.48

When r o rc, the void clusters remain infinite but they are
fractal with the same values of df and g only for the sizes up to
l o x. For larger length scales, the void space becomes
homogeneous with df = d, where d is the dimension of the
embedded space. In this case, tracer diffusion will have a
crossover from subdiffusion to normal diffusion at lc C x.49

To analyse the fractal structure of the 2D random potential
field, we use the path area occupied by the potential paths that
the particles have gone through as the void area. The definition
of the path area has been described in Section IVB2. We then
use the standard ‘‘mass-radius method’’50 to compute the
fractal dimension df of the void area,

rð‘Þ ¼ sð‘Þ
‘2
’ ‘df�2; (25)

where s(l) is the occupied path area in the box of varying size
l. In the calculation, a number of boxes centered at different
positions in the path area are used to obtain an average value
of s(l).

Fig. 15 shows the obtained density r(l) of the void area as a
function of box size l for 4 different samples. Within the
experimental uncertainties, all the curves overlap with each
other, as the underlying random field remains unchanged for
all the samples. In the scaling range l0 t l t lc, the data can
be well described by eqn (25) with df = 1.83 � 0.02. This value of
df is very close to the predicted value df = 91/48 by the Lorentz
model. As shown in Fig. 15, the lower cutoff length l0 C 1 mm,
which is approximately the radius of the bottom layer particles.
The upper cutoff length is lc C 7 mm, above which r(l) is a
constant and hence the void area becomes homogeneous with

Fig. 14 Measured non-Gaussian parameter K(t) as a function of delay
time t for samples S1 (black solid line), S4 (red solid line), and S6 (blue solid
line). The red and blue dashed lines show, respectively, the measured
K(t) for particles diffusing over a periodic potential with barrier heights
Eb = 1.6kBT and Eb = 4.8kBT (samples S2 and S6 in ref. 29).

Fig. 15 Obtained density r(l) of the void area as a function of box size l

for 4 different samples S1–S4. The black line is a fit to eqn (25) with
df = 1.83 � 0.02. The arrows indicate the scaling range of the (fractal) void
area with l0 and lc being, respectively, the lower and higher cutoff lengths.
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df = d = 2. Indeed, we find from Fig. 11 that all of the measured
MSD curves become linear in t (diffusive) when hDr2(t)i\ lc

2.
A standard method of finding the value of the exponent g in

eqn (22) is through the local slope of the log–log plot of the
measured MDS curve.51,52 This method, however, is not accurate
if the measured hDr2(t)i is not a pure power law and contains
either a constant term or a linear term in t.14,51 To clarify this
issue, we calculate the velocity autocorrelation function from the
measured particle trajectories,

C(t) = hv(t)v(t + t)i, (26)

where v(t) = Dr(t)/Dt is the instantaneous velocity with Dt being
the shortest sampling time. Because the particles often encoun-
ter the same obstacle in the random field, their C(t) is anti-
correlated and thus is a negative quantity.53 For a stationary
system, one has54

CðtÞ ¼ 1

2

d2

dt2
Dr2ðtÞ
	 


: (27)

We have verified this equation by a direct comparison between
the calculated C(t) and the second derivative of the measured
hDr2(t)i. Taking the second derivative of the measured hDr2(t)i
can effectively eliminate contributions from a constant back-
ground or normal diffusion and thus can determine the value
of g more accurately.14,51

Fig. 16 shows the measured negative value of the normalized
velocity autocorrelation function, �C(t)/hv2i, as a function of
delay time t in the log–log scale for six different samples. For
large values of t, the data have relatively larger uncertainties as
the absolute value of �C(t)/hv2i is very small. In this case, a
moving average is taken to smooth out the high frequency noise.
The measured�C(t) in the crossover region, 1 s t tt 100 s, for
each sample is well described by the power law,

�C(t) B te, (28)

with the exponent e varied in the range between �1.25 and
�1.46 (two black dashed lines) for different samples. It is found
that the fitted absolute value of e increases slightly with the
mean barrier height hEbi, and the average value of e over all the
samples is e = �1.35 � 0.11.

From eqn (27) and (28), we find the exponent g in eqn (22)
can be written as g = 2 + e. With the measured mean value of e,
we find that g = 0.65 � 0.11. This value of g agrees well with the
predicted value g = 0.695 based on the percolation theory.48 For
the random potentials used in this experiment, there are
additional energy barriers in the accessible void space. These
energy barriers will affect the value of g, as they can further
hinder the colloidal diffusion. Because the mean barrier height
hEbi varies among different samples, the resulting value of g is
found to decrease slightly with the mean barrier height hEbi.
Our measurement of the exponents df and g thus confirms
that colloidal diffusion over the 2D random potential can be
adequately described by the Lorentz model.

It is also found that the values of g obtained from Fig. 16
are all smaller than those obtained directly from the local
slope of the measured MSD curves. For sample S6, the two
values of g differ by 0.19. For other samples, the difference is
even bigger. This finding suggests that there is a significant
contribution of normal diffusion to the measured hDr2(t)i
in the subdiffusion regime. For diffusion over a random
potential, particles in different locations may take a different
amount of time to reach their final long-time diffusion
regime. The measured hDr2(t)i in the subdiffusion regime is
thus averaged over a heterogenous ensemble of particle
trajectories with both diffusive and subdiffusive characteristics.
By taking the second derivative of hDr2(t)i, the diffusive
component (linear in t) in the measured hDr2(t)i is eliminated.
We therefore conclude that the values of g obtained from
Fig. 16 are more accurate. A future study of non-power-law
contributions to the measured hDr2(t)i in the subdiffusion
regime is needed for colloidal diffusion over complex potential
landscapes.

