
Solid State Communications 139 (2006) 605–616
www.elsevier.com/locate/ssc
Dynamics of rotating suspensions
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Abstract

A suspension of non-Brownian settling particles in a completely filled horizontal rotating cylinder demonstrates a rich array of concentration
and velocity patterns. Individual flow states, or phases, are studied using both side and cross-sectional imaging to examine the detailed flow
structures. The overall steady state phase diagram of the system is mapped out as a function of the rotation rate and solvent viscosity. Theoretical
attempts are made to understand the dynamics of the stable band phase in the rotating suspension.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Monodispersed colloidal suspensions are widely used as
model systems to study the static and dynamic properties of
soft matter [1]. The colloidal system consists of small uniform
solid spheres suspended in a simple solvent. These small
particles undergo vigorous Brownian motion in the solution and
their spatial structure is determined primarily by the effective
interaction potential U (r) between the particles. This effective
interaction potential takes all the solvent effects into account
and thus the solvent does not appear explicitly in the description
of the static properties of the suspension at thermal equilibrium.
There is a variety of colloidal suspensions, whose interaction
potential U (r) varies from simple hard-sphere-like interaction
and screened Coulomb repulsion to various short- or long-
range attractions [2]. The exact form of U (r) can be varied
by changing the colloidal surface chemistry or the nature of
the solvent. In the experiment, one obtains information about
U (r) by measuring either the particle pair correlation function
g(r), using optical and confocal microscopy, or the static
structure factor S(q) using the scattering techniques [2,3]. The
variety of the interaction potentials leads to many interesting
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self-assembly structures, which have been studied intensively
in recent years [4,5]. It also offers unique opportunities for the
study of the phase behavior, from gas and liquid to crystal and
various metastable and non-equilibrium states, such as gels and
glasses [6–12].

In addition to the equilibrium structures, colloidal suspen-
sions are also ideal systems for the study of non-equilibrium
dynamics. First, they are soft and can be easily deformed by a
weak external field. A typical modulus for a colloidal system
is kBT/a3, where kBT is the thermal energy and a is the ra-
dius of the particle [13]. The value of kBT/a3 for a suspension
with a = 1 µm is approximately 1011 times smaller than the
modulus for atomic systems. Second, the colloidal suspensions
are slow and can be easily driven away from equilibrium by
a simple shear or gravitational field. A typical relaxation time
for a colloidal suspension is the time td = a2/D0 for a parti-
cle to diffuse over its own radius. Here D0 = kBT/(6πηa) is
the Stokes–Einstein diffusion constant for a single particle in a
solvent of viscosity η. This time should be compared to a char-
acteristic time te ' a/U associated with the flow U produced
by an external driving force. For example, heavy particles set-
tle under gravity with the Stokes velocity U0 = 21ρga2/(9η),
where 1ρ is the density difference between the particle and sol-
vent and g is the gravitational acceleration. The ratio of the two
time scales is called the Peclet number Pe = td/te = aU/D0,
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which determines when the suspension is driven out of equilib-
rium.

When Pe < 1, the system relaxes back to its equilibrium
state faster than the time of changes imposed by the external
driving force and thus the particle configurations remain
the same as those at equilibrium, which are determined
primarily by the thermodynamic interaction U (r). When
Pe > 1, the external force drives the system out of
equilibrium and the particle configurations are coupled to
the flow field. In this case, one has to consider the
long-ranged hydrodynamic interactions mediated through the
solvent, making the suspension dynamics an interesting and
challenging problem in statistical physics and low-Reynolds-
number hydrodynamics [2,14]. In addition to being soft and
slow, which provides experimental convenience for control and
manipulations, colloidal suspensions also offer an attraction
of being visible under an optical microscope, allowing the
use of various optical and video microscopy techniques
for the measurement of the particle configurations and the
(simultaneous) tracking of individual particle motions [15].

In this paper, we consider a non-equilibrium dynamic
system, which consists of a settling suspension of uniform
non-Brownian particles completely filling a horizontal rotating
cylinder. The system is driven out of equilibrium by two
external forces. First, because the particles chosen are relatively
large (a ' 100 µm), they settle under gravity with a large
settling velocity U0. As a result, the Peclet number given by
Pe = aU0/D0 is in the range between 6.5 × 108 and 1.2 ×

1010. This implies that the Brownian motion of the particles
is negligible and the particle configurations are determined
completely by the hydrodynamic interactions between the
particles. Second, the entire system is under a uniform rotation,
which provides an additional force to the particles. This force is
proportional to the centripetal acceleration ω2r of the particles,
where ω is the rotating rate of the cylinder and r is the radial
position of the particles inside the cylinder.

Because of the imbalance between the solvent pressure
gradient and the centrifugal force due to rotation, an individual
(heavy) particle should not stay suspended in a rotating
cylinder indefinitely. Roberts et al. [16] showed that a single
particle inside a horizontal rotating cylinder will spiral outward
continuously until it reaches the cell wall. The travelling time
for the particle to reach the cell wall is given by

twall =
g

2U0ω2 ln

(
R2

− x2
0

s2

)
, (1)

where R is the cylinder radius and s is the initial displacement
from the spiral center x0. The value of x0 is obtained from the
condition x0ω = U0, under which the particle settling velocity
U0 is balanced by the upward rotation velocity x0ω. While
the single-particle motion in a rotating cylinder is known with
high precision, the collective behavior of the particles shows
interesting but unexpected features. Recently, we carried out
an experimental study of concentration and velocity patterns
formed in a rotating suspension [17,18]. For our system with the
solvent viscosity η = 40 centipoise (cP) and ω = 5.24 1/s, the
Fig. 1. (a) Construction of the rotating cylinder and the space coordinates used
in the presentation of the measurements. (b) The actual experimental set-up.

travelling time twall is less than 10 min. Nevertheless, various
concentration patterns were observed in the rotating suspension
for several weeks without a noticeable change. The collective
behavior of the particles was found to be qualitatively different
from the single-particle dynamics.

