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Using a homemade local temperature gradient probe, the instantaneous thermal dissipation rate
�T�r , t� is obtained in an aspect-ratio-one cylindrical convection cell filled with water. From the time
series measurements, a locally averaged thermal dissipation ���r , t� over a time interval � is
constructed. Herein we decompose ���r , t� into three contributions ��

i �r , t� �i=x ,y ,z� from the
temperature gradient components in the x, y, and z directions and systematically study their statistics
and scaling properties. It is found that the moments of ��

i �r , t� exhibit good scaling in �, i.e.,
����

i �p����i�p�, for all three components and for p up to 6. The obtained exponents �i�p� at three
representative locations in the convection cell are explained by a phenomenological model, which
combines the effects of velocity statistics and geometric shape of the most dissipative structures in
turbulent convection. © 2011 American Institute of Physics. �doi:10.1063/1.3555637�

I. INTRODUCTION

Fluid turbulence as a nonequilibrium process is charac-
terized by its unique structure and dynamics of the dissipa-
tion fields. The properties of the dissipation field determine
not only the global transport of turbulence but also the sta-
tistics of local fluctuations. In turbulent Rayleigh–Bénard
convection, where a fluid layer of thickness H is heated from
below and cooled from the top, there are two dissipation
fields associated with the convective flow. One is the viscous
dissipation rate

�u�r,t� =
1

2
�	

ij

��iuj�r,t� + � jui�r,t��2, �1�

where � is the kinematic viscosity and �iuj +� jui is the sym-
metric part of the velocity gradient tensor field. The other is
the thermal dissipation rate

�T�r,t� = �
�T�r,t�
2, �2�

where � is the thermal diffusivity and �T�r , t� is the tem-
perature gradient field. The dissipation rates are always posi-
tive and the determination of �u�r , t� involves simultaneous
measurements of the nine components of the velocity gradi-
ent tensor �iuj�r , t�. Temperature is a scalar and the determi-
nation of �T�r , t� only involves simultaneous measurements
of the three components of the temperature gradient vector
�T�r , t�.

In thermal convection, the global average of �u�r , t� and
�T�r , t� is directly linked to the total heat flux transported
vertically through the convection cell. In particular, one
finds1

�T � ��T�r,t��V,t = ���T/H�2Nu�Ra, Pr� , �3�

where �T is the temperature difference across the convection
cell of height H, Nu�Ra, Pr� is the Nusselt number �normal-
ized heat flux�, and � . . . �V,t represents averages over the fluid
volume V and time t. The Nusselt number Nu�Ra, Pr� de-
pends on two experimental control parameters. One is the
Rayleigh number Ra=�g�TH3 / ����, where g is the gravita-
tional acceleration, and � is the thermal expansion coeffi-
cient of the convecting fluid. The other control parameter is
the Prandtl number Pr=� /�.

The theory of Grossmann and Lohse2,3 explains the scal-
ing behavior of Nu�Ra, Pr� by a decomposition of the mean
thermal dissipation �T into the boundary layer and bulk con-
tributions, which have different scaling behavior with vary-
ing Ra and Pr. In a recent experiment, He et al.4 carried out
a systematic study of the spatial distribution of the thermal
dissipation field in turbulent convection. A local temperature
gradient probe consisting of four identical thermistors was
made to directly measure �T�r , t� in a cylindrical convection
cell filled with water. The measurements were conducted
over varying Rayleigh numbers Ra and spatial positions r
across the entire cell. It was found that �T�r����T�r , t��t con-
tains two contributions; one is generated by thermal plumes,
present mainly in the plume-dominated bulk region, and de-
creases with increasing Ra. The other contribution comes
from the mean temperature gradient, being concentrated in
the upper and lower thermal boundary layers, and increases
with Ra. The experiment revealed the important roles played
by the thermal dissipation field in turbulent convection.

Besides the connection to the global heat transport, the
viscous and thermal dissipation rates are also believed to
play an important role in determining the statistics of local
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velocity and temperature fluctuations. In the Kolmogorov
1941 theory �K41�,5 turbulence was considered as a cascade
process, in which kinetic energy is transferred from large to
small scales at a constant rate, which is given by the mean
energy dissipation rate �u���u�r , t��V,t. K41 predicted that
the velocity difference 	v�l� between two points separated by
a distance l has universal statistics that depend only on l and
�u, when l is within the inertial range. The measured scaling
behavior of 	v�l�, however, showed a large deviation from
the K41 prediction.6 A longstanding challenge in turbulence
research is to understand the origin of this deviation, which
is known as anomalous scaling. In 1962, Kolmogorov pro-
posed the refined similarity hypothesis �K62�,7 which re-
placed the constant �u by a locally averaged energy dissipa-
tion rate �u�l� over a length l and attributed the origin of the
anomalous scaling to the scale-dependence of the statistics of
�u�l�. Later, in 1974, Kraichnan8 pointed out that the local
energy dissipation rate is not an inertial-range quantity and
proposed to replace it by the local energy transfer rate.

