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rt and diffusion over a tilted
periodic potential: dynamics of individual particles

Xiao-guang Ma,a Pik-Yin Lai,*b Bruce J. Ackersonc and Penger Tong*a

A tilted two-layer colloidal system is constructed for the study of force-assisted barrier-crossing dynamics

over a periodic potential. The periodic potential is provided by the bottom layer colloidal spheres forming a

fixed crystalline pattern on a glass substrate. The corrugated surface of the bottom colloidal crystal

provides a gravitational potential field for the top layer diffusing particles. By tilting the sample at an angle q

with respect to the vertical (gravity) direction, a tangential component of the gravitational force F is applied

to the diffusing particles. The measured mean drift velocity v(F, Eb) and diffusion coefficient D(F, Eb) of the

particles as a function of F and energy barrier height Eb agree well with the exact results of the one-

dimensional drift velocity (R. L. Stratonovich, Radiotekh. Elektron, 1958, 3, 497) and diffusion coefficient (P.

Reimann, et al., Phys. Rev. Lett., 2001, 87, 010602 and P. Reimann, et al., Phys. Rev. E, 2002, 65, 031104).

Based on these exact results, we show analytically and verify experimentally that there exists a scaling

region, in which v(F, Eb) and D(F, Eb) both scale as n0(F)exp[�E*
b(F)/kBT], where the Arrhenius pre-factor n0(F)

and effective barrier height E*
b(F) are both modified by F. The experiment demonstrates the applications of

this model system in evaluating different scaling forms of n0(F) and E*
b(F) and their accuracy, in order to

extract useful information about the external potential, such as the intrinsic barrier height Eb.
I. Introduction

Energy landscape is an important concept in science, which has
been widely used in many areas of physics, chemistry and
biology.4 In surface science for instance, the motion of atoms
adsorbed on a crystal surface (adatoms) under thermal agita-
tions is determined by the electronic interactions with the
substrate atoms.5–7 In cell biology, the lateral motion of
membrane-bounded proteins on a cell membrane is deter-
mined by a complex interaction landscape with the surrounding
proteins and lipids and with the underlying cytoskeleton.8,9 In
the study of protein folding, the change of protein congura-
tions is thought of as a diffusion in a funnel-like energy land-
scape along the reaction coordinates.10,11 Our general
understanding of this type of problem is through the well-
known Arrhenius–Kramers equation,12,13.

k ¼ (k0n)e
�Eb/kBT, (1)

which connects the reaction (or diffusion) rate k to the energy
barrier height Eb with k0 being an attempt frequency and n the
Arrhenius pre-factor. eqn (1) provides a simple physical picture
for a common class of diffusive barrier-crossing problems. It is
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valid for reactions or transitions involving a large energy
barrier, for example with Eb/kBT T 6–7.14–16

The diffusive barrier crossing is made under constant thermal
agitations and the probability for such random events to occur
becomes very small if Eb is much larger than the thermal energy
kBT. This situation is changed completely when an external force
F is applied to the particle, so that the energy barrier is lowered in
the direction of force. Understanding the effect of the external
force on thermally activated kinetics is a concern of a common
class of transport problems, such as particle separation by elec-
trophoresis,17,18 electromigration of atoms on the surface of
metals19 and semiconductors,20 motion of a three-phase contact
line under the inuence of an unbalanced capillary force,21

control of crystal growth22 and design of nano-scale
machinery.23,24 In biology and biophysics, force-assisted thermal
activation is employed in various single molecule stretching
experiments to study the binding and folding energy landscape of
bio-molecules, such as DNA,25 RNA,26 nucleic acids,27 receptors/
ligands28 and proteins,29 and the adhesion between bio-
membranes of vesicles, capsules and living cells.30,31

To obtain useful information about the underlying energy
landscape, such as the energy barrier height Eb, from the
experiment, various theoretical models30,32–37 have been
proposed; most of them are modied versions of the Arrhenius–
Kramers equation. In developing these models and facilitating
their applications in the experiment, a number of assumptions
and approximations have been made at different levels in order
to calculate how the Arrhenius factor n and barrier height Eb
This journal is © The Royal Society of Chemistry 2015
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change with the external force F. For many practical applica-
tions, however, one oen encounters complications, such as
highly hierarchical structures and heterogeneous kinetics,38

making it difficult to directly apply the sophisticated statistical
mechanics models to connect the kinematics with the ener-
getics.39–41 While some models have been widely used to explain
the experimental data, there are few experimental systems in
which one can actually visualize the energy landscape and test
the theory. Thus much of the work done so far is through
computer simulations. Finding an experimental model system
using which one can directly measure the energy landscape and
track individual particle trajectories with adequate statistics is,
therefore, extremely valuable in testing different theoretical
ideas.

Attempts have beenmade to use an external potential eld to
mimic the effect of an energy landscape, which is usually
imposed by the surrounding molecules to a test particle.
Examples include the study of colloidal transport and diffusion
in a one-dimensional (1D) optical trap (optical tweezers) with
either a periodic or random variation of the laser light inten-
sity.42–45 Recently, we developed a two-layer colloidal system to
study colloidal diffusion over a periodic potential.16 The peri-
odic potential is provided by the bottom layer of colloidal
spheres forming a crystalline pattern on a glass substrate. The
corrugated surface of the colloidal crystal provides a gravita-
tional potential eld for the diffusing particles on the top layer.
Using the techniques of optical microscopy and multi-particle
tracking, we measured the population statistics of the diffusing
particles and constructed the external potential via the Boltz-
mann distribution. The dynamical properties of the diffusing
particle, such as its escape time and diffusion coefficient, were
simultaneously measured from the particle trajectories. With
the simultaneously obtained energetics and dynamics infor-
mation, we tested the theory and demonstrated the applications
of the colloidal potential. This work opens up a new realm of
investigation at the single-particle level for a range of inter-
esting problems associated with the diffusive and force-assisted
barrier-crossing dynamics over complex potentials.

In this paper, we report a systematic study of the effects of an
external force F on the barrier crossing dynamics of the
diffusing particles over a periodic potential. By tilting the entire
two-layer system at an angle q with respect to the vertical
(gravity) direction, a tangential component of the gravitational
force F is applied to the top layer particles. In the experiment, we
measure the particle mean dri velocity v(F, Eb) and diffusion
coefficient D(F, Eb) as a function of F (by varying the tilt angle q)
and Eb (by using different colloidal samples). The experimental
results are compared with the exact results of the 1D dri
velocity1 and diffusion coefficient.2,3 Based on these exact
results, we show analytically and verify experimentally that
there exists a scaling region, in which v(F, Eb) and D(F, Eb) both
have an approximate Arrhenius–Kramers-like form, n0(F)exp
[�E*

b(F)/kBT], where the Arrhenius pre-factor n0(F) and the
effective energy barrier height E*

b(F) are both modied by the
external force F.

A primary objective of this paper is to nd some approximate
but simpler expressions for v(F, Eb) and D(F, Eb) in different
This journal is © The Royal Society of Chemistry 2015
scaling regimes, based on the exact results,1–3 and to delineate
the suitable conditions under which one can use these scaling
results in the experiment to accurately extract the characteris-
tics of the external potential, such as the intrinsic barrier height
Eb. The remainder of the paper is organized as follows. We rst
describe the theory of the 1D Brownian dynamics of colloidal
particles over a tilted periodic potential in Section II. The
experimental procedures and image processing methods are
presented in Section III. The experimental results and discus-
sions are given in Section IV. Finally, the work is summarized in
Section V.
II. Theory

We consider the 1D motion of a Brownian particle of mass m
under the inuence of an external potential U(x). The particle
motion can be described by the Langevin equation46

m
d2x

dt2
þ x

dx

dt
¼ fBðtÞ � dUðxÞ

dx
; (2)

where x(t) is the particle position at time t, xdx/dt is the drag
force experienced by the particle with x being the friction
coefficient, and fB(t) is the random Brownian force due to
thermal uctuations of the surrounding uid. While the mean
value of fB(t) is zero, its autocorrelation function C(s) is non-zero
and has a form,47

C(s) h hfB(t + s)fB(t)i ¼ 2kBTxd(s), (3)

where kBT is the thermal energy of the system and d(t) is the d-
function. The last term, �dU(x)/dx, is the conservative force
experienced by the particle resulting from the potential U(x). If
the motion is over-damped, which is the case for colloidal
particles in an aqueous solution, the rst term in eqn (2) can be
omitted.