In addition to its fundamental importance, the study of
suspension dynamics is also related to a wide range of practical
applications. Examples include the flow of mud, glass fibers
in polymer solutions, sedimentation and transport of particles,
as well as fluidization phenomena [19–21]. Understanding
of the dynamics of rotating suspensions is required for
computer modelling, process control, and various industrial
applications of the rotating drum mixers, including the design
of rotating reactors/mixers to minimize the sedimentation effect
without using microgravity [16,22]. In the following, we first
review the main experimental results obtained in the rotating
suspension [17,18] and then present new dimensional analysis
and theoretical calculation for the stable band phase found in
the system.

2. Experiment

Fig. 1 shows the construction of the rotating cylinder and
the actual experimental set-up. The rotating cylinder is made
of a Plexiglas tube and is mounted horizontally on a thermally
isolated aluminum stand. Details about the apparatus have been
described elsewhere [18], and here we mention only some key
points. The inner diameter of the tube is 2R = 1.91 ± 0.04 cm.
Two Brass ends are milled to fit the tube and sealed with two
o-rings. A sliding plunger is built similarly inside the tube, so
that the length L of the tube to be filled in with a solution can
be varied. Most measurements are carried out with a full tube
length L = 22.75±0.05 cm. The cylinder rotates freely on ball
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bearings inside a square cooling chamber, which has an inch of
clearance around the cylinder. The temperature of the cooling
chamber is maintained constant by circulating cold (hot) water
from a temperature controlled bath/circulator. The temperature
stability of the circulator is 0.05 ◦C, which provides fine
control of the solvent viscosity. The cooling chamber is made
of flat transparent Plexiglas plates to admit incident light and
to observe the scattered light by the particles. The use of the
flat window eliminates the optical distortions generated by the
curvature of the cylinder sidewall and thus improves the quality
of visualization of the concentration and velocity fields.

Fig. 1(a) also shows the space coordinates to be used below
in the presentation of the measurements. The origin of the
coordinate system is chosen to coincide with the center of
the rotating cylinder. The r - and θ -axes are, respectively, the
radial and azimuthal axes in the rotation plane and the z-
axis is along the axis of symmetry (the rotation axis) of the
cylinder. The cylinder is driven by a stepper motor. A thermally
insulated coupler is used to prevent motor heat from entering
the cylinder system. A micro-stepping drive controller regulates
the motor position with a resolution of 2.5×104 steps/rotation.
The controller is stimulated by a home-made indexer, which
provides an accuracy of 2.5×10−2

±2.5×10−5 s in the rotation
period T . This fine control of the rotation period (or the rotation
rate ω = 2π/T ) allows us to determine the boundary of each
dynamic phase accurately.

The cylinder is filled completely with an aqueous solution of
glycerin with a small amount of liquid detergent (0.25 vol.%)
added to prevent particle aggregation. Two aqueous solutions of
glycerin are used to cover a solution viscosity ranged from 8 to
100 cP. One aqueous solution has 60 wt.% mass concentration
of glycerin and its viscosity varies from 8 to 22 cP when the
temperature of the solution is changed from 30 ◦C to 5 ◦C.
The other aqueous solution has 77 wt.% mass concentration of
glycerin and its viscosity varies from 19 to 100 cP when the
temperature of the solution is changed from 44 ◦C to 6 ◦C [23].
The particles used in the experiment are uniform glass spheres
with an average density ρp = 2.35 g/cm3. The particle radius
is a = 100 µm and the size variation is less than 8%. The
volume fraction of the particle suspension is fixed at φ = 0.023.
The density difference between the particle and the solvent is
1ρ = ρp − ρs ' 1.19 g/cm3.

For solutions with viscosity ranged from 8 to 100 cP,
the corresponding Stokes velocity U0 varies from 3.25 to
0.26 mm/s. There are two length scales and two velocity
scales in the problem, which give rise to four definitions of the
Reynolds number. The Reynolds number based on the particle
size and the settling velocity is given by Re1 = 2aU0ρs/η,
which varies from 9.4×10−2 to 7.5×10−3 in the viscosity range
mentioned above. The Reynolds number based on the particle
size and wall speed, Re2 = 2a Rωρs/η, ranges from 3 to 0.2 for
a maximum rotation rate ω ' 4π (1/s). The Reynolds number
based on the cylinder radius and wall speed, Re3 = R2ωρs/η,
ranges from 1.7 × 102 to 13 for ω ' 4π (1/s). The Reynolds
number based on the cylinder radius and the settling velocity is
given by Re4 = RU0ρs/η, which varies from 2.9 × 10−2 to 4.5
in the viscosity range mentioned above.
In the experiment, we use a standard video imaging
technique to record the motion and spatial distribution of
the particles. A video charge-coupled-device (CCD) camera
records particle images in different cross-sectional planes of
the cylinder (r–θ plane) and in the vertical θ–z plane passing
through the axis of rotation of the cylinder. To facilitate the
imaging in the r–θ plane (end view), we construct a special
short cell (L = 2.25 ± 0.03 cm) with the same inner diameter
but having a transparent end window for video imaging. A
sheet of laser light of 1 mm in thickness is used to illuminate
the r–θ plane of the cell. The whole cell is mounted on a
translation stage, so that the flow visualization in the r–θ plane
can be carried out at different locations along the z-axis. For
the imaging of the long cylinder in the vertical θ–z plane (side
view), back lit illumination is used. The particle trajectories are
visible as streaks in superposed consecutive images. To vary the
contrast of the particle images, we use both blue and translucent
white glass spheres.