Similar problems of anomalous scaling also apply to a
scalar field advected by a turbulent velocity field. In particu-
lar, the anomalous scaling of active scalars, such as tempera-
ture in turbulent thermal convection, remains elusive.9 In
analogy to the kinetic energy cascade, convective turbulence
was also considered as a cascade process,10 in which the
variance of temperature fluctuations is transferred from large
to small scales at a constant thermal dissipation rate, which is
given by the mean thermal dissipation rate �T. An extension
of K62 to turbulent convection leads to the proposal that a
scale-dependent locally averaged thermal dissipation �T�l�
would give rise to an anomalous scaling for the velocity and
temperature increments.11,12 Similarly, an extension of Kra-
ichnan’s proposal would lead to the statement that the origin
of anomalous scaling is due to a scale-dependent transfer rate
of the local temperature-variance. Indeed, the latter proposal
was shown to be valid in a recent numerical study of the
shell model for homogeneous turbulent convection.13 In ad-
dition, by assuming that the locally averaged thermal dissi-
pation rate over a time interval � has a hierarchical structure
of the She–Leveque form,14 Ching and Kwok15 made spe-
cific predictions for the scaling exponents of the moments of
the locally averaged thermal dissipation rate.

A large amount of theoretical,11,12,16–21 numerical,22–26

and experimental27–36 work has been devoted to the study of
small-scale fluctuations in turbulent convection. Details
about these studies have been reviewed recently by Lohse
and Xia.9 Most of the earlier measurements27–36 focused on
the power spectra and structure functions of local tempera-
ture and velocity fluctuations at a single point in space.
Taylor’s37 frozen flow hypothesis was invoked either explic-
itly or implicitly to connect the time-domain results to the
theoretical predictions made in the spatial domain. More re-
cently, the space-resolved structure functions of velocity and
temperature fluctuations were obtained in turbulent
convection38,39 using particle image velocimetry and mul-
tiple temperature probes. The space-resolved velocity and
temperature structure functions measured at the cell center
were reported38 to show K41 behavior and the Obukhov–
Corrsin �OC� scaling40,41 for passive scalar at lower orders of

moment p and deviations from K41 and the OC scaling were
found at higher orders of p. The observed deviations �i.e.,
anomalous scaling� were found to be consistent with the hi-
erarchy models of She and Leveque14 for velocity in non-
buoyant flows and of Ruiz-Chavarria et al.42 for passive sca-
lars. On the other hand, evidence of the Bolgiano–Obukhov
scaling43,44 for temperature being an active scalar was
reported39 at scales close to the local Bolgiano length, which
are larger than those investigated in Ref. 38. However, the
interpretation of the experimental results are generally com-
plicated by other effects in the convective flow, such as flow
anisotropy and inhomogeneity, and the lack of spatial sepa-
ration of the relevant length scales for the flow in a closed
convection cell.9

To test the refined similarity ideas for anomalous scaling,
one not only needs to check the scaling properties of the
velocity and temperature structure functions, but also should
examine the scale-dependent statistics of the dissipation
fields in order to verify that the observed anomalous scaling
in the velocity and temperature structure functions is indeed
compatible with the scaling of the dissipation fields. In con-
trast with the large number of experimental studies of the
velocity and temperature structure functions, direct measure-
ments of the viscous and thermal dissipation rates in turbu-
lent flows are rare.9,45 This is partially due to the fact that
simultaneous measurements of all the components of the ve-
locity gradient tensor or the temperature gradient vector with
adequate spatial and temporal resolutions are still challeng-
ing tasks.