V. Conclusion

In this work, we used a two-layer colloidal system to study
colloidal diffusion over a quenched random potential. The
bottom layer is made of a mixture of bidisperse silica spheres,
which form a randomly packed colloidal monolayer on a glass
substrate. The top layer consists of monodisperse silica spheres
diffusing over the ragged surface of the bottom colloidal layer,
which provides a random gravitational potential U(x,y) to the
diffusing particles in the top layer. By measuring the popula-
tion probability histogram P(x,y) of the top diffusing particles,
we obtain U(x,y) via the Boltzmann distribution in eqn (18).
With the obtained U(x,y), we find that the random potential for
a fixed configuration of bottom layer particles is well described
by a universal distribution function H(Eb/hEbi) of the energy
barrier height Eb, where the mean value hEbi increases with the
size of the top layer particles (see Table 1).

Fig. 16 Measured negative value of the normalized velocity autocorrela-
tion function, �C(t)/hv2i, as a function of delay time t for six different
samples (color coded). The two black dashed lines indicate the range of
the fitted values of the exponent e from e = �1.25 (lower dashed line)
to e = �1.46 (upper dashed line).
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The dynamical properties of the top diffusing particles, such
as their mean square displacement (MSD) hDr2(t)i, histogram
P(tE) of the escape time tE, and long-time self-diffusion coeffi-
cient DL, are simultaneously measured from the particle trajec-
tories. The measured MSD exhibits a dual-crossover behavior
with an initial short-time diffusion followed by a crossover to
the subdiffuion regime caused by the structural disorders in the
bottom colloidal layer. When the delay time t becomes more
than five times longer than the largest mean escape time
(%tE)max, the particles on average have experienced (or hopped
over) many potential barriers, and their motion recovered back
to normal diffusion with a reduced long-time diffusion coeffi-
cient DL. The measured DL is well described by eqn (17), which
is obtained using the approach of potential path average as
originally proposed by Zwanzig.16

The random field has two major effects on colloidal diffu-
sion. First, it reduces the value of DL. As the distribution of the
barrier heights Eb is broad, larger values of Eb are found to play
a more dominant role in suppressing the value of DL. Second,
the random field enlarges the subdiffusion region and delays
the crossover time from subdiffusion to normal diffusion. Such
a crossover can be explained by the Lorentz model for tracer
diffusion through a heterogeneous space with a finite cutoff
length lc. It is found that the area occupied by the particle
trajectories (‘‘path area’’) in the random potential field is a
fractal with fractal dimension df = 1.83 � 0.02, when the length
scale l is in the range l0 (C1 mm) t lt lc (C7 mm). This value
of df is very close to the predicted value df = 91/48 by the Lorentz
model. When the particles diffuse in a fractal area, their motion
is slowed down with increasing delay time t and the resulting
hDr2(t)i becomes subdiffusive with the exponent g = 0.65� 0.11.
This value of g is in good agreement with the predicted value
g = 0.695 based on the percolation theory.48 For larger length
scales with l 4 lc (or longer delay times), the path area
becomes homogeneous and the measured hDr2(t)i is changed
from subdiffusion to normal diffusion.

Our work demonstrates that the two-layer colloidal system is
a versatile platform for the study of colloidal diffusion over
complex potential landscapes. By using a mixture of bidisperse
spheres with different particle sizes and number ratios, one can
generate a randomly packed colloidal monolayer on the bottom
with a large number of disorder configurations, which have a
short correlation length comparable to the size of the top layer
diffusing particles. The disorder configurations vary from
crystal-like structures with different amounts of defects and
grain boundaries introduced by the ‘‘dopant’’ particles to various
glass-like structures with either well-mixed (homogenous) states
or micro-structured domains.39–41 It is even possible to use a
mixture of polydisperse spheres with size ratios following a
power law. This method thus provides a well-controlled and
convenient way to vary the potential landscapes with different
disorders. With the capability of simultaneous multi-particle
tracking of the top-layer diffusing particles and determination
of the underlying potential landscape at the single-particle
spatial resolution, one is able to conduct quantitative studies
of a range of interesting issues involved in colloidal diffusion

over 2D random potentials, such as finding the correlations
between the bottom-layer structures and energy barrier height
distribution H(Eb) as shown in Fig. 9, as well as dynamic
heterogeneity of the top-layer diffusing particles. Clearly, the
two-layer colloidal system is a rich system with a large parameter
space to explore. The present work represents the first step
towards this direction.

Acknowledgements

The authors wish to thank Bruce J. Ackerson for useful discus-
sions. This work was supported in part by RGC of Hong Kong SAR
under grant no. A-HKUST616/14-A (P. T.) and HKUST16302816
(P. T.), and by MoST of Taiwan under the grant no. 103-2112-M-
008-003-MY3, (P. Y. L.).

References

1 J. W. Haus and K. W. Kehr, Phys. Rep., 1987, 150, 263.
2 J. P. Bouchaud and A. Georges, Phys. Rep., 1990, 195, 127.
3 S. Havlin and D. Ben-Avraham, Adv. Phys., 2002, 51(1), 187

(originally published in Adv. Phys., 1987, 36).
4 S. J. Harris, A. Timmons, D. R. Baker and C. Monroe, Chem.

Phys. Lett., 2010, 485, 265–274.
5 L. Sieminskas, M. Ferguson, T. W. Zerda and E. Couch,

J. Sol-Gel Sci. Technol., 1997, 8, 1105–1109.
6 G. Dagan, J. Fluid Mech., 1984, 145, 151.
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