3. Experimental results

3.1. General phase behavior

The system exhibits a total of ten different steady states (or
dynamic phases) and they are distinguished in the experiment
by their unique flow patterns and particle distributions. At low
rotation rates, the particles lie and slide on the bottom floor of
the cylinder, forming a fluidized granular bed. At very high
rotation rates, the centrifugal force becomes dominant and all
the particles are spun onto the cylinder wall. Between the two
extremes, we observed a series of interesting concentration and
velocity patterns in the rotating suspension. Fig. 2 shows the
“phase diagram” of the rotating suspension as a function of
the rotation period 2π/ω and solvent viscosity η. Here we
briefly review each of the phases in order of their appearance
with increasing ω. Detailed descriptions of the flow states can
be found in Ref. [18]. Fig. 3 shows the side view of the
particle distribution for different steady states. These images
were taken using back lighting. Regions with higher particle
population absorb and scatter more light and thus appear darker.
Fig. 4 shows the cross-sectional view of particle trajectories for
different steady states. For clarity, the contrast of the pictures is
reversed with white streaks on a black background. The arrows
indicate the direction of the local flow and the cylinder rotation.

Granular Bed (GB)
When ω is zero, the particles lie on the cylinder floor as a

loosely packed granular bed. As the cylinder rotates, the bed is
carried up along the rising wall. Under gravity the inner layer
of particles in contact with the solvent slide downward, creating
a circulation within the bed. A steady state is reached, which
results in a fluidized granular flow similar in appearance to
that observed for a viscous liquid in a partially filled rotating
cylinder [24]. This gravity driven flow produces a counter
rotation for the pure solvent in the central region of the cell.
With larger ω, the top leading edge of the bed moves into the
upper half of the cell and the particles are injected into and
become suspended in the pure solvent region.
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Fig. 2. (a) Overall phase diagram as a function of the rotation period 2π/ω and
solvent viscosity η. (b) An enlarged part of the phase diagram for high-rotation-
rate states. The symbols are experimentally determined data points and the solid
lines are spline-fitted smooth curves for the phase boundaries. The dashed lines
are the extrapolated curves from the fit. GB: Granular Bed, F1: Fingering flow I,
F2: Fingering flow II, LT: Low-rotation-rate Transition, SB: Stable Bands, LD:
Local-structure Drop-off, HR: Homogeneous Region, HT: High-rotation-rate
Transition, DB: Discontinuous Banding, and CL: Centrifugal Limit.

Fingering Flow I (F1)

Particles in the F1 phase behave differently from those in the
GB phase on a microscopic level. In the GB phase, particles are
mostly contained in the granular bed region. Those particles
travelling near the upper part of the bed move downward
together with the bed with the same velocity and they join
the bed downstream in a relatively short period of time. In
the F1 phase, however, particles leave the top, or leading edge
of the bed, as a two-dimensional sheet. This is an unstable
situation leading to a Rayleigh–Taylor-like instability. Particles
clump together into lines or fingers. Initially, two or three
particles line up loosely in the flow and then grow into chain-
like structures of several millimeters in length and a few particle
diameters in width. We call this “finger formation” and hence
the resulting flow is named as “Fingering flow”. As ω increases,
the fingers grow both in number and size, and so does their
settling velocity relative to the rotating background. The fingers
distribute themselves along the z-axis uniformly. When a finger
Fig. 3. Side view of the particle distribution in the long rotating cylinder.
Darker regions have more particles. GB: Granular Bed, F1: Fingering flow I,
F2: Fingering flow II, LTb: Low-rotation-rate Transition without a granular
bed, SB: Stable Bands, LD: Local-structure Drop-off, HR: Homogeneous
Region, HT: High-rotation-rate Transition, DB: Discontinuous Banding, and
CLb: Centrifugal Limit with all particles on the cylinder wall.

falls, it follows the granular bed, keeping its radial position r
nearly constant until it reaches the base of the bed.

Fingering Flow II (F2)
As mentioned above, the fingers become larger with

increasing ω and thus produce larger disturbances to the flow
field in the closed cylinder. The fingers in the F2 phase are
large enough and become visible in the side view image shown
in Fig. 3(F2). The thin vertical dark strands on the upper half
of the tube are the growing fingers, which are distributed rather
uniformly along the z-axis. These thin dark strands are invisible
in Fig. 3(F1). Closer examination of the finger detachment near
the top leading edge of the granular bed reveals that the fingers
in the F1 phase detach from the rising wall at fixed locations of
approximately equal distance along the cylinder when viewed
from the side. In going from the F1 to F2 phases, we find that
the detaching position of the settling fingers begins to drift over
a small horizontal distance. As a result, the falling fingers when
viewed at a fixed downstream location appear to have a zigzag-
like trajectory as a function of time. Careful particle tracking
reveals that the fingering flow is essentially two-dimensional
independent of z in both the F1 and F2 phases.

Low-rotation-rate Transition (LT)
The onset of the Low-rotation-rate Transition is marked

by the development of an axial component (vz) of the finger
velocity. The motion of the fingers becomes three-dimensional
when the fingers start to fall toward the center of rotation at
larger rotation rate. Further increasing ω results in the fingers
falling next to the downward moving cylinder wall. Once
this occurs, the granular bed is quickly dissolved and all the
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Fig. 4. Cross-sectional view of particle trajectories in the short rotating cylinder. For clarity, 30 sequential images taken at time intervals ranged from 1 s (for low-ω
sates) to 1/30 s (for high-ω sates) are superimposed (except (CLa) which is an individual image) and the contrast of the pictures is reversed with white streaks on a
black background. The arrows indicate the direction of the local flow and the cylinder rotation. GB: Granular Bed, F1: Fingering flow I, F2: Fingering flow II, LTa:
Low-rotation-rate Transition with a remaining granular bed, LTb: Low-rotation-rate Transition without a granular bed, SB: Stable Bands, HT: High-rotation-rate
Transition, DB: Discontinuous Banding, CLa: Centrifugal Limit near the transition boundary, and CLb: Centrifugal Limit with all particles on the cylinder wall.
particles remain suspended. The LT phase has a transition
character, which is unique when compared with the other
phases discussed above. Near the lower-ω boundary, the system
behaves more like F2. As the system moves toward the larger-
ω boundary, the fingering flow behavior diminishes and the
system starts to resemble the Stable Band phase, to be discussed
below. The band-like appearance is clearly seen in Fig. 3 (LTb).
Particles form periodic bands along the z-axis with a distinct
self reinforcing flow structure. Before reaching the transition
boundary between the LT and SB phases, however, these bands
are unstable and fluctuate both in time and spatial orientation in
a quasi-periodic fashion.
Stable Bands (SB)

Once the lower-ω boundary of the SB phase is reached, the
fluctuating velocity components parallel to the rotation axis
are switched off, and the bands themselves become stationary
in space. As shown in Fig. 3 (SB), the bands are structurally
identical and are separated alternately by void regions. The
position of the bands remains fixed for a given ω with
fairly uniform spacing, except near the cylinder ends. The
average spacing between the bands is λ = 2.2 cm, which is
1.2 ± 0.1 times the tube diameter. Lipson et al. [25–27] also
reported band formation for nearly neutral buoyant particles in
water and other low-viscosity fluids. While their experimental
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uncertainties are relatively large, the measured band spacing is
comparable to our result.