In this paper, we report a systematic study of the scaling
properties of the measured �T�r , t� in turbulent Rayleigh–
Bénard convection. In a recent brief report,46 we have shown
that the moments of ���r , t�, which is a local average of the
directly measured �T�r , t� over a time interval �, exhibit good
scaling in � for all orders of moment up to order 6. In a
separate experiment, Sun et al.38 have shown that the scaling
behavior of the measured temperature structure functions at
the cell center is different from that near the sidewall. To
address issues related to the flow anisotropy and inhomoge-
neity, herein we decompose the locally averaged thermal
dissipation rate ���r , t� into three terms, ���r , t�=	i��

i �r , t�
�i=x ,y ,z�; each term results from a component of the tem-
perature gradient vector in the corresponding direction. We
focus our attention on the scaling properties of each contri-
bution ��

i �r , t� at three representative locations in the cell: at
the cell center far away from the boundaries, near the side-
wall at midheight of the cell, and inside the thermal bound-
ary layer close to the lower conducting plate. In the latter
two locations, the flow field is inevitably influenced by the
large-scale circulation that spans the height of the convection
cell and by the thermal plumes erupted from the lower ther-
mal boundary layer. Such a systematic study allows us to
disentangle the intermittency effects from the flow aniso-
tropy and inhomogeneity and thus to have a critical test on
the theories of anomalous scaling.

The remainder of the paper is organized as follows. We
first describe the theoretical model for the scaling exponent
of moments of the local thermal dissipation rate in Sec. II.
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The experimental apparatus and method are introduced in
Sec. III. Experimental results are discussed in Sec. IV. Fi-
nally, the work is summarized in Sec. V.

II. THEORY

In the experiment to be described below, we used a small
homemade temperature gradient probe consisting of four
identical thermistors to measure the three components of the
temperature gradient vector �T. The temperature gradient
�T can be decomposed into a sum

�T�r,t� = �Tm�r� + �Tf�r,t� , �4�

where Tm�r� is the mean temperature and Tf�r , t� is the tem-
perature fluctuation. Consequently, �T�r , t� contains three
contributions

�T�r,t� = ��
�Tm�r�
2 + 2 � Tm�r� · �Tf�r,t�

+ 
�Tf�r,t�
2� . �5�

As discussed in Ref. 46, one can construct a locally av-
eraged thermal dissipation rate ���r , t� by averaging �T�r , t�
over a time interval � and we are interested in how the mo-
ments of ���r , t� vary with �. The mean gradient �Tm�r� is a
time independent quantity and thus is not interesting. Be-
cause the mean value of �Tf�r , t� is zero, the �-average of
�Tf�r , t� will be very small. Therefore, the term 
�Tf�r , t�
2
has the strongest time dependence and is denoted as

� f�r,t� � �
�Tf�r,t�
2. �6�

Furthermore, � f�r , t� contains three terms, � f
i�r , t� �i=x ,y ,z�;

each is associated with a component of the temperature gra-
dient, �iTf�r , t�, in the corresponding direction.

In this paper, we focus on the locally averaged contribu-
tions, ��

i �r , t� �i=x ,y ,z�, which is defined as

��
i �r,t� =

1

�
�

t

t+�

���iTf�r,t���2dt�, �7�

and study the �-dependence of the moments ����
i �p�

�����
i �r , t��p�t, averaged over time t at three representative

positions in the convection cell. The basic theoretical frame-
work for the scaling behavior of the individual moments
����

i �p� follows that for the total moments ���
p�, as described

in Ref. 46. Thus we only outline the key points below.
Assuming ����

i �p� has a hierarchical structure of the She–
Leveque form,14 one finds the following general solution:

�i�p� = c�1 − 
p� − �p �8�

for the scaling exponents �i�p� �i=x ,y ,z�, defined by

����
i �p� � �ui�p�. �9�

In the above, c, 0�
�1, and � are parameters that have
different physical meanings. As will be shown below, these
parameters take different values along the x-, y-, and
z-directions and at different positions. For p=1, one has

���
i � 

1

Ttotal
�

0

Ttotal

���iTf�r,t���2dt� � �0
i , �10�

where Ttotal is the total time of measurement. Because �0
i is

independent of �, we have �i�1�=0. As a result, the three
parameters are related by

c�1 − 
� − � = 0. �11�

We now discuss the physical meaning of the three pa-
rameters. First, from Eqs. �9� and �8�, one finds