When there is an external constant force F acting on the
particle and the potential U0(x) without force is periodic, one
can nd an exact solution of eqn (2).2,3 In this case, one has U(x)
¼ U0(x) � Fx, where U0(x) ¼ U0(x + l) with l being the period.
The introduction of the external force F breaks the detailed
balance and generates a net particle ux along the direction of
F. Aer a short period of relaxation, the system reaches a steady
state and the particles obtain a mean dri velocity v, which has
the form1

v ¼
�
D0

l

�
1� e�Fl=kBT

1

l

ðl
0

dx IþðxÞ
; (4)

where

IþðxÞ ¼ 1

l

ðl
0

dy e½UðxÞ�Uðx�yÞ�=kBT ; (5)

and D0 ¼ kBT/x is the particle free diffusion coefficient without
the inuence of the potential U(x). In the moving reference
frame with the velocity v, the long-time behavior of the particle
motion is diffusive and the diffusion coefficient D has the
form:2,3
Soft Matter, 2015, 11, 1182–1196 | 1183
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D ¼ D0

1

l

ðl
0

dx Iþ
2ðxÞI�ðxÞ�

1

l

ðl
0

dx IþðxÞ
�3 ; (6)

where

I�ðxÞ ¼ 1

l

ðl
0

dy e�½UðxÞ�UðxþyÞ�=kBT : (7)

While eqn (4) and (6) are the exact analytic results, their
integration forms make it quite difficult to understand the
physical meaning of these equations. In the following, we will
use different approximations to simplify these equations, so
that one can use them directly in the experiment.
A. Small force expansion

We rst dene a force unit associated with the thermal energy
kBT as FTh kBT/l. When F < FT, both v and D can be expanded in
terms of F/FT and we nd

vx
v0

R
1þ 1

2

1

3
�

ðl
0

dx Kþ
ð0ÞðxÞðl

0

dx Iþ
ð0ÞðxÞ

0
BBB@

1
CCCA
�
F

FT

�2

þ O

"�
F

FT

�4
#8>>><

>>>:

9>>>=
>>>;
;

(8)

and

Dx
D0

R
1þ 3

ðl
0

dx Iþ
ð0ÞðxÞJþð0ÞðxÞJ�ð0ÞðxÞðl

0

dx
h
Iþ

ð0ÞðxÞ
i2
I�

ð0ÞðxÞ
� 1

4

0
BBB@

1
CCCA
�
F

FT

�2

8>>><
>>>:

þ O

"�
F

FT

�4
#)

; (9)

where

R ¼
�
1

l

ðl
0

dx eU0ðxÞ=kBT
��

1

l

ðl
0

dx e�U0ðxÞ=kBT
�
; (10)

I�
ð0ÞðxÞ ¼ 1

l

ðl
0

dy e�½U0ðxÞ�U0ðxHyÞ�=kBT ; (11)

J�
ð0ÞðxÞ ¼ 1

l2

ðl
0

dyy e�½U0ðxÞ�U0ðxHyÞ�=kBT ; (12)

and

K�
ð0ÞðxÞ ¼ 1

l3

ðl
0

dyy2e�½U0ðxÞ�U0ðxHyÞ�=kBT : (13)

In the above, v0¼ F/x is the dri velocity of the particle over a
at incline (U0(x) ¼ 0). In the limit F / 0, v vanishes and D
recovers the form given by Lifson and Jackson.48 Because of the
symmetry, one has v(�F) ¼ �v(F) and D(�F) ¼ D(F).
1184 | Soft Matter, 2015, 11, 1182–1196
Eqn (10) can be further simplied if variations of U0(x) are
much larger than kBT for some values of x. Under the steepest
descent approximation, one nds that both v and D have the
Arrhenius–Kramers form12,13 at the lowest order of F/FT,

v x v0n e
�Eb/kBT, (14)

and

D x D0n e
�Eb/kBT. (15)

In the above, Eb is the energy barrier height and n ¼
(|U

00
aU

00
b|)

1/2l2/(2pkBT) is the Arrhenius pre-factor, which contains
the second derivatives of U0(x) at the energy minimum xa and at
the energy barrier xb. From eqn (8) and (14), we nd the effective
friction coefficient via the equation v ¼ F/xeff, where xeff has the
form

xeff ¼ xRx
x

n
eEb=kBT : (16)

In the above, x is the friction coefficient for a at incline.
When F < FT, v is proportional to F (linear response) and thus xeff
is independent of F. With eqn (16), the diffusion coefficient D in
eqn (15) can be written as the Stokes–Einstein form D¼ kBT/xeff.

For a given potential U0(x), there exists a critical force Fc,
which is given by the positive root of Fc ¼ U 0

0(xc), where xc is the
inection point of U0(x) given by U

00
0(xc) ¼ 0. At the critical force

Fc, the effective barrier to escape vanishes.32,33 When F [ Fc,
one asymptotically recovers v x v0 and D x D0.
B. Steepest descent approximation for intermediate forces
FT ( F ( Fc

To simplify the expressions to be given below, we write U0(x) ¼
(Eb/2)u(x) with the barrier height Eb being explicitly factored out
and u(x) ˛ [�1, 1] is a unit periodic function. Then the 2D
integration in eqn (4) and (6) can be written as

1

l

ðl
0

dx IþðxÞ ¼ 1

l2

ð
R1

dr1 e
�ðEb=2kBTÞg1ðx;yÞ; (17)

where
ð
R1

dr1h
ðl
0

ðl
0
dx dy and

g1ðx; yÞhuðxÞ � uðxþ yÞ þ 2Fl

Eb

y: (18)

The 4D integration in eqn (6) can be expressed as

1

l

ðl
0

dx Iþ
2ðxÞI�ðxÞ ¼ 1

l4

ð
R2

dr2 e
�ðEb=2kBTÞg2ðx;y;w;zÞ; (19)

where
ð
R2

dr2h
ðl
0

ðl
0

ðl
0

ðl
0
dx dy dw dz ​ and

g2ðx; y;w; zÞ ¼ uðxÞ � uðxþ yÞ � uðxþ wÞ þ uðx� zÞ

þ 2Fl

Eb

ðyþ wþ zÞ: (20)
This journal is © The Royal Society of Chemistry 2015
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For high energy barriers (Eb [ kBT), one can use the saddle
point method to carry out the integrations in eqn (17) and (19)
and obtain

1

l

ðl
0

dx IþðxÞx 4pkBT

Eb

exp

�
� Eb

2kBT
g1
�
r*1
��

�
det v2g1ðr*1Þ

	1=2 ; (21)

and

1

l

ðl
0

dx Iþ
2ðxÞI�ðxÞx ð4pkBTÞ2

E2
b

exp

�
� Eb

2kBT
g2
�
r*2
��

�
det v2g2ðr*2Þ

	1=2 ; (22)

where r*1 h (x*1, y*1) and r*2 h (x*2, y*2, w*
2, z*2) are, respectively, the

saddle points of g1(r1) and g2(r2). The location of the saddle
points can be determined by

u0
�
x*
1

� ¼ u0
�
x*
1 þ y*1

� ¼ Fl

kBT
; (23)

and

u0
�
x*
2

� ¼ u0
�
x*
2 þ y*2

� ¼ u0
�
x*
2 þ w*

2

� ¼ u0
�
x*
2 � z*2

� ¼ Fl

kBT
: (24)

The determinants of the Hessian matrix v2g(r*) at the two
saddle points in eqn (21) and (22) are, respectively,

det[v2g1(x
*
1, y

*
1)] ¼ �u00(x*

1)u
0 0(x*

1 + y*1), (25)

and

det[v2g2(x
*
2, y

*
2, w

*
2, z

*
2)] ¼ u0 0(x*

2)u
0 0(x*

2 + y*2)u
00(x*

2 + w*
2)

u0 0(x*
2 � z*2). (26)

To make further progress, one needs to know the functional
form of u(x). Hereaer, we use the trial function, u(x)¼ cos(2px/l),
to evaluate the above equations. From eqn (23) we nd the location
of the saddle point r*1,

�
x*
1; y

*
1

� ¼ �
1

2
þ 1

2p
sin�1

�
F

Fc

�
;
1

2
� 1

p
sin�1

�
F

Fc

��
; (27)

where the critical force Fc ¼ pEb/l. eqn (21) then becomes

1

l

ðl
0

dx IþðxÞx kBT

Fcl

eE
*
b=kBTh

1� ðF=FcÞ2
i1=2; (28)

where

E*
b ¼ Eb

"
1�

�
F

Fc

�2
#1=2

� Fl

�
1

2
� 1

p
sin�1

�
F

Fc

��
(29)

is the actual barrier height of the new potential U(x) ¼ U0(x) �
Fx. Under the inuence of the external force F, the value of E*

b is
reduced compared with the original barrier height Eb of U0(x).
Thus under the steepest descent approximation, eqn (4) is
simplied to the following scaling form,

vxvcn
0 e�E*

b=kBT ; (30)

where vc ¼ Fc/x and
This journal is © The Royal Society of Chemistry 2015
n0 ¼
"
1�

�
F

Fc

�2
#1=2

: (31)

The effective friction coefficient xeff in this case becomes

xeffðFÞxx
F

Fcn0
eE

*
b=kBT : (32)

In the intermediate force range FT ( F( Fc, v is not a linear
function of F anymore (linear response does not work here) and
thus xeff(F) becomes a function of F.