In a different experiment [23,28], we vary the cylinder
diameter by a factor of two. The particle size is also varied
by a factor of two and the particle volume fraction φ is
changed from 1.1% to 2.6%. These measurements reveal that
the average band spacing changes only with the cylinder
diameter and is independent of other control parameters, such
as the solvent viscosity, the rotation rate, and the particle
size and concentration. Seiden et al. [26,27] reported that
the average band spacing also varies with the cylinder length
L . Nevertheless, our measurements carried out in the L =

22.75 cm and L = 2.25 cm cylinders show that the steady state
behavior of the phase diagram for this and other suspensions
remains unchanged with L .

Local-structure Drop-off (LD)
At even larger ω, the secondary flow pattern associated with

the band structure cannot keep up with the increased cylinder
rotation and the band structure decays. At first, one segment
of the bands disappears and that region appears uniform at
lower particle concentration. The other band segments remain
unchanged with little or no adjustment in axial location.
However, they may absorb particles to increase the gravitational
force required to maintain the remaining structures. This is
shown in Fig. 3 (LD). Once the drop-off process starts at a
given location, it spreads along the z-axis in both directions
with increasing ω. It is found that the local-structure drop-off
is a reversible process. Reducing the rotation rate reverses the
process and restores any destroyed structures to the original
position.

Homogeneous Region (HR)
For high-viscosity solutions, the drop-off process continues

with increasing ω until all the bands disappear from the entire
cylinder. As shown in Fig. 3 (HR), the spatial distribution of
the particles in the HR phase is fairly uniform throughout the
cylinder. The HR phase is extremely sensitive to the levelling
of the rotating cylinder and a slight tilt of less than a tenth of
a degree will result in a notable concentration gradient along
the tube length. In the experiment, we were able to keep the
cylinder at a perfectly levelled state for several weeks to test
the steady state nature of the HR phase. It is seen from Fig. 2
that the HR phase occupies a small island region in phase space,
indicating that a delicate balance among the governing forces is
required for this particular flow state.

High-rotation-rate Transition (HT)
The High-rotation-rate Transition is characterized by large-

scale concentration variations along the rotation axis (z-axis).
As shown in Fig. 3 (HT), the particles migrate and form three
concentrated (dark) regions extending along the z-axis in this
case. The dark regions are several centimeters in length and are
separated by two less populated (light) regions. Usually we see
two or three concentrated regions along the entire length of the
cylinder. There is no obvious secondary flow associated with
this structure, as in the case of the SB and LD phases. The exact
number and the location of the concentrated regions vary with ω
and η but seem to be independent of L . Similar to the situation
in the LT phase, the HT phase also resembles a coexistence
phase. Near the lower-ω boundary, the system resembles the
LD phase with a background concentration variation. As the
system moves toward the larger-ω boundary, the concentrated
regions shrink and the system behaves more like the DB phase,
to be discussed below.

Discontinuous Banding (DB)
As ω increases further, the wide concentrated region in the

HT phase contracts to form a very dense region of particles
having a width up to one cylinder diameter. Fig. 3 (DB)
shows the concentration profile of the DB phase along the z-
axis. Hereafter, we refer to these dense regions of particles as
segregation bands. The location of the band regions appears
random and they evidence no inter-band interaction. High-
viscosity suspensions tend to have more but smaller and less
developed segregation bands. By comparison, low-viscosity
suspensions have fewer but larger and better formed segregation
bands. It is seen from Fig. 3 (DB) that the void region between
the bands is completely empty of particles. Unlike the bands
in the SB phase, the segregation bands have sharp interfaces
with the neighboring unpopulated regions, a discontinuous
concentration profile at the interface.

Centrifugal Limit (CL)
The large-ω limit of the phase diagram is the centrifugal

limit, at which all the particles spin out to the cylinder wall
under the influence of the centrifugal force. Given enough
time, all patterns present on the cylinder wall are eliminated
and a uniform coating layer of particles is generated on the
wall. Fig. 3 (CLb) shows the side view of the coating layer of
particles on the cylinder wall. The transition from the DB phase
to the CL phase is one of the sharpest transitions discussed so
far. This transition takes place sharper than our resolution in the
rotation period, which is 25 ms per rotation, and is completely
reversible. In other words, a change of <2.5% in rotation period
(25 ms out of 1 s at η ' 60 cP) will cause all the particles to
spin out to the cylinder wall. Going back to the previous setting
will recreate the segregation bands in exactly the same axial
locations.

3.2. Secondary flow associated with stable bands

Among the ten different steady states discussed above, the
stable band (SB) phase is of particular interest. As mentioned
above, secondary flow components parallel to the axis of
rotation appear with fingering in the lower-ω boundary of
the LT phase. This axial flow continues throughout the phase
even as the particle density evidences bands near the larger-ω
boundary. What distinguishes this boundary to the SB phase is a
switching off of the fluctuating velocity components parallel to
the rotation axis, while the large-scale band density distribution
persists. Once the lower-ω boundary of the SB phase is reached,
the self reinforcing secondary flow pattern associated with the
band structure stabilizes and the bands themselves become
stationary in space.