���
i � = lim

p→
� ����

i �p+1�
����

i �p� � � �−�. �12�

As discussed in Ref. 46, ���
i � can be dimensionally esti-

mated as �T2 / tr���, where tr����r /ur is the eddy turn-over
time at the scale r�U�, with U being a typical velocity in
the flow. Depending on whether temperature is passive or
active, the scaling behavior of ur would be different. Specifi-
cally, when temperature is a passive scalar, the velocity fluc-
tuations obey the K41 scaling6 ur��r�u�1/3. In this case, we
find ���

i ���−2/3, i.e., �=2 /3. On the other hand, in the
buoyancy-dominated region where temperature is an active
scalar, the velocity fluctuations obey the Bolgiano–Obukhov
scaling: ur���g�2/5��T�−1/5r3/5. In this case, we find ���

i �

��−2/5, i.e., �=2 /5.
In short, the value of � depends on the scaling properties

of velocity fluctuations in turbulent convection, which are, in
turn, determined by whether temperature is active or passive.
The parameter c is interpreted as the codimension of the
most dissipative structures, i.e., the set of largest thermal
dissipation rate. If the most dissipative structures are fila-
mentlike �D�=1�, one has c=3−D�=2. Therefore, for pas-
sive scalars with sheetlike dissipative structures, we have �
=2 /3, c=1, and 
=1 /3. On the other hand, for passive sca-
lars with filamentlike dissipative structures, we have
�=2 /3, c=2, and 
=2 /3. For active scalars with sheetlike
dissipative structures, we have �=2 /5, c=1, and 
=3 /5.
Finally, for active scalars with filamentlike dissipative struc-
tures, we have �=2 /5, c=2, and 
=5 /4.

In the experiment to be described below, we will test the
above phenomenological theory for the individual moments
����

i �p� �i=x ,y ,z�. In particular, the phenomenological theory
made three important predictions, which can be checked di-
rectly with the experimental data: �i� The scaling exponents
�i�p� are given in Eq. �8� in terms of two independent pa-
rameters c and �. �ii� The parameter � takes two distinct
values �active=2 /5 and �passive=2 /3 depending on whether
temperature is an active or passive scalar. �iii� The parameter
c is the codimension of the sets of the largest thermal dissi-
pation rates and takes a value of either 1 or 2, depending on
whether the most dissipative structures are sheetlike or fila-
mentlike. It is expected that the value of � depends only on
the height of the measuring position, whereas the value of c
may change in the bulk and sidewall regions. These charac-
teristic features of the convective flow based on the statistics
of the thermal dissipation rate will be compared with
those obtained from the temperature and velocity structure
functions.
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It should be pointed out that while the original hierarchi-
cal model of She and Leveque14 was proposed for local en-
ergy dissipation rates, averaged over a spatial region, we are
here working with the local thermal dissipative rates, aver-
aged over a time interval. As a result, our scaling results can
be tested directly using the time series data available in the
experiment. In particular, Taylor’s frozen flow hypothesis37

is not used in the derivations. To link the scaling exponents
�i�p� with those of the temperature and velocity structure
functions, some kind of refined similarity ideas have to be
used.

III. EXPERIMENT

The experiment is conducted in a upright cylindrical
convection cell filled with water. The inner diameter of the
cell is D=19.0 cm and its height H=20.5 cm. The corre-
sponding aspect ratio of the cell is �=D /H�1. Details
about the apparatus and experimental method have been de-
scribed elsewhere4 and here we mention only some key
points. The sidewall of the cell is made of a transparent
Plexiglas ring with a wall thickness of 0.6 cm. The top and
bottom plates are made of �1 cm thick brass plates and
their surfaces are electroplated with a thin layer of gold. The
Plexiglas ring is sandwiched between the two plates and is
sealed to the top and bottom plates via two rubber O rings.
Two silicon rubber film heaters connected in parallel are
sandwiched on the backside of the bottom plate to provide
constant and uniform heating. The upper side of the top plate
together with a circular aluminum cover form a closed cool-
ing chamber, whose temperature is maintained constant by
circulating cold water from a temperature controlled bath.
The temperature difference �T between the top and bottom
plates is measured by two thermistors embedded in each
plate. In the experiment, the value of �T varies from 4.8 to
50 °C depending on the heating power. By adjusting
the temperature of the cooling water, we maintain the tem-
perature of the bulk fluid at �30 °C for all the measure-
ments. At this temperature, one has ��8.2�10−3 cm2 /s,
��1.5�10−3 cm2 /s, and the corresponding Prandtl number
Pr=� /��5.5. The temperature stability of the top and bot-
tom plates is found to be within 0.1 °C in standard devia-
tion, which is less than 2% of the minimum �T used in the
experiment. The entire convection cell is placed inside a
square thermostat box, whose temperature matches the mean
temperature of the bulk fluid to prevent heat exchange be-
tween the convecting fluid �water� and the surroundings.