Similarly, we nd the location of the saddle point r*2,

�
x*
2; y

*
2;w

*
2; z

*
2

	 ¼ �
1

2
þ 1

2p
sin�1

�
F

Fc

�
;
1

2
� 1

p
sin�1

�
F

Fc

�
;

1

2
� 1

p
sin�1

�
F

Fc

�
; 0

�
; (33)

and the steepest descent approximation gives

1

l

ðl
0

dx Iþ
2ðxÞI�ðxÞx 1

2

kBT

Fcl

eE
*
b=kBTh

1� ðF=FcÞ2
i1=2

2
64

3
75

2

; (34)

Note that because the saddle point is located at the inte-
gration boundary z* ¼ 0 in the z direction, the steepest descent
result is twice larger than it should be. Therefore, a factor of 1/2
is introduced in eqn (34). eqn (6) then becomes

DxDcn
0 e�E*

b=kBT ; (35)

where Dc ¼ Fcl/(2x). With eqn (32), the diffusion coefficient D in
eqn (35) can be written as D ¼ F(l/2)/xeff. While this is of the
Stokes–Einstein form, the thermal energy kBT is now replaced
by the work (Fl/2) done by the external force to the energy
barrier.

For a periodic potential, the transition rate k over one period
can be written as k¼ k+� k�, where k+ is the forward rate and k�
is the backward rate. Because k� ¼ k+ e

�F/FT, one can assume
that kx k+ when F[ FT. In this case, eqn (30) can be re-written
as a rate equation

khv


l ¼ kcn

0 e�E*
b=kBT ; (36)

where kc ¼ vc/l. This rate equation has been derived previ-
ously,34–36 by assuming that the effect of the external force is to
modify both the barrier height and pre-factor in Kramers' rate
equation. Herein we provide a rigorous proof based on the exact
solution as shown in eqn (4).

In addition, we also provide a direct proof of the scaling form
of D based on the exact solution. Our results clearly demon-
strate that the transport behavior of the particles driven by an
external force F over a periodic potential U0(x) is governed by the
actual barrier height E*

b and the scaling factor n0. In this case, the
diffusion coefficient D scales with the particle-ux-induced
diffusivity Dc ¼ Fcl/(2x), which is independent of kBT and can be
much larger than the particle free diffusion coefficient D0.
Soft Matter, 2015, 11, 1182–1196 | 1185



Soft Matter Paper
Furthermore, from eqn (4) and (6), and the steepest descent
results in eqn (28) and (34), one obtains

v

D
x

2

l

�
1� e�F=FT

�
; (37)

for F/FT > 1. For F/FT < 1, one nds v x (D/kBT)F.
In the experiment to be described below, we measure v(F, Eb)

and D(F, Eb) as a function of F for different potentials U0(x). The
experimental results will be compared with the approximate
solutions discussed above. We will also examine the scaling
behavior of the measured v(F, Eb) and D(F, Eb).

III. Experimental
A. Apparatus and sample preparation

Fig. 1 shows the sample cell used in the experiment, which is
tilted at an angle q with respect to the vertical (gravity) direction.
A central hole of 6 mm in diameter and 1 mm in depth is drilled
through the center of a circular stainless steel cell (SC). The cell
has a circular chamber of a slightly larger diameter surrounding
the hole and is sealed from the bottom by a glass cover slip (GC).
The entire sample cell has two uid chambers; the central hole
is used to hold the colloidal sample and the outer surrounding
chamber contains additional solvent (water with the same salt
concentration) to prevent sample evaporation. The central hole
is rst lled with the colloidal sample and is covered by another
glass cover slip (GC). Under the action of capillary forces, the
contact gap between the top cover slip and central sample cell
(both are hydrophilic) is sealed by the sample solvent. The outer
chamber is then lled with additional solvent, preventing the
central sample chamber from being in contact with the outside
air. In this way, sample evaporation is minimized so long as
there is some solvent remaining in the outer chamber. Extra
solvent is added to the outer chamber from time to time during
the experiment using an embedded syringe.

The sample cell is placed on the stage of an inverted
microscope (Leica DM-IRB), and the motion of the particles is
viewed from below using bright eld microscopy. Movies of
particle motion are recorded using a monochrome CCD camera
Fig. 1 Schematic diagram of the sample cell (side view): SC, stainless
steel cell; GC, glass cover slip; GA, gravity axis; OA, optical axis; q, tilt
angle of the sample cell; red particles, large silica spheres forming a
monolayer crystal on the bottom glass substrate; blue particles,
smaller diffusing particles on top of the colloidal crystal; arrow,
direction of force F acting on the diffusing particles.
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(CoolSNAP, Media Cybernetics) and streamed to the hard drive
of a host computer. They are taken at 7 frames per second.
Commercial image acquisition soware (ImagePro, Media
Cybernetics) is used to control the camera. The recorded images
have a spatial resolution of 1392 � 1040 pixels and 256 gray
scales.

Plain silica spheres of different sizes are used in the experi-
ment and they are purchased from Bangs Laboratories. All the
purchased samples are thoroughly washed using deionized
water by repeated centrifugation. The original aqueous solution
of particles with 5% (g mL�1) solid concentration is diluted at a
1 : 100 ratio by weight by deionized water. The solution is
centrifuged at 1000 rpm (at�100g centrifugal acceleration) for 5
minutes and the particles in the centrifuge sample settle down
to the bottom of the test tube. The supernatant is then removed
as much as possible using a pipette and the remaining solid is
further diluted by deionized water for repeated centrifugation.
Typically, we repeat this procedure 8–10 times to make sure that
all the impurities in the solution are removed. To further
remove the particle aggregates from the cleaned solution, we ll
the solution in a thin test tube for free sedimentation until the
interface between the supernatant and particle-containing
solution falls to less than 1/2 of the original height. Then we
pipette out a small amount of the solution just below the
interface. The selected solution is found to contain only
monodisperse silica spheres.

To prepare a close-packed monolayer of colloidal spheres
near the bottom glass substrate, we add the colloidal solution
into the sample cell one drop (�200 mL) at a time until the area
fraction n occupied by the silica spheres in the bottom layer
reaches n x 0.7. This process is monitored in real-time using a
camera on the microscope and the particles take 1–2 minutes to
settle on the glass substrate. The image analysis soware
ImagePro is used to calculate the area fraction n. Then a 1 mL
syringe is used to continue the process with a smaller drop (10–
20 mL) of the particle solution added at a time until n
approaches the packing limit nc x 0.8. The sample is then le
open for complete evaporation of water in the solution and the
remaining particles are attached to the glass substrate by van
der Waals forces. The evaporation process takes several hours to
complete at room temperature with a relative humidity of
�70%.