To characterize the particle concentration variation along
the z-axis more quantitatively, we convert the two-dimensional
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Fig. 5. (a) Measured absorption coefficient A of the transmitted light as a
function of the axial position z in the stable band phase. The transmitted light
intensity has been averaged over the cylinder diameter and the vertical line at
z = 0 indicates the middle of the cylinder. (b) (color online) Cross-sectional
view of particle trajectories in the stable band phase. The pictures are taken
in the dense band region with the highest particle concentration. For clarity,
30 sequential images taken at time interval of 1/10 s are superimposed. The
arrows indicate the direction of the cylinder rotation. There are a few small
defect spots on the optical window, which appear as stationary bright spots in
the picture when the intensity of the illuminating light sheet is low. A solid state
laser of wavelength 532 nm is used to generate the illuminating light sheet.

image files into one-dimensional intensity profiles by averaging
out a vertical column of pixels in each of the individual images
shown in Fig. 3 to obtain the column-averaged transmitted light
intensity Ī (z) as a function of the axial position z. Because the
scattering and absorption of the incident light are proportional
to the number of particles in the optical path (for vanishing φ),
the measured intensity profile Ī (z) provides information about
the particle concentration profile along the z-axis. Fig. 5(a)
shows the normalized intensity profile of the transmitted light
along the z-axis. In the plot, the absorption coefficient A is
define as

A =
Is − Ī (z)

Is
, (2)

where Is = 255 is the saturation intensity of the CCD camera
used in the experiment. With this definition, darker regions with
more particles will have a larger value of A.

It is seen from Fig. 5(a) that the particle concentration
profile has a sharp triangular waveform (which is also directly
visible from a top view of the sample cell). The particle
distribution inside each band is symmetric about its central peak
position. These maximum concentration planes are stationary
in space and the velocities at these locations are vertical
and parallel with each other. As shown in Fig. 5(b) [and in
Fig. 6. Side view of the velocity field inside a stable band. For clarity, 30
sequential images taken at 1/30 s intervals are superimposed and darker regions
have more particles. The vertical dashed line M indicates the r–θ plane with the
highest particle concentration and the arrows indicate the direction of the local
flow. The horizontal solid line λ indicates the beginning and ending edges of a
single band cell.

Fig. 4 (SB)], the particle trajectories in the r–θ plane become
exclusively clockwise in the SB phase. The “center” of the
particle trajectories, however, does not coincide with the axis
of rotation. The trajectory center follows a zigzag path as a
function of z, being closer to the upgoing wall in the r–θ

planes with the highest particle concentration [as shown in
Fig. 5(b)] and closest to the downgoing wall at the smallest
particle concentrations.

Fig. 6 shows a side view of the velocity field inside a stable
band. The vertical dashed line M indicates the r–θ plane with
the highest particle concentration. It is seen that the velocity
field is symmetric about the maximum concentration line. On
each side of line M, each particle orbits on its own axis, which
tilts at an angle with respect to the rotation axis and points out of
the plane of the image toward the less populated band region.
The arrows in Fig. 6 indicate the direction of the local flow.
Particles are drawn into the dense band region by the secondary
flow. Evidently this increased particle concentration produces a
larger downward velocity and reinforces the secondary flow.

4. Discussion

The above experimental results clearly demonstrate that
the rotating suspension is a complex system and has many
experimental parameters. They include the rotation rate ω,
solvent viscosity η, particle radius a, volume fraction φ,
cylinder length L and radius R. These parameters give rise
to multiple velocity and time scales for the system. Without a
theory, it is difficult to know what are the dimensionless control
parameters for the system. As a result, one has a huge parameter
space to explore experimentally. In fact, several independent
experiments have been carried out recently in different rotating
suspensions.

The experiments by Seiden et al. [25–27] focused on the
study of band formation. They measured the average band
spacing λ as a function of the ratio of the cylinder length L
to the cylinder radius R. The suspension system used in the
experiments consisted of millimeter-sized particles dispersed in
water or other low-viscosity fluids. A complication caused by
using the large particles is that the Reynolds number based on
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the particle size and the settling velocity, Re1 = 2aU0ρs/η,
becomes very large. For example, the values of Re1 for the
polystyrene and silica spheres used in the experiment are in the
range between 6.5 and 735. In this case, the inertial effect of the
individual particles becomes significant.

Breu et al. [29,30] studied concentration patterns formed in
the rotating suspension of glass beads. In one experiment [29],
they investigated how the uniform monolayer of particles
coated on the inner wall of the rotating cylinder under the
influence of strong centrifugal force at high rotation rate
develops an instability, when the rotation rate is reduced below
a critical value. Such an instability causes the particle layer to
collapse and form radially symmetric rings on the inner wall.
This transition is similar to that between the DB and CL phases,
as discussed in Section 3.1. We notice that the experiment by
Breu et al. was carried out in a different region of parameter
space, because the particle based Reynolds number for the
suspension of 300 µm diameter glass beads in water is large
(Re1 ' 20).

In another experiment [30], Breu et al. found “travelling
waves” in a rotating suspension of 300 µm diameter glass
beads in an aqueous solution of glycerin. Given our results,
though in a different region of parameter space, we postulate
that the onset of the travelling waves reported by Breu et al.
is associated with the transition from the F1 to F2 phases.
Because narrow strip images (512 × 2 pixels) were used for
flow visualization, only the axial (horizontal) motion of a
thin horizontal layer of particles was recorded and the three-
dimensional structure of the concentration and velocity fields
was not studied in the experiment by Breu et al.