The temperature gradient probe is made of four small
thermistor beads of 0.11 mm in diameter �BB05JA243N, GE
Thermometrics� and is assembled in our own laboratory.
Each of them has a semiconductor head of 80 �m in diam-
eter and two 1-cm-long metal legs of 10 �m in diameter.
Silver paste is used to glue each of the metal legs to a
100-�m-diameter copper extension wire. The thermistor as-
sembly is then coated with a thin layer of waterproof varnish
for use in water. The four identical thermistors are used to
measure the three components of the local temperature
gradient simultaneously. One of the thermistors is placed at
the origin, labeled as T0, and the other three thermistors are

arranged along the x-, y-, and z-axes, respectively. By
simultaneously measuring the four temperature signals, we
obtain the three temperature gradient components 	Ti /	�,
where 	Ti=Ti−T0 �i=x ,y ,z� is the temperature difference
between a pair of the thermistors with separation
	�=0.25�0.1 mm. All the thermistors are calibrated indi-
vidually with an accuracy of �5 mK for 	Ti. Each of the
thermistors is connected to an ac transformer bridge as a
resistor arm and the bridge is driven by a lock-in amplifier at
a working frequency f0�1�0.2 kHz. Four identical
bridges and lock-in amplifiers are used and the sampling rate
of the temperature measurements is set at 40 Hz. Typically,
we take �12–30�-h-long time series data �corresponding to
�1.7–4.3��106 data points� at a fixed location in the cell. All
measurements reported here are conducted in the rotation
plane of the large-scale circulation.

To accurately measure the local gradient of the tempera-
ture field, one needs to keep the separation 	� between the
thermistors as small as possible. This separation should be
smaller than the thermal boundary layer thickness 	, which is
the smallest dissipation length in turbulent thermal convec-
tion. At length scales smaller than 	, temperature fluctuations
are dissipated by diffusion. On the other hand, the probe
separation should be large enough to minimize the
disturbances produced by a thermistor tip to the nearby
temperature measurements. In the experiment, we chose
the thermistor’s separation at a minimal value of 	�
=0.25�0.1 mm, which is 2.3 times larger than the tip diam-
eter of the thermistor but 3.2 times smaller than the measured
value of 	 at Ra=3.6�109 ��0.8 mm�. In a previous
experiment,4 we have thoroughly tested the temperature gra-
dient probe. It was found that the temperature histograms
and power spectra measured by the four thermistors super-
pose nicely with each other, indicating that the temperature
signal measured by one of the thermistors is not affected by
the surrounding ones, at least in the statistical sense. Since
the time constant of the thermistors is smaller than 15 ms,
the temporal resolution of the temperature time series mea-
surements is determined by the sampling time, which is
25 ms. As will be shown in Sec. IV A, this temporal reso-
lution is adequate to resolve temperature fluctuations corre-
sponding to ten Kolmogorov viscous lengths.

IV. RESULTS AND DISCUSSION

The recent temperature, velocity, and flow visualization
measurements47–49 have revealed that the spatial distribution
of thermal plumes, which drive the convective flow in a
closed cell, is neither homogeneous nor isotropic. The ther-
mal plumes organize themselves in such a way that warm
plumes accumulate on one side of the cell and cold plumes
concentrate on the opposite side of the cell. The spatially
separated warm and cold plumes exert buoyancy forces on
the fluid and drive the vertical flow near the sidewall. The
central bulk region of the flow is approximately homoge-
neous and is “sheared” by the rising and falling plumes, re-
sulting in a large-scale circulation �LSC� across the cell
height. This large-scale circulation provides a fast channel
along the cell periphery for the transport of heat.50
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With this understanding of plume dynamics, we now dis-
cuss the scaling behavior of ���r , t� at three representative
locations in the convection cell: at the cell center �12.4-h-
long time series data�, near the sidewall �at the middle height
of the cell and 1 cm away from the cell wall; 14.8-h-long
time series data�, and near the lower conducting plate �above
the center of the bottom plate; three sets of data of various
durations�. All locations are in the rotation plane of LSC. To
take the flow anisotropy into account, we first examine the
statistics of the dissipation components ��

i �r , t� �i=x ,y ,z� and
then study the total dissipation rate ���r , t�=	i��

i �r , t�. It is
found that the scaling of ��

i �r , t� �i=x ,y ,z� �and ���r , t�� re-
mains the same in the Ra range studied �9�108�Ra�9
�109�. Hereafter, we focus on the results at fixed values of
Ra.