During evaporation, the silica spheres self-assemble into a
close-packed monolayer crystal patches. By laterally moving the
sample stage, we are able to nd a single crystal patch within
the view area of 150 � 113 mm2, which is achieved by using a
63� oil objective. Then we ll the sample cell with a 0.1 mM
aqueous solution of NaCl followed by addition of a drop of silica
suspension into the salt solution using a 1 mL syringe. Aer
several minutes, the silica spheres settle down on top of the
bottom layer colloidal crystal, and the particle number in the
view area is counted using ImagePro. This procedure is repeated
until a desired area fraction n for the second layer particles is
reached. The sample cell is then covered with a glass cover slip
to prevent solvent evaporation. Two colloidal samples, S1 and
S2, with different top/bottom particle sizes are used in the
experiment and their properties are given in Table 1.
This journal is © The Royal Society of Chemistry 2015



Table 1 Two colloidal samples used in the experiment with different
pairs of top/bottom particles and the obtained external potential
parameters, including lattice constant l, energy barrier height Eb/kBT,
critical force Fc/FT, and R h hexp[U0(x)/kBT]ilhexp[�U0(x)/kBT]il (see
text)

Samples Top/bottom (mm) l(mm) Eb/kBT Fc/FT R

S1 2.1/2.9 1.7 1.5 5.9 � 2 1.3
S2 3.6/3.6 2.1 6.7 22.8 � 2 40.0

Fig. 2 Microscopic image of sample S2. The uniform honey-comb
pattern in the background is the image pattern resulting from the
bottom layer colloidal crystal. The bright spots with a non-uniform
intensity profile are the diffusing particles on the top layer. The arrow
indicates the 1, 0 crystalline orientation. The scale bar is 10 mm.
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B. Optical microscopy and image analysis

Fig. 2 shows the silica spheres of diameter d ¼ 3.6 mm (bright
spots with a non-uniform intensity prole) diffusing over the
bottom layer colloidal crystal (honey-comb lattice) made of the
same silica spheres (sample S2). The image is taken with the
focal plane located in between the two layers of silica spheres so
that the out-of-focus image of the bottom colloidal crystal
becomes a honey-comb lattice and the top diffusing particles
appear as bright spots. The non-uniform intensity prole of the
diffusing particles is caused by the interference with the bottom
layer particles. The white arrow indicates the 1, 0 crystalline
direction of the bottom layer crystal.

The microscope is placed on a homemade incline with an
adjustable tilt angle q up to 35� with respect to the horizontal
base. During the adjustment of tilt angle q, the optical axis (OA)
of the microscope, as shown in Fig. 1, is always kept perpen-
dicular to the plane of the bottom colloidal crystal. Therefore,
the focus plane of the objective does not change with increasing
(or decreasing) q. With this setup the external force F acting on
the top layer diffusing particles is provided by gravity,

F ¼ Dmg sin(q), (38)

where Dm is the buoyant mass of the diffusing particles and g is
the gravitational acceleration. For sample S2, we nd F x
(0.2 pN)sin(q). Note that because the potential U0(X) to be
discussed below only involves the normal component of the
This journal is © The Royal Society of Chemistry 2015
gravity, Fn ¼ Dmg cos(q), it does not change much for small
values of q. For example, at q ¼ 20�, we have cos(20�) x 0.94.

For convenience, we rotate the CCD camera so that one pair
of the rectangular boarders of the view area are exactly parallel
to the direction of F. Thus we can use the boarders of the view
area as the reference lines to align the crystalline orientation
with respect to the direction of F by rotating the sample cell on
the stage holder. For all the measurements to be discussed
below, the direction of F is kept parallel to the 1, 0 orientation of
the bottom colloidal crystal.

By applying a standard Gaussian image lter from the Mat-
lab image process toolbox, we can recover the uniform
Gaussian-like intensity prole for each diffusing particle. The
central position of the intensity prole is thus chosen as the
center of the diffusing particle. With this method we are able to
obtain a repeatable tracking accuracy of �1 pixel, which is 74
nm. A homemade Matlab program based on the standard
tracking algorithm49 is used to track the trajectory of the
diffusing particles from consecutive images.
IV. Results and discussions
A. Periodic potential

The method described in ref. 16 is used to measure the periodic
potential of the two colloidal samples. We nd the occupation
statistics of the top layer diffusing particles by adding together
105 images, each containing �100 particles, and counting the
number of particles in each pixel. In doing so we obtain the
population probability histogram (pph) P(x, y) of nding a
diffusing particle at location (x, y), which is related to the
(gravitational) potential U0(x, y) over the rugged surface via the
Boltzmann distribution,

P(x, y) f e�U0(x,y)/kBT. (39)

All the measurements are made at the area fraction nx 0.15.
At this area fraction, the interaction between the diffusing
particles is negligibly small and eqn (39) is valid.16 Because the
bottom layer is periodic, we divide the measured P(x, y) into
repetitive cells, each containing two nearby probability peaks
together with a connecting valley. We then sum up the values of
P(x, y) from different cells with correct symmetry, and generate
the single-cell pph Ps(x, y), which has a higher statistical accu-
racy. eqn (39) is then used to nd the potential U0(x, y)/kBT x
�ln[Ps(x, y)]. As will be shown below, the particle trajectory
follows a quasi-1D path X, and thus the 2D potential is simpli-
ed into a 1D potential U0(X).

Fig. 3 shows the measured U0(X) for the two colloidal
samples, S1 (red solid circles) and S2 (black solid triangles). The
unit of X has been converted from pixels to micrometers using 1
pixel ¼ 74 nm for our microscope setup. The measured U0(X)
has a double-well structure with the distance l between the two
potential wells being given by l ¼ d=

ffiffiffi
3

p
, where d is the diameter

of the bottom layer spheres. The obtained value of l from the
measured U0(X) agrees well with that obtained from the
honeycomb lattice pattern, as shown in Fig. 2. The energy
barrier height Eb between the two potential wells and the critical
Soft Matter, 2015, 11, 1182–1196 | 1187



Fig. 3 Measured potential U0(X)/kBT as a function of X for samples S1
(red solid circles) and S2 (black solid triangles).
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force Fc is determined, respectively, by the maximum values of
U0(X) and its rst derivative U 0

0(X). The measured values of l, Eb
and Fc are given in Table 1.
B. Steady-state probability distribution function of particle
displacement Dx

Fig. 4 shows a comparison of particle trajectories between
sample S1 (a) with F/FT x 1 (FT h kBT/l) and sample S2 (b) with
F/FT x 4. Also shown is the bottom colloidal crystal pattern,
which serves as a visual guide of the underlying potential. The
arrow indicates the direction of the gravitational pulling force F,
which coincides with the 1, 0 orientation of the bottom colloidal
crystal as shown in Fig. 2. As will be shown below, when the
force is along the 1, 0 orientation, the particle motion is
essentially quasi-1D and thus we can compare the experimental
results with the 1D theory as described in Section II. For other
force directions, the particle motion becomes increasingly 2D
with increasing F. Hereaer, we focus our attention on the
quasi-1D results, and we will report the 2D results elsewhere.

Fig. 4(a) reveals several interesting features of the particle
trajectories in sample S1. (i) At large length scales ([l), the
Fig. 4 Measured trajectory (green) of a diffusing particle over the
bottom colloidal crystal for samples S1 (a) and S2 (b). The white arrow
indicates the direction of the gravitational pulling force F.
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particle dris from the le to the right, following the direction
of F. At smaller length scales (<l), however, the particle spends
most of its time diffusing within a potential well. Themean dri
of the particles is thus caused by the break-down of the detailed
balance between the forward barrier hopping and backward
barrier hopping due to the external force. As a result, the mean
velocity v of the particle becomes physically meaningful only
when its traveling distance becomes larger than l. (ii) Most of
the barrier crossing events take place between the two nearby
potential wells. The particle has a higher probability to visit the
transition paths which directly connect the two potential wells
with a lower energy barrier, whereas occasionally it takes a path
with a higher energy barrier. (iii) The particle also undergoes
signicant lateral barrier crossings; they are symmetric relative
to F and their mean value over a long period of time tends to
vanish. (iv) Backward hopping against the gravitational pulling
force F is also observed but with a much lower frequency.

In contrast to sample S1 which only involves low energy
barrier crossing with a small pulling force, sample S2 involves
higher energy barrier crossing and a large pulling force and
reveals some interesting new features as shown in Fig. 4(b). (i)
The particle trajectory follows a straight zig-zag path guided by
the underlying low-energy path connecting the adjacent
potential wells. (ii) The particle trajectory is much more
centered around the quasi-1D transition path connecting the
two adjacent energy well without much spreading. (iii) Lateral
barrier crossing is rarely observed in sample S2.

The difference in particle trajectories between samples S1
and S2 can be explained as follows. For a leveled periodic
potential (i.e., when F ¼ 0), the particle has an equal probability
to jump out of its current potential well andmove into one of its
three neighboring wells. However, when the sample is tilted
with Fs 0, the forward transition rate is increased by a factor of
eF/FT, whereas the backward transition rate is reduced by a factor
of e�F/FT. If one assumes that the 2D potential consists of many
quasi-1D transition paths, the lateral transition rate will remain
the same as that for the untilted sample with F ¼ 0. Therefore,
to observe a lateral hopping event, the particle trajectory must
have, on average, eF/FT forward moving jumps. In other words,
the chance of observing lateral transitions becomes exponen-
tially small with increasing F. For S2, the smallest tilting force is
F/FT ¼ 4, and thus the chance of observing a lateral jump is only
e�4 x 1.8%. For sample S1, however, the chance is signicantly
larger, as e�1 x 37%.