There is an important question about what the appropriate di-
mensionless control parameters are for the rotating suspensions.
While the experiments discussed above [25–27,29,30] revealed
several interesting concentration and flow patterns in the sys-
tem, they were conducted only in an isolated and rather limited
parameter space. Theoretical arguments and calculations [25–
27,29–32] have been made to explain the observed flow patters,
but they have different assumptions and predictions. A gener-
ally accepted theoretical framework for the rotating suspension
is yet to obtain. Therefore, it becomes essential to conduct care-
ful and systematic measurements over a wide range of param-
eter space. These measurements can provide us an overall pic-
ture for the rich dynamics of the system, so that further theoret-
ical analysis can be carried out to give specific guidelines and
predictions for the experiment. In the experiment discussed in
Section 3, we carefully studied the overall phase diagram of
the system and mapped out the transition boundaries between
different phases over a wide range of the rotation rate ω and
solvent viscosity η for fixed values of particle radius a, volume
fraction φ, and cylinder radius R [17,18]. New experiments are
carried out looking at the influence of a, φ and R on the phase
behavior of the rotating suspension. The results will be reported
elsewhere [23,28].

4.1. Dimensional analysis

While we have not been able to verify experimentally a
unique set of dimensionless parameters for the system, the
experimental results obtained so far have provided adequate
information for us to carry out a simple dimensional analysis
based on the two-fluid model [33,34]. The macroscopic
equations of motion for the rotating suspension are taken to
be the conservation equation of mass and the Navier–Stokes
equation. In the rotating frame with angular velocity Eω, at which
the entire rotating system is at rest, the equations of motion for
the suspension with variable density ρ(r, t), pressure P(r, t),
and velocity U(r, t) take the following form [26,35]

∂tρ + ∇ · (ρU) = 0, (3)

ρ∂t U + ρU · ∇U =

−∇P + η∇
2U + ρg − Eω × ( Eω × ρr) − 2( Eω × ρU), (4)

where g is the gravitational acceleration. The last two terms on
the right hand side of Eq. (4) are, respectively, the centrifugal
and Coriolis forces.

Two additional equations similar to Eqs. (3) and (4) can be
written for the particles with volume fraction φ(r, t), pressure
Π (r, t), and velocity V(r, t). The density of the suspension is
related to the volume fraction of the particles via ρ = ρs+1ρφ,
where 1ρ = ρp − ρs is the density difference between the
particle (ρp) and the solvent (ρs). The pressure term in Eq.
(4) can be eliminated by taking the curl on both sides of
the equation. At this point we have four equations and four
unknowns, and the remaining problem is to solve the four
coupled (non-linear) equations, which is still a formidable task.

To further simplify the equations, one needs to compare
the relative weight of each of the force terms as well as the
non-linear terms in Eq. (4). It is seen from Fig. 2 that the
rotating suspension has rich dynamics and exhibits a total of ten
different phases. This suggests that the balance among various
driving forces is different for different phases. For example, at
low rotation rates the dynamics of the F1 and F2 phases are
determined primarily by the settling of the particle chains or
fingers (gravity dominant). At very high rotation rates, however,
the centrifugal force becomes dominant and all the particles are
spun onto the cylinder wall. Therefore, the dimensional analysis
has to be specific and a universal analysis applied to all the
phases seems unlikely.

In the following we limit our analysis on the stable band
(SB) phase. From Fig. 2 we choose a typical point in the SB
phase with ω ' 2 s−1 and ν ' η/ρs ' 0.35 cm2/s. The
centrifugal force Eω × ( Eω × ρr) scales as ρω2 R. The velocity
U in Eq. (4) is the relative velocity with respect to the uniform
rotation. By watching the motion of the bands over a period of
time, we find that the rotation rate of the fluid in the SB phase
is approximately the same as that of the cylinder. However,
because of variations of the particle concentration, the rotation
center of the particle trajectories is shifted by an amount of
1R relative to the rotation axis of the cylinder. This is clearly
shown in Fig. 5(b). As a result, the relative velocity scales as
|U| ≡ U ' ω1R. For a single (heavy) particle in a uniform
rotating fluid, this relation holds exactly [16,27]. The typical
length scale associated with U is the cylinder radius R. The
ratio of this relative velocity to the mean rotation velocity is
thus U/(ωR) ' 1R/R. From Fig. 5(b) we find that the typical
value of 1R/R in the SB phase is 1R/R ' 0.16.
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With these experimental values, we now can estimate the
relative weight of various terms in Eq. (4). The Reynolds
number Rer , which is a ratio of the non-linear term to the
viscous force, is given by Rer = ρU ·∇U/(η∇

2U) ' U R/ν '

0.8. The Rossby number Ro, which is a ratio of the non-linear
terms to Coriolis force, is given by Ro = ρU·∇U/(2 Eω×ρU) '

U/(2ωR) ' 0.08. Therefore, the non-linear terms in Eq. (4)
can be ignored. The ratio of Coriolis force to the gravitational
force is given by 2( Eω × ρU)/(ρg) ' (21R/R)(ω2 R/g) '

1.2×10−3, suggesting that Coriolis force is less important when
compared with the gravitational force. Finally, we compare
the centrifugal force with the gravitational force. The ratio
of the centrifugal force to the gravitational force is given by
( Eω × ( Eω × ρr)/(ρg) ' ω2 R/g ' 3.9 × 10−3, suggesting that
in the SB phase the centrifugal force is less important than the
gravitational force.

From the above numerical estimations, we simplify Eqs. (3)
and (4) into the following form

∂tρ + ∇ · (ρU) = 0, (5)

ρ∂t U = −∇P + η∇
2U + ρg, (6)

where ρg becomes the only remaining external force. Because
both the centrifugal and Coriolis forces are ignored, Eqs. (5)
and (6) are also valid in the laboratory frame, in which the
cylinder wall is rotating (as a boundary condition) but the
gravitational acceleration g becomes time independent. By non-
dimensionalizing Eqs. (5) and (6) with respect to the length R,
the velocity Rω, and the solvent density ρs , we have

ρ∂t U − A[ρŷ − ∇P] +
1

Re3
∇

2U ' 0, (7)

∂tρ + ∇ · ρU ' 0, (8)

where A = g/(Rω2) is a ratio of the gravitational acceleration
to the centripetal acceleration, ŷ is a unit vector pointing to the
direction of g, and Re3 = ωR2ρs/η is the Reynolds number.
The time derivative terms are kept because the motion of the
suspension in the rotating frame is under the influence of an
alternating gravitational force ρg of frequency γ . In Eqs. (7)
and (8), all the flow variables (ρ, U, P) and the coordinates
(r, t) are dimensionless. With the above scaling variables, the
pressure P is scaled by ρs gR.