A. At the cell center

Figure 1 shows the measured histograms H�Ex� /H0

�circles�, H�Ey� /H0 �triangles�, and H�Ez� /H0 �diamonds� for
the three contributions of the local thermal dissipation rate at
the cell center with Ra=8.3�109. In the plot, the histograms
are normalized by their maximum value H0 and the dissipa-
tion variables � f

i �i=x ,y ,z� are expressed as Ei=ln�� f
i /�0

i �,
where �0

i is the mean value of each component. Over an
amplitude range of more than four decades, the measured
H�Ex� /H0, H�Ey� /H0, and H�Ez� /H0 overlap very well, sug-
gesting that fluctuations of the local thermal dissipation rate
at the cell center are approximately isotropic. It has been
shown4 that the measured histograms of the temperature gra-
dient components dT /dxi �xi=x ,y ,z� in the central region are
all symmetric and have approximately the same shape.

Another feature shown in Fig. 1 is that the statistics of
ln�� f� �or Ei� are non-Gaussian, which is revealed by the
visible asymmetry of the measured H�Ei� for large values of

Ei
��5�. For comparison, we also plot in Fig. 1 a Gaussian
function H�Ei� /H0=exp�−�Ei−m�2 /2�2�, with m=−1.8 and
�=2 �dashed line�, which fits only part of the measured
H�Ei� curve for Ei�−5. Figure 1 thus demonstrates that the
probability density function of � f

i is not logarithmic-Gaussian
or logarithmic-normal, which were proposed to describe the

intermittent nature of fluctuations of the viscous and thermal
dissipations.51–53 In a recent numerical study,54 Emran and
Schumacher also studied the non-Gaussian behavior of ther-
mal dissipation fluctuations.

Figure 2 shows the measured histograms H�E�
z� as a

function of E�
z for three different values of the averaging time

�: 0.075 �circles�, 0.25 �triangles�, and 5 s �diamonds�. Here
the horizontal variable is defined as E�

z =ln���
z /�0

z�, where �0
z

is the mean vale of ��
z. The shape of the obtained H�E�

z�
changes continuously with increasing �; the distribution
width of H�E�

z� becomes narrower as � increases. By com-
paring the time series data of ��

z�r , t� and � f
z�r , t�, we find that

the main effect of the time averaging is to smear out small-
amplitude fluctuations in � f

z�r , t�, as evidenced by the large
change in the negative tail part of H�E�

z�. The time averaging
causes the narrowing of the distribution width, but the mean
value of ��

z�r , t� does not change with � and remains the same
as that of � f

z�r , t�.
Figure 3�a� shows the normalized z-moments

����
z�p� / ��0

z�p as a function of � for p=2, 4, and 6 �from bot-
tom to top�. For p=1, we have ����

z�1�=�0
z and thus �z�1�

=0. This is indeed observed. For p�1, the measured
����

z�p� / ��0
z�p decrease with � until they reach to unity at large

values of �. Such a convergence at large values of � is re-
quired and adequate statistics are needed in order to reach the
asymptotic value. The measured ����

z�p� / ��0
z�p saturate at

small values of �, indicating that the sampling rate used for
the temperature gradient measurements is adequate to catch
all the fluctuations. As indicated by the solid lines in Fig.
3�a�, a good power-law regime is found for all ����

z�p� / ��0
z�p

with p up to 6. The scaling range in � is about a decade long,
ranging from 1 to 21 s.

The turnover time �0 of the large-scale circulation was
found to be of the same order as the period of the velocity
and temperature oscillations observed in the system55,56 and
one has �0�35 s at Ra�8.3�109.55 Besides the system
size H, there are two more characteristic lengths �and times�
in turbulent convection. The Bolgiano scale LB, above which
buoyancy becomes significant, was first defined45 using the
mean energy dissipation rate �u and thermal dissipation
rate �T that are averaged over the entire convection cell:
LB= ��g�−3/2��u�5/4��T�−3/4. Because the energy and thermal
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FIG. 1. Measured histograms H�Ex� /H0 �circles�, H�Ey� /H0 �triangles�, and
H�Ez� /H0 �diamonds� for the three contributions of the local thermal dissi-
pation rate at the cell center with Ra=8.3�109. The dashed line shows a
Gaussian function H�Ei� /H0=exp�−�Ei−m�2 /2�2�, with m=−1.8 and �=2
�see text�.
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z� as a function of E�
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surements are made at the cell center with Ra=8.3�109.
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dissipation rates vary with the height z relative to the bottom
surface of the cell, one needs to consider a local Bolgiano
scale57 LB�z�= ��g�−3/2��u�z��5/4��T�z��−3/4, where �u�z� and
�T�z� are, respectively, the energy and thermal dissipation
rates averaged over the cross section of the cell. In a numeri-
cal simulation at moderate Ra,23 it was found that
LB�H /2� /H�0.88 at the cell center. Associating �0 with H,
we define the local Bolgiano time �B�z���0LB�z� /H and find
that �B�H /2� ��31 s� is comparable to �0 at the cell center.
The Kolmogorov viscous length ����3 /�u�1/4 is a shorter
length and is given by1,31 � /H=Pr1/2�Ra�Nu−1��1/4. Using
the measured Nu�Ra� in a similar convection cell,58 we find
� /H�2.3�10−3 at Ra=8�109. If one takes the dissipative
length to be 10�, the corresponding dissipative time
�d��0�10�� /H will be 0.8 s. Thus, at the cell center, the
scaling range starts from �d and ends before �B�H /2���0. A
similar scaling range in � was also found for the temperature
structure functions, Sp�����
	T�
p�.34,59