From the measured particle trajectories, we compute the
probability density function (PDF) G(Dx, s) of the particle
displacement, Dx(s)¼ x(t + s)� x(t), over a lag time s. To observe
the particle long-time dynamics, we deliberately take the value
of s to be larger than themean-rst-passage-time for the particle
to crossover a single energy barrier. Fig. 5(a) shows the
measured PDFs as a function of Dx(s) for sample S1 at F/FT¼ 2.4
(titled angle q ¼ 9.2�) with three different delay times. The
measured PDFs all have a shied Gaussian shape with the most
probable value of Dx(s) increasing with s. Fig. 5(a) thus
demonstrates that the diffusing particle over the tilted periodic
potential undergoes a combined motion of random diffusion
This journal is © The Royal Society of Chemistry 2015



Fig. 5 (a) Measured probability density function (PDF) G(Dx, s) of the
particle displacement Dx(s) for sample S1 at F/FT ¼ 2.4 (titled angle q ¼
9.2�) with three different delay times: s¼ 30 s (black squares), 60 s (red
circles) and 90 s (green triangles). (b) Replot of the measured PDFs in
(a) as a function of the normalized displacement, Dx0 ¼ (Dx(s) � vs)/
(2Ds)1/2. The color code used is the same as that in (a). The solid line is a
plot of eqn (40).

Fig. 6 (a) Measured drift velocity v0/vT and v/vT as a function of F/FT for
three different samples: (i) d ¼ 2.14 mm silica spheres on a flat incline
(S1/flat, red triangles), (ii) d ¼ 3.6 mm silica spheres on a flat incline (S2/
flat, black squares with an error bar), and (iii) sample S2 (blue circles
with an error bar). The black dashed line is a plot of the equation v/vT ¼
F/FT. The blue solid line is a numerical plot of eqn (4) using the
measured U0(X) for S2. (b) An enlarged plot of the measured v0/vT and
v/vT as a function of F/FT for three different samples: (i) d ¼ 2.14 mm
silica spheres on a flat incline (S1/flat, red triangles), (ii) sample S1
(green squares with an error bar), and (iii) sample S2 (blue circles with
an error bar). The black dashed line is a plot of the equation v/vT¼ F/FT.
The green and blue solid lines are, respectively, the numerical plots of
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together with a mean dri velocity v. All the measured PDFs
with different values of s can be well described by the equation,

GðDx; sÞ ¼ G0 e
� 1

2

�
DxðsÞ�vsffiffiffiffiffiffi

2Ds
p


2

; (40)

where G0 is a normalization constant, and D is the particle
diffusion coefficient. In the experiment, both v and D are used
as the tting parameters. Once the values of v and D are
determined from the tting, we nd that all the measured PDFs
can be collapsed into a master curve when they are plotted as a
function of the normalized displacement, Dx0 ¼ (Dx(s) � vs)/
(2Ds)1/2. Fig. 5(b) shows the collapsed PDFs as a function of Dx0.
The solid line is a plot of eqn (40), which ts the data well.

In the above discussion, the direction of the pulling force F
[see Fig. 4(a)] is denoted as the x-direction, and the direction
normal to the x-direction is denoted as the y-direction. For
sample S2, because the particle trajectories follow the zig-zag
path as shown in Fig. 4(b), what we actually measured are the
components vx and Dx projected onto the x-direction in the lab
frame. To recover the values useful for the 1D potential
This journal is © The Royal Society of Chemistry 2015
discussed in Sec. II, we use the notions v ¼ vx/cos(p/6) and
D ¼ Dx/cos

2(p/6) in the following discussion. Similarly, the force
projected along the 1D potential can be written as F ¼ Fx cos(p/6),
where Fx is given in eqn (38). For sample S1, we also measure the
dri velocity vy and diffusion coefficient Dy in the y-direction. It is
found that vy ¼ 0, indicating that the detailed balance is still
maintained in the transverse transition, in which no external
force is applied.
C. Measured mean dri velocity v

We rst discuss the measured dri velocity v0 for the top layer
particles used in samples S1 and S2 over a at incline without
any energy barrier (U0(X)¼ 0) at various tilting angles q. Fig. 6(a)
shows the measured v0 as a function of F for samples S1 (red
triangles) and S2 (black squares). In the plot, the measured v0 is
normalized by the thermal velocity vT ¼ D0/l, where D0 is the
eqn (4) using the measured U0(X) for S1 and S2.

Soft Matter, 2015, 11, 1182–1196 | 1189



Fig. 7 (a) Measured diffusion coefficient D/D0 as a function of F/FT for
sample S2. The error bars indicate the standard deviation of the
measurements at each tilt angle. The solid line shows the numerically
calculated D/D0 using eqn (6) with the measured U0(X) for S2, as
shown in Fig. 3. (b) Measured Dx/D0 (black squares) and Dy/D0 (red
circles) as a function F/FT for sample S1. The solid line shows the
numerically calculated D/D0 using eqn (6) with the measured U0(X) for
S1, as shown in Fig. 3.
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measured diffusion coefficient of the same particles over the at
surface at q ¼ 0. The force F is normalized by the thermal force
FT¼ kBT/l. It is seen that themeasured v0 increases linearly with
the applied force F for both samples. The dashed line shows the
expected equation v0/vT ¼ F/FT (i.e., v0 ¼ F/x), which agrees well
with the measurements. In the above plot, we used one of the
data points to calibrate the buoyancy force Dmg. In this way, all
the parameters used in Fig. 6 are the directly measured quan-
tities and hence one can reduce the uncertainties of the
nominal value of Dmg provided by the manufacturer.

The blue circles in Fig. 6(a) are the measured v/vT for sample
S2. The error bars indicate the standard deviation of the
measurements at each tilt angle. Compared to the black
squares, the measured v/vT for sample S2 is found to be
signicantly hindered by the underlying potential U0(X); the
measured values of v/vT are much smaller than the corre-
sponding values of v0/vT for a at incline. The measured v/vT is
rst attened out when the force F is in the range 1( F/FT ( 12
followed by a curving-up rise in the force range 12 ( F/FT ( Fc/
FT x 22.8. When F exceeds its critical value Fc, the measured v
begins to approach the asymptotic value v0 and becomes very
close to the measured v0 when F/FT x 60.

Fig. 6(b) shows a comparison of the measured v/vT between
samples S1 and S2. Because F scales with d3 [see eqn (38)], the
magnitude of F for S1 is only about 1/5 of the value for S2 at the
same tilt angle q. The error bars indicate the standard deviation
of the measurements at each tilt angle. While the measured v/vT
for sample S1 is still reduced by the underlying potential, the
difference between the measured v and v0 is small. This is
because the barrier height for S1 is comparable to kBT (Eb ¼
1.5kBT), so that the critical force Fc is small (Fc/FT x 5.9 � 2 for
S1) and so is the hindering effect of the external potential. With
the measured potential U0(X) as shown in Fig. 3, we numerically
calculate v as a function of F using eqn (4). The calculated v for
samples S1 and S2 are, respectively, plotted as the green and
blue solid lines in Fig. 6. The exact theoretical results agree well
with the experimental data for both colloidal samples.
D. Measured diffusion coefficient D

Fig. 7(a) shows the measured diffusion coefficient D as a func-
tion of F for sample S2. In the plot, themeasuredD [¼Dx/cos

2(p/6)]
along the quasi-1D potential is normalized by D0 ¼ 0.065 mm2 s�1,
which is the measured diffusion coefficient of the same particles
over the at incline at q ¼ 0. The force F is normalized by the
thermal force FT. The error bars indicate the standard deviation
of the measurements at each tilt angle. The measured D/D0 at
the zero tilt angle (F ¼ 0) is D/D0 x 0.02 � 0.007, which is in
good agreement with the obtained value of 1/R ¼ 0.025 � 0.003
for S2 [see eqn (9)], as shown in Table 1. As F increases, the value
of D increases quickly and reaches a peak value of Dmax/D0x 2.6
at F/FT x 22, which is very close to the critical force Fc/FT ¼ 22.8
� 2 as measured from the potential for sample S2. When F
exceeds Fc, the measured D starts to decrease with increasing F.
For the largest value of F achieved in the experiment (F/FTx 60),
we nd D/D0 x 1.5. The solid line in Fig. 7(a) shows the
numerically calculated D/D0 using eqn (6) with the measured
1190 | Soft Matter, 2015, 11, 1182–1196
U0(X) for S2, as shown in Fig. 3. The calculated D/D0 shows a
peak at the position F/FT x 22 and is in good agreement with
the measured D/D0 (within the experimental uncertainties). The
asymptotic value of D/D0 should be unity when F [ Fc, and we
have found that the calculated D/D0 x 1.05 at F/FT x 120 [not
shown in Fig. 7(a)].