The above analysis suggests that the dynamics of the rotating
suspension is determined by two dimensionless parameters.
The first parameter is A, which can be rewritten as

F1 =
1ρg

ρsω2 R
, (9)

where F1 is a ratio of the effective acceleration of gravity for
the particles in the suspension to the centripetal acceleration of
the solution at the cylinder wall. The second parameter is the
Reynolds number Re3 based on the cylinder radius R and the
wall speed Rω. Fig. 7 is a replot of the phase diagram shown
in Fig. 2 as a function of log10 F1 and log10 Re3. It is seen
that the curved phase boundaries in the linear plot shown in
Fig. 2 become almost linear, as indicated by the dashed lines
in the log–log plot in Fig. 7. The linear behavior in the log–log
Fig. 7. Replot of the phase diagram shown in Fig. 2 as a function of
log10 F1 and log10 Re3. The symbols show the experimentally determined
phase boundaries and the dashed lines indicate the linear behavior of each
phase boundary in the log–log plot. The solid line is the power-law fit, F1 =

87.85(Re3)−0.49, to the diamonds.

plot suggests that the phase boundaries can be described by an
effective power law, F1 ∼ (Re3)

ε .
For example, the solid line in Fig. 7 shows a power-law

fit to the phase boundary between DB and CL. From the
fit, we find ε = 0.49. It is also seen from Fig. 7 that the
measured phase boundaries form three distinct groups. The
three low-rotation-rate boundaries form a group; the two large-
rotation-rate boundaries form another group; and the remaining
intermediate rotation rate boundaries form a third group. It
should be pointed out that the actual variables used in Fig. 7
are 1/ω2 and ω/η (or η/ω). All the other parameters in Eqs.
(9) and (7) remain constant in the experiment. To verify a
unique set of dimensionless parameters experimentally, one
needs to change the value of other experimental parameters
for the system, such as the particle radius a, cylinder radius
R, volume fraction φ, and density difference 1ρ. A systematic
variation of the experimental parameters will allow us to have
a better understanding of the overall dynamics of the system.
It will also facilitate further quantitative characterization of the
flow structures discussed in Section 3.

4.2. A simple solution for stable bands

As mentioned above, Eqs. (7) and (8) contain three
unknowns [ρ(r, t), P(r, t) and U(r, t)] and need to be solved
together with two additional equations for the particles [33,
34]. Eqs. (7) and (8) become decoupled from the equations
of motion for the particles when the density profile of the
suspension, ρ = ρs+1ρφ, is known. Based on the observations
shown in Figs. 3 (SB) and 5(a), we postulate a general density
solution for the SB phase and solve for the velocity field U(r, t).
The solutions (ρ, U ) may be used (as source terms) in the
remaining two equations, with which one solves for V(r, t) and
Π (r, t). We have not found nor are we guaranteed that these
solutions can be found. Nevertheless, the solutions that we find
below describe the fluid motion in the SB phase well.
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Fig. 8. Calculated velocity vector map in a vertical plane passing through the
axis of rotation of the cylinder. The arrows indicate the direction and magnitude
of the velocity vector field. The concentration distribution of the particles is
indicated by the grey level, which is reversed for clarity with lighter regions
having more particles.

With the non-slip boundary conditions, Eqs. (7) and (8)
admit the following steady state band solution in the cylindrical
coordinates:

ρ(r, θ, z) = 1 + f (r) cos(γ z)

U(r, θ, z) = [Ur (r) sin(θ) cos(γ z), r

+ Uθ (r) cos(θ) cos(γ z), Uz(r) sin(θ) sin(γ z)], (10)

where

f (r) = Re3 Aγ
2γ I0(γ ) + [γ 2(r2

− 1) − 6]I1(γ )

2 − 2I0(γ ) + γ I1(γ )

Ur (r) = Uθ (r) =
−2I0(γ ) + 2I0(γ r) − (r2

− 1)γ I1(γ )

2 − 2I0(γ ) + γ I1(γ )

Uz(r) = −
1
γ

dUr (r)

dr
. (11)

In the above, In(γ ) is the modified Bessel function of the
first kind and γ is a dimensionless wave number for the band
structure, which will be determined below.

While other density profiles may give different velocity
distributions, the solution shown in Eqs. (10) and (11) proves
instructive for our purposes. It is clearly seen from Figs. 3
(SB) and 5(a) that the proposed density profile ρ(r, θ, z) in
Eq. (10) is the dominant mode of the actual distribution. This
density profile produces a two-dimensional flow in the vertical
plane passing through the axis of rotation of the cylinder (side
view), in addition to the imposed flow in the r–θ plane (end
view). Fig. 8 shows the side view of the calculated velocity
vector map of two band cells. In the densely populated regions
(lighter regions) the secondary flow is downward and upward in
the least densely populated regions (darker regions). As shown
in Fig. 6, the velocity field within a band cell is symmetric
about the central line (r–θ plane) of maximum concentration.
Particles are drawn into the dense band region by the secondary
flow. This increased particle concentration produces a larger
downward velocity and reinforces the secondary flow. These
characteristic features are also observed in Fig. 8.

Fig. 9 shows the cross-sectional view of the calculated
velocity field in two different r–θ planes. The superposition
of the secondary and applied flows evidences a circulation
Fig. 9. Calculated velocity vector map (a) in the r–θ plane with minimum
particle concentration and (b) in the r–θ plane with maximum particle
concentration. The arrows indicate the direction and magnitude of the velocity
vector field. The concentration distribution of the particles is indicated by
the grey level, which is reversed for clarity with lighter regions having more
particles.

in the direction of the imposed flow but with the center of
rotation offset horizontally from the rotation axis. In the r–θ

planes with the highest particle concentration [see Fig. 9(b)] the
center is shifted toward the upgoing wall, and in the least dense
r–θ planes [see Fig. 9(a)] it is shifted toward the downgoing
wall. The range of the horizontal shift is determined by the
ratio of the secondary circulation velocity to the rotation rate
of the cylinder. As discussed in Section 3.2, a similar zigzag
migration of the rotation axis of the particle trajectories along
the cylinder is observed in the experiment and is explained as
the superposition of the two flows [17,18].