To display the power-law scaling more clearly, we show
in Fig. 3�b� the compensated plot ����

z�p� / ���0
z�p��z�p�� as a

function of � for p=2, 4, and 6 �from bottom to top� using
the same data set as shown in Fig. 3�a�. The flat part of
����

z�p� / ���0
z�p��z�p�� reveals the scaling in �. For a common

scaling range in � �which is chosen from the p=6 curve�, we
use the least-square method to fit all the data and find the
exponent, �z�p�, for all values of p up to 6. In contrast with
the nice scaling behavior of ����

z�p�, no discernible scaling
was observed for the temperature structure functions, when

Sp��� is plotted directly against � on log-log scales.35,59 In-
stead, the extended self-similarity method21 was used to de-
scribe the scaling behavior of Sp���.

To check the accuracy of the obtained �z�p�, we exam-
ine the convergence level of the kernel function ���

z�pP���
z�,

where P���
z� is the probability density function of ��

z. Figure 4
shows the obtained ���

z�pP���
z� for p=3 �diamonds�, 4

�triangles�, and 6 �circles�. In the plot, the dissipation vari-
able ��

z is normalized by its mean value �0
z and the smallest

time in the scaling range ��=1 s� is used. It is seen that the
kernel function ���

z�pP���
z� converges well for small values of

p �p�3�. The convergence level of ���
z�pP���

z� becomes
weaker with increasing values of p. Note that because
��

z goes as 	T2, the moment of ��
z of order p corresponds to

the temperature structure function of order 2p. The dashed
lines in Fig. 4 show the kernel functions obtained by using a
fitted �analytical� function for P���

z�. It has been shown60 that
the measured P���

z� can be well described by a stretched
exponential function

P���
z� = P0 exp�− c���

z/�z�d� , �13�

where P0 is the normalization factor and c and d are two
fitting parameters which vary with � slightly. Using the
dashed lines, one can perform numerical integration over the
kernel functions for different values of � and p and find the
differences in ����

z�p� / ��0
z�p between the estimated values by

using Eq. �13� and those obtained directly from the data.
These differences set the error bar size as shown in Fig. 3�b�.

To further verify the scaling behavior of ����
z�p� / ��0

z�p,
we use the extended self-similarity �ESS� method21 to ana-
lyze the thermal dissipation data. With ESS, we plot all the
moments ����

z�p� / ��0
z�p against the normalized third moment

����
z�3� / ��0

z�3 on log-log scales; an example is shown in Fig.
5. Indeed, the scaling range of ����

z�p� / ��0
z�p is extended to the

entire data range considered here �solid lines�. The same
scaling behavior is found for all three dissipation compo-
nents ��

i �r , t� �i=x ,y ,z� at three different positions in the cell.
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FIG. 3. �a� Normalized vertical moments ����
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z�p��z�p�� as a function of � for
p=2, 4, and 6 �from bottom to top� using the same data set as shown in �a�.
All the measurements are made at the cell center with Ra=8.3�109.
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In the following, we apply the same procedures and rigor to
analyze the dissipation data and present only the essential
scaling results below.

Figure 6 shows the obtained power-law exponents �z�p�
as a function of p. The error bars in the plot indicate the
fitting uncertainties found by fitting the data over the scaling
range in � between 1 and 21 s. Typical errors �peak to peak�
for small p �=2� is �10% and those for large p �=6� is
�35%. The values of �z�p� shown in Fig. 6 are all obtained
from a time series data with 12.4 h duration time, which is
about 1500 large-scale turnover times ��0�30 s�, ensuring
that the statistical averaging is adequate. It is seen that the
values of �z�p� obtained from the compensated plots shown
in Fig. 3�b� �circles� agree well with those obtained from the
ESS plots shown in Fig. 5 �triangles�.