Fig. 7(b) shows the measured diffusion coefficients Dx/D0

(black squares) and Dy/D0 (red circles) for sample S1. The error
bars indicate the standard deviation of the measurements at
each tilt angle. When F¼ 0, we nd Dx/D0x Dy/D0x 0.75� 0.2,
which is close to the measured value of 3/(4R) x 0.58 for S1, as
shown in Table 1. The numerical prefactor 3/4 is introduced
here owing to the fact that for each potential well there are three
exits.16 Because there is no preferred direction in the untilted
sample, the diffusion coefficients along the two orthogonal
directions are indistinguishable. When the external force F is
turned on, the measured Dx/D0 and Dy/D0 both increase slowly
with F and reach a maximum value when F/FT is in the range of
4–5. The obtained peak position is close to the calculated
This journal is © The Royal Society of Chemistry 2015
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critical force Fc/FT x 5.9 � 2 using the measured U0(X) for S1.
The obtained maximum value of Dx/D0 is about 1.2 and that for
Dy/D0 is 1.1. The solid line in Fig. 7(b) shows the numerically
calculated D/D0 using eqn (6) with the measured U0(X) for S1, as
shown in Fig. 3. The calculated D/D0 shows good agreement
with the measured Dy/D0, but the measured Dx/D0 is notably
larger than the 1D theoretical calculation. Fig. 7(b) clearly
reveals that the enhancement of diffusion in the x-direction is
larger than that in the y direction. Our analysis, however, is only
semi-quantitative as the particle trajectories for S1 are not
exactly 1D.
Fig. 8 Sketch of the linear-cubic potential U(X) for three different
characteristic forces FT (top black curve) < F2 (middle green curve) < Fc
(bottom red curve). The three curves are displaced vertically for clarity.
The intrinsic barrier height Eb is shown for F ¼ FT.
E. Scaling behavior of the measured v and D

1. Steepest descent approximation for small forces. We
now discuss the scaling behavior of the measured dri velocity v
and diffusion coefficient D under the steepest descent approx-
imation. When the applied force F is small (i.e., F/FT < 1) and the
energy barrier height Eb is large (i.e., Eb/kBT[ 1), both v and D
have a similar scaling form, as shown in eqn (14) and (15). The
dimensional scaling factors are, respectively, v0 ¼ F/x and D0 ¼
kBT/x, which are independent of the potential U0(X). The
common scaling factor n exp[�Eb/kBT] is of the Arrhenius–
Kramers form, which only involves the potential U0(X) and is
independent of the external force F. The scaling form for v and
D thus suggests that in the small F limit, the particle diffusion
remains the same as that at equilibrium (F ¼ 0), except that
there is a net particle ux, Js f nv, along the direction of the
external force F, where n is the area fraction occupied by the top
layer particles.

2. Steepest descent approximation for intermediate forces
FT ( F ( Fc. Eqn (30) and (35) are the new scaling forms
obtained for v and D when the external force is in the inter-
mediate range FT( F( Fc. The dimensional scaling factor for v
is vc ¼ Fc/x, which is the dri velocity of the particle over a at
incline under the inuence of the constant force Fc. The
dimensional scaling factor for D is Dc ¼ Fcl/2x ¼ vcl/2, which is
an enhanced diffusion coefficient due to the dri velocity vc.
Compared to the particle free diffusion coefficient D0 ¼ kBT/x,
we nd the enhancement factor Dc/D0 ¼ Fc/(2FT), which is
independent of the thermal energy kBT. The enhancement
factor can also be expressed as the Peclet number Pe ¼ vcl/2D0,
which measures how far the system is driven away from equi-
librium by the external force Fc. The value of Dc sets up an upper
bound for the peak value of D obtained at F x Fc. For example,
we nd the calculated Dc/D0 x 3.1 for sample S2. The measured
peak value of D is D/D0 x 2.6 and the calculated peak value of D
at F x Fc using the exact solution in eqn (6) is D/D0 x 2.1.

The normalized dri velocity v/vc and diffusion coefficient D/
Dc share the common scaling form, n0 exp[�E*

b/kBT], which is of
the Arrhenius–Kramers form, but both the pre-factor n0 and the
energy barrier height E*

b are modied by the external force F. As
shown in eqn (31), the pre-factor n0 only involves F/Fc. This new
form of the Arrhenius–Kramers equation has been obtained
previously33 and here we gave an exact proof. Owing to the
change of the effective potential to U(x) ¼ U0(x) �Fx, the posi-
tion of the saddle points is altered and so does the new effective
This journal is © The Royal Society of Chemistry 2015
barrier height E*
b. To calculate E*

b, one needs to know the
functional form of U0(x). eqn (29) shows an example for the trial
function U0(x) ¼ (Eb/2)cos(2px/l). In many practical situations
of interest, however, one does not know the functional form of
U0(x) a priori. Having a general expression of E*

b (and n0) for a
model potential is, therefore, very useful for the experiment to
extract reliable characteristic information about the external
potential.

A simple linear-cubic potential of the form37,50

U(x) x Fcx � a(x � xc)
3, (41)

where a is a constant proportional to U%
0 (xc), is oen used to

approximate the tilted potential U(x) ¼ U0(x) �Fx near the
inection point xc.33,51 Fig. 8 shows a sketch of the linear-cubic
potential U(x) for three different characteristic forces FT (top
black curve) < F2 (middle green curve) < Fc (bottom red curve). As
the force F increases, the effective barrier height E*

b decreases
and vanishes at F¼ Fc. Substituting eqn (41) into eqn 23–26, one
nds37

E*
b ¼ Eb

�
1� F

Fc

�3=2

; (42)

and

n0 ¼
ffiffiffi
2

p �
1� F

Fc

�1=2

: (43)

Clearly, the expression of E*
b in eqn (42) is simpler than that

in eqn (29).
In another simplied model, one assumes that the barrier

shape U0(x) does not change much with Fx under the so-called
“sharp barrier” approximation.30,32 Themain effect of the force F
is to change the barrier height from the intrinsic value Eb to

E*
b ¼ Eb � F

l

2
xEb

�
1� F

Fc

�
; (44)
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Fig. 10 Comparison of the calculated pre-factor n0 as a function of F/
Fc using eqn (31) (red solid line) and eqn (43) (black dashed line). The
open circles are the obtained values of n0 using the measured U(X) for
sample S2.
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where l/2 is a characteristic distance between the energy
minimum and maximum, and Fc x Eb/(l/2) is the critical force.
Note that for the tilted cosine potential we nd Fc ¼ pEb/l, and
for the linear-cubic potential one has Fc ¼ 3Eb/l. In this simple
model, the prefactor n0 was assumed to be a constant equal to
the prefactor n without the inuence of the applied force. This
model was rst proposed by Bell30 and further improvements
were considered recently to include the effect of the force on n033

and corrections in the vicinity of Fc.52

Fig. 9 shows a comparison of the calculated E*
b as a function

of F/Fc using eqn (29) for the tilted cosine potential (red solid
line), eqn (42) for the linear-cubic potential (black dashed line),
and eqn (44) for the “sharp barrier” case (blue dotted line) all
with Eb ¼ 6.7kBT. The open circles are the obtained values of E*

b/
kBT using the measured U0(X) for sample S2. It is seen that the
two curves for the tilted cosine potential and linear-cubic
potential are very close to each other and they show little
difference in the whole range of 0( F/Fc ( 1. These two curves
t the data at both the small and large force ends but in the
middle force range (F/Fc x 0.5), the calculated E*

b is off by
�0.8kBT compared with the measured value. Bell's expression
for the “sharp barrier” case is clearly a good approximation in
the small force range. For larger values of F/Fc, eqn (44) under-
estimates the true value of E*

b signicantly. Fig. 9 thus demon-
strates that eqn (42) gives an upper bound of the measured E*

b/
kBT, whereas eqn (44) gives a lower bound of the measured E*

b/
kBT. Overall, eqn (42) gives a reasonably good estimate of the
effective barrier height E*

b/kBT without knowing the ne details
of the potential, so long as the critical force Fc is known.