With the analytic band solution shown in Eqs. (10) and (11),
one can calculate the viscous dissipation rate σ as a function



W.R. Matson et al. / Solid State Communications 139 (2006) 605–616 615
σ =

∫ 1

0
rdr

∫ 2π

0
dθ

∫ 2π/γ

0
dz(2η∇Us

: ∇Us)

=
1
2
ηπ2

[
81γ I 2

0 (γ ) + (−132/γ + 21γ + 2γ 3)I 2
1 (γ ) + 3γ I 2

2 (γ ) − 12I0(γ )[(8 + γ 2)I1(γ ) + γ I2(γ )]

6[2 − 2I0(γ ) + γ I1(γ )]2

+
−3I1(γ )[64I2(γ ) + 25γ I3(γ )] + 12[3γ I 2

1 (γ ) − 2I2(γ )(γ I0(γ ) + 4I1(γ ))]

6[2 −2I0(γ ) +γ I1(γ )]2

]
, (12)
of the band wave number γ [36]: using Eq. (12) where

∇Us
i j =

1
2

(
∂Ui

∂x j
+

∂U j

∂xi

)
−

1
3
δi j

3∑
k=1

∂Uk

∂xk
(13)

is the symmetric part of the velocity gradient tensor ∇U with
zero trace, and ∇Us

: ∇Us denotes the contraction of the two
tensors into a scalar.

In fact, the dissipation in a rotating suspension contains
two contributions. The first one is due to fluid shear, which
is calculated in Eq. (12). The second contribution comes from
particles slipping through the solvent. Because both the volume
fraction of the particles and the relative velocity between
the particles and the solvent are small, the latter part of the
dissipation is negligible. This dissipation is essentially the same
for all band structures, since each particle settles with respect
to the local solvent regardless of the global structure of the
suspension. Because it results from the solution of the (coupled)
linear equations shown in Eqs. (7) and (8), the calculated σ

in Eq. (12) (or the entropy production rate σ/T , where T
is temperature) is expected to be minimized [37]. Thus the
dissipation rate may be used to select the wavelength for the
banding velocity distribution. In Eq. (12), the dissipation rate
σ is computed over one complete band period. To compare
band structures with different wave numbers, we divide σ by
the band wavelength and obtain a normalized dissipation rate
per unit length γ0 = γ σ/(2π). Fig. 10(a) shows the calculated
4πγ0/η as a function of the normalized band wavelength
λ/R (=2π/γ ). The minimum dissipation occurs for a band
wavelength λm ' 2.44R. This value is in excellent agreement
with the measured value of λm ' 2.4R [17,18].

Seiden et al. [26,27] have shown that for a given cylinder
of length L , the wavelength λ of the bands formed along the
cylinder satisfies the condition L = nλ/2, where n = 2, 3, . . .,
is an integer. For a given stable band configuration, if the
cylinder length L is increased, the system has freedom to
increase either the band wavelength λ or the number of bands
n/2, in order to satisfy the above condition. In Fig. 10(b),
we show the calculated 4πγ0/η as a function of L/R [=

2πn/(2γ )] for n/2 = 9, 9.5, 10 and 10.5, respectively (from
left to right). As the cylinder length L increases, a different
number of bands or half bands is predicted to occur at L/R '

22.6, 23.8 and 25.0, based on the minimum dissipation rate.
This transitional behavior of the band numbers is in good
Fig. 10. (a) Calculated 4πγ0/η as a function of the normalized band
wavelength λ/R. (b) Calculated 4πγ0/η as a function of the normalized
cylinder length L/R = 2πn/(2γ ) for n/2 = 9, 9.5, 10 and 10.5, respectively
(from left to right).

agreement with the experimental observations made by Seiden
et al. [26,27]. Given accurate velocity presentations for the ten
steady states discussed in Section 3.1, we could test minimum
dissipation as a predictor of the transition from one state to
another.

5. Summary

We have carried out a systematic study of concentration
and velocity patterns formed in a suspension of non-Brownian
settling particles completely filled in a horizontal rotating
cylinder. Individual flow states, or phases, are studied using
both side and cross-sectional imaging to examine the detailed
flow structures. The system exhibits a total of ten different
steady states and their transition boundaries are mapped out
over a wide range of the rotation rate ω and solvent viscosity η.
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Although the accurate determination of the phase boundaries
is a tedious and lengthy process, such an effort is essential
for the understanding of the overall dynamics of the system
and the mechanism of transition between different phases. The
experiment suggests that the large number of patterns and
rich dynamics found in the rotating suspension come from
the interplay among the viscous drag, gravitational force, and
centrifugal force.

A dimensional analysis on the equations of motion is
carried out for the rotating suspension. It is found that the
dynamics of the stable band phase is determined primarily
by two dimensionless parameters: the Reynolds number Re3
based on the cylinder radius R and the wall speed Rω

and the ratio A of the gravitational acceleration g to the
centripetal acceleration Rω2. Curved phase boundaries in the
linear plot become straight lines when the transition boundaries
are plotted on log–log scales over the two scaling variables.
On the basis of the experimental observations, we postulate a
general concentration profile for the particles in the stable band
phase and find a solution for the velocity field U(r, t). The
characteristic features of the calculated U(r, t) agree well with
the experiment. Furthermore, using the analytic band solution
U(r, t), we calculate the viscous dissipation rate as a function of
the band wavelength. Minimizing the calculated dissipation rate
gives rise to a unique value of the band wavelength, which is in
excellent agreement with the experiment. A further theoretical
analysis is needed to explain the dynamic behavior of other
steady states of the system.
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