The solid line in Fig. 6 is a plot of Eq. �8� with

c = 1, � = 2
3 , 
 = 1

3 . �central region� . �14�

The data can be adequately described by Eqs. �8� and �14�
without any adjustable parameter. As discussed in Sec. II, the
value c=1 suggests that the most dissipative structures at the
cell center are two-dimensional and sheetlike. The value

�=2 /3 indicates that the velocity fluctuations in the central
region obey the K41 scaling5,6 for nonbuoyant flows. This
result thus suggests that in the central region, buoyancy ef-
fects are weak and do not affect the velocity statistics very
much. In this sense, temperature behaves like a passive sca-
lar. This conclusion agrees with those based on the measure-
ment of temperature structure functions31,38 and the numeri-
cal estimate that the local Bolgiano scale at the cell center is
comparable to the cell height.9,23

In a similar manner, we also study the scaling behavior
of the x- and y-moments ����

y�p� and ����
y�p� in the two

horizontal directions perpendicular to gravity. Figure 7
shows the compensated plots ����

x�p� / ���0
x�p��x�p�� �circles�

and ����
y�p� / ���0

y�p��y�p�� �triangles� as a function of � for
p=2, 4, and 6 �from bottom to top�. Similar to the situation
for ����

z�p� / ���0
z�p��z�p��, a common scaling �flat� region in � is

found for all the horizontal moments ����
i �p� / ���0

i �p��i�p��
�i=x ,y�. Because of the symmetry of the convective flow,
����

x�p� / ���0
x�p��x�p�� and ����

y�p� / ���0
y�p��y�p�� are expected to

be the same. Indeed, this is observed for p up to 6.
For comparison, we also include in Fig. 7 the compen-

sated z-moments, ����
z�p� / ���0

z�p��z�p��, shown in Fig. 3�b�
�dashed lines�. For small values of p �p�2�, the three com-
pensated moments ����

i �p� / ���0
i �p��i�p�� �i=x ,y ,z� are found

to be approximately the same, indicating that the lower
order statistics of dissipation fluctuations at the cell center
are nearly isotropic. As the value of p increases, the differ-
ence between ����

z�p� / ���0
z�p��z�p�� and ����

i �p� / ���0
i �p��i�p��

�i=x ,y� becomes more pronounced. A recent study of the
local convective heat flux in turbulent convection has
shown50 that while most thermal plumes are mixed up in the
central region of the cell because of the strong velocity fluc-
tuations in the region, there are still some unmixed warm and
cold plumes left, which give rise to a nonzero local heat flux
in the region. These remaining thermal plumes are also
responsible for the generation of large but rare fluctuations of
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the local thermal dissipation rate,4 which are more easily
caught up by the higher order moments, ����

z�p� / ��0
z�p

�p�4�.
Figure 8 shows the measured power-law exponents

�x�p� �circles� and �y�p� �triangles� as a function of p. The
two sets of data overlap very well, indicating that the scaling
exponents in the two horizontal directions are the same.
Similar to the situation for �z�p�, the obtained �x�p� and
�y�p� both can be described by Eqs. �8� and �14� without any
adjustable parameter �solid line�. Figures 6 and 8 thus dem-
onstrate that the scale-dependent statistics of the individual
moments ����

i �p� �i=x ,y ,z� at the cell center can be described
by the same universal function.

Figure 9 shows how the exponent �z�p� varies with the
spatial positions in the central region of the cell. The local
thermal dissipation rate ��

z�r , t� is measured along the central
axis of the cell and the obtained �z�p� versus p curves are
plotted at different vertical distances z away from the center
of the bottom plate: z=100	 �cell center, squares�, 60	
�circles�, 45	 �triangles�, 25	 �crosses�, and 11	 �diamonds�.

Here we take the z-axis pointing upward with the center of
the bottom plate as its origin �z=0�. The values of z are
expressed in units of the thermal boundary layer thickness 	,
which has a value of 	�0.99 mm at Ra=1.7�109.61 Except
for a very small deviation at z=11	, all the data sets overlap
very well and can be adequately described by Eqs. �8� and
�14� without any adjustable parameter �solid line�. Figure 9
thus reveals that the scaling exponent obtained at different
locations in the central region remains the same. At z=11	,
we find a very small but systematic decrease in the measured
�z�p� for large values of p. It will be shown in Sec. IV C
below, the measured �z�p� changes its scaling behavior when
z is moved inside the thermal boundary layer.

B. Sidewall region at mid-height of the cell

Unlike the situation at the cell center, where velocity
fluctuations