Fig. 10 shows a comparison of the calculated n0 as a function
of F/Fc using eqn (31) for the tilted cosine potential (red solid
line) and eqn (43) for the linear-cubic potential (black dashed
line). The open circles are the numerically calculated values of n0

¼ (|U
00
aU

00
b|)

1/2l2/(2pkBT), where U
00
a and U

00
b are, respectively, the
Fig. 9 Comparison of the calculated barrier height E*
b/kBT as a func-

tion of F/Fc using eqn (29) (red solid line), eqn (42) (black dashed line),
and eqn (44) (blue dotted line) all with Eb¼ 6.7kBT. The open circles are
the obtained values of E*

b/kBT using the measured U(X) for sample S2.
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second derivatives of the tilted potential U(x)¼ U0(x)� Fx at the
energy minimum xa and at the energy barrier xb. The measured
values of U0(X) for sample S2 are used in the numerical calcu-
lation. The error bars result mainly from the uncertainties
involved in the numerical calculation of U

00
a and U

00
b. It is seen

that the two calculated curves agree with each other only in the
large force end (F x Fc), whereas at smaller values of F/Fc the
black dashed line for the linear-cubic potential shows a large
deviation from the data. The red solid line for the tilted cosine
potential ts the data well, except in the vicinity of Fc in which a
small deviation is observed. Fig. 10 thus demonstrates that eqn
(31) gives a good estimate of the prefactor n0, which is not very
sensitive to the ne details of the potential so long as the critical
force is known.

With this understanding of the effective barrier height E*
b

and prefactor n0, we now can examine the scaling behavior of the
measured dri velocity v and diffusion coefficient D. Fig. 11 is a
Fig. 11 Normalized drift velocity v* ¼ v/(vcn0) (black circles) and
diffusion coefficient D* ¼ D/(Dcn

0) (red triangles) as a function of the
effective barrier height Eb

*/kBT for sample S2. The solid line is a plot of
the scaling function, v*, D* ¼ exp[�E*

b/kBT].

This journal is © The Royal Society of Chemistry 2015



Fig. 12 (a) Comparison between the calculated scaling functions and
the exact solution of v/vc as a function of F/Fc for the tilted cosine
potential with Eb ¼ 6.7kBT. The calculations are made under different
approximations: (i) exact solution of v/vc in eqn (4) (black solid line), (ii)
scaling solution in eqn (30) with E*

b and n0 being given, respectively, in
eqn (29) and (31) for the tilted cosine potential (red dashed line), and (iii)
scaling solution in eqn (30) with E*

b and n0 being given, respectively, in
eqn (42) and (43) for the linear-cubic potential (green dash-dotted
line). The blue dot-dot dashed line shows the approximate expression
in eqn (47) for F > Fc. (b) Comparison between the calculated scaling
functions and the exact solution of D/Dc as a function of F/Fc for the
tilted cosine potential with Eb ¼ 6.7kBT. The calculations are made
under different approximations: (i) exact solution of D/Dc in eqn (6)
(black solid line), and (ii) scaling solution in eqn (35) with E*

b and n0 being
given, respectively, in eqn (42) and (43) for the linear-cubic potential
(green dash-dotted line). The blue dashed line shows the approximate
expression in eqn (52) for F > Fc.
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re-plot of the measured v* ¼ v/(vcn0) (black circles) and D* ¼ D/
(Dcn

0) (red triangles) for sample S2 as a function of E*
b. In the

plot, the measured v and D are normalized, respectively, by vcn0

and Dcn
0, where vc ¼ Fc/x, Dc ¼ Fcl/x and n0 ¼ [1 � (F/Fc)

2]1/2 are
all calculated using the value of Fc obtained at the peak position
of the measured D, as shown in Fig. 7(a). The values of E*

b are
obtained using eqn (42) with the measured values of Eb and Fc
for S2 given in Table 1. It is seen that the two sets of data overlap
with each other well, indicating that they share the same scaling
form. The solid line is a plot of the scaling function v*, D*¼ exp
[�E*

b/kBT], which ts data well, especially in the region with E*
b/

kBT T 3. It has been shown recently16 that the inclusion of the
(modied) Arrhenius factor n0 in the scaling plot helps to reduce
deviations of the data from the simple exponential function for
small values of E*

b/kBT. Fig. 11 thus veries the scaling behavior
of the measured v and D, as predicted in eqn (30) and (35).

3. Approximations in the F > Fc regime. While the scaling
behavior of the measured v and D improves in general for larger
values of F when F is in the intermediate range FT ( F( Fc, the
steepest descent approximation will eventually become invalid
when F is getting so close to Fc that the effective barrier height
becomes very small (E*

b/kBT ( 1). Fig. 12(a) and (b) show,
respectively, comparisons between the calculated scaling func-
tions and the exact solution of v/vc and D/Dc as a function of F/Fc
for the tilted cosine potential with Eb ¼ 6.7kBT. The calculations
are made under three different approximations. The black solid
lines in Fig. 12(a) and (b) show, respectively, the numerical
results of the exact solutions of v/vc in eqn (4) and D/Dc in eqn
(6), for the tilted cosine potential with Eb ¼ 6.7kBT. The green
dash-dotted lines show the same scaling solution in eqn (30) [or
in eqn (35)] with E*

b and n0 being given, respectively, in eqn (42)
and (43) for the linear-cubic potential. The red dashed line in
Fig. 12(a) shows the scaling solution in eqn (30) with E*

b and n0

being given, respectively, in eqn (29) and (31) for the tilted
cosine potential.

It is seen from Fig. 12(a) that while the red dashed line
follows the exact solution slightly better than the green dash
dotted line (as its E*

b and n0 are calculated particularly for the
tilted cosine potential), the two scaling solutions are very close
to each other over the entire force range 0 # F/Fc # 1. Both the
scaling solutions, however, show signicant deviations from the
exact solution of v/vc (and D/Dc) when F approaches Fc, at which
E*
b ¼ 0 and n0 ¼ 0. Fig. 12(a) and (b) reveal that the scaling

solution in eqn (30) follows the exact solution of v/vc over a
larger range of F/Fc up to F/Fc ( 0.9, whereas it can only follow
the exact solution of D/Dc up to F/Fc ( 0.5. From the exact
solutions of v/vc and D/Dc, one nds that they have different
asymptotic behavior when F/Fc > 1.

We now derive an approximate expression for v(F, Eb) in the
F > Fc regime. As mentioned above, the critical force Fc is given
by the positive root of Fc ¼ U 0

o(xc), where xc is the point of

inexion of U given by U
00
0(xc) ¼ 0. For U0ðxÞ ¼ Eb

2
uðxÞ, we have

Fc ¼ Eb
2
u0ðxcÞ. When F > Fc, g1(x, y) in eqn (18) has no saddle

point or local extremum in the l2 square. The minimal value of
g1(x, y) on the l� l square is at y¼ 0 with g1(x, 0)¼ 0. Hence the
This journal is © The Royal Society of Chemistry 2015
integral
ðl
0
dy exp

�
� Eb

2kBT
g1ðx; yÞ

�
is dominated by the

y T 0 region, and one can expand near y ¼ 0 to get g1(x, y) x
[2F/Eb � u0(x)]y + O (y2). Therefore, one has

1

l

ðl
0

dy e
� Ebg1ðx;yÞ

2kBT x
1� e½�FlþEbu

0ðxÞ=2�=kBT

½Fl� Ebu0ðxÞ=2�=kBT : (45)

For F. Fc ¼ Eb

2
u0ðxcÞ and keeping the leading orders in F,

one obtains an approximate expression for the scaled velocity,
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Fig. 13 Overall “phase diagram” of the colloidal transport and diffusion
dynamics over a tilted periodic potential in the plane of the normalized
external force F/FT and intrinsic barrier height Eb/kBT. The black solid
line indicates F/FT ¼ pEb/kBT (i.e., F ¼ Fc). The black dashed line indi-
cates F/FT¼ 1 and the black dotted line indicates Eb/kBT¼ 1. The entire
phase diagram is divided by the three lines into four (colored) regions,
A (yellow), B (pink), C (light green), and D (light blue), each representing
a unique dynamic phase (see text for more details).
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v

vc
x

F

Fc

� u02

½u0ðxcÞ�2
Fc

F
þ O

"�
Fc

F

�2
#
; (46)

where u02h
1
l

ðl
0
½u0ðxÞ�2dx.

For u(x) ¼ cos(2px/l), one has

v

vc
x

F

Fc

� Fc

2F
: (47)

Eqn (47) is plotted in Fig. 12(a) (blue dot-dot dashed line) to
compare with the exact result. It is seen that the approximate
expression in eqn (47) holds very well up to FT Fc. Note that the
above result can be interpreted in terms of the effective friction
coefficient

xeffðFÞxx

"
1þ

�
Eb

2F

�2

u02 þ/

#
; (48)

for F > Fc.
Similarly, when F > Fc, g2(x, y, w, z) in eqn (20) also has no

saddle point or local extremum in the l4 hypercube and its
minimal value is g2(x, 0, 0, 0). Thus one can expand g2(x, y, w, z)
around y ¼ z ¼ w ¼ 0 to get

g2ðx; y;w; zÞx
�
2F

Eb

� u0ðxÞ
�
ðyþ wþ zÞ þ/: (49)

Hence

1

l

ðl
0

dx Iþ
2ðxÞI�ðxÞx 1

l

ðl
0

dx

"
1

l

ð ​ l
0

dy e

�
�Fþ Eb

2
u0ðxÞ	y
ðkBTÞ

#3

x

�
kBT

Fl

�3
"
1þ 6

�
Eb

2F

�2

u02 þ/

#
:

(50)

Using eqn (6), one nally obtains

D

Dc

x
2kBT

Fcl

"
1þ 3

�
Fc

F

�2
u02

½u0ðxcÞ�2
#
: (51)

For u(x) ¼ cos(2px/l), we nd

D

Dc

x
2kBT

Fcl

"
1þ 3

2

�
Fc

F

�2
#
: (52)

Eqn (52) is plotted in Fig. 12(b) (blue dashed line) to compare
with the exact result. It is seen that the approximate expression
in eqn (52) holds well for F > Fc.

4. Scaling regions of the measured v and D. Based on the
above discussion, we now can characterize the dynamics of
colloidal transport and diffusion over a tilted periodic potential
in a 2D “phase diagram,” as shown in Fig. 13. The phase
diagram is plotted as a function of the normalized external force
F/FT and intrinsic energy barrier height Eb/kBT. The black solid
1194 | Soft Matter, 2015, 11, 1182–1196
line indicates F/FT ¼ pEb/kBT (i.e., F ¼ Fc). The critical force Fc
scales with Eb/(l/2) and here p/2 is used as an indicative pre-
factor. The black dashed line indicates F/FT ¼ 1 and the black
dotted line indicates Eb/kBT ¼ 1. The entire phase diagram is
divided by the three lines into four (colored) regions, A (yellow),
B (pink), C (light green), and D (light blue), each representing a
unique dynamic phase.

In region A (yellow) where both F/FT and Eb/kBT are small, the
small force expansion of eqn (8) and (9) can be used to describe
the dynamics of colloidal transport and diffusion as measured
by the mean dri velocity v and diffusion coefficient D. In region
B (pink) where F/FT is small but Eb/kBT is large, eqn (8) and (9)
can be further simplied under the steepest descent approxi-
mation. As a result, both the normalized dri velocity v/v0 and
diffusion coefficient D/D0 share the same scaling form of
Arrhenius–Kramers type at the lowest order of F/FT, as shown in
eqn (14) and (15). Between the solid line F ¼ Fc and the dashed
line F ¼ FT is region C (light green), in which the tilted potential
U(x)/kBT is large enough so that the steepest descent approxi-
mation applies. In this case, the normalized dri velocity v/vc
and diffusion coefficient D/Dc share the same scaling form as
shown in eqn (30) and (35). While the scaling function is of
Arrhenius–Kramers form, both the pre-factor n0(F) and the
effective barrier height E*

b(F) are modied by the external force
F. It is found that eqn (42) provides a simple (upper bound)
estimate on how E*

b(F) varies with F/Fc, whereas eqn (44) only
gives a linear expansion of E*

b(F) for small values of F/Fc. We also
nd that eqn (31) provides a good estimate on how n0 varies with
F/Fc. In region D (light blue) where F/Fc T 1, the effect of the
external force F is dominant over the potential U0(x) and the
This journal is © The Royal Society of Chemistry 2015
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dynamics of colloidal transport and diffusion become similar to
that over a at incline. As discussed above, the boundaries
between different dynamic phases are not sharp and care needs
to be taken for the crossover between different phases.

V. Summary

We have constructed a two-layer colloidal system for the study
of diffusive and force-assisted barrier-crossing dynamics over a
periodic potential. The micron-sized particles on the bottom
layer form a colloid crystal, whose corrugated surface provides a
gravitational potential eld for the top layer diffusing particles.
When the colloidal sample is carefully leveled, the top layer
particles are under no external force and their motion over the
periodic potential is made under constant thermal agitations.
Using the techniques of optical microscopy and multi-particle
tracking, we measured the population probability histogram
P(x, y) of the top layer diffusing particles, from which one nds
the underlying potential U0(x, y) via the Boltzmann distribution,
as shown in eqn (39). By averaging over the repetitive units of
the colloidal crystal and simplifying the periodic potential into a
quasi-1D barrier function U0(X), we were able to improve the
statistical accuracy of U0(X) down to �0.1kBT.

When the colloidal sample is tilted at an angle q (in the range
of 0–35�) with respect to the vertical (gravity) direction, a
tangential component of the gravitational force F is applied to
the diffusing particles. This external force reduces the energy
barrier height so that the detailed balance for the diffusing
particles is broken and a net particle ux is generated along the
direction of force. From the measured particle trajectories, we
calculated the probability density function G(Dx, s) of the
particle displacement Dx(s), from which one obtains the mean
dri velocity v(F, Eb) and diffusion coefficient D(F, Eb) of the
particles as a function of F and intrinsic barrier height Eb. The
measured v(F, Eb) and D(F, Eb) are in good agreement with the
exact results of the 1D dri velocity1 and diffusion coefficient.2,3

Based on these exact results, we analytically showed under
the steepest descent approximation that there exists a scaling
region, in which v(F, Eb) and D(F, Eb) both scale as n0(F)exp
[�E*

b(F)/kBT], where the pre-factor n0(F) and barrier height E*
b(F)

both are modied by F. The experiment veried the theory and
demonstrated the applications of the colloidal potential. With
the simultaneously obtained energetics and dynamics infor-
mation, we examined different scaling forms of n0(F) and E*

b(F)
and their accuracy in determining the characteristics of the
external potential, such as the intrinsic barrier height Eb.

It was found that in the small F region, the effect of the
potential U0(x) can be separated from the external force F, and
both v(F, Eb) and D(F, Eb) can be expanded in terms of F/FT. In
the intermediate force region (FT < F < Fc), the normalized v(F,
Eb) and D(F, Eb) share the same scaling form of Arrhenius–
Kramers type, as discussed above. The effective barrier height
E*
b(F) is lowered by the external force F. In the large force limit

(F/Fc T 1), the effect of the potential U0(x) becomes very small
and the dynamics of colloidal diffusion is similar to that over a
at incline. Furthermore, a “phase diagram” of the colloidal
transport and diffusion dynamics over a tilted periodic
This journal is © The Royal Society of Chemistry 2015
potential is drawn in the plane of the normalized external force
F/FT and intrinsic barrier height Eb/kBT. The phase diagram
provides a useful guideline about the dynamic behavior and
effective governing equations for the colloidal transport and
diffusion in the linear and nonlinear regimes of the applied
force.

This work provided crucial information for our general
understanding of forced barrier-crossing dynamics beyond the
linear response theory and the Arrhenius–Kramers equation. In
addition, our results provided a useful interpretation of the
driven colloidal transport in terms of a force-dependent effec-
tive friction coefficient xeff(F) given by eqn (16), (32) and (48),
respectively, as the force increases. By carefully examining the
theoretical and experimental results, we nd that the Stokes–
Einstein relation between the diffusion coefficient D and the
friction coefficient xeff in the steady-state is violated to a
different extent, depending on the driving or how far away from
equilibrium. In the small F region, the particles spend most of
their time near the local minima of the tilted periodic potential
with occasional hopping to the next well. The system is still very
much thermalized and close to equilibrium and thus the
Stokes–Einstein relation holds. In the intermediate force
region, the external driving is strong enough to cause rapid
hopping and thus the particles do not have much time to be
thermalized in the local minima. In this case, D still has the
Stokes–Einstein form, but the energy input Fl/2 becomes the
dominant source causing diffusion and friction. In the large
force limit, the system is far from equilibrium and kBT plays no
role at all. In this case, D and xeff are not related by any Stokes–
Einstein-like relation, except in the F / N limit in which the
usual Stokes–Einstein relation recovers: D / D0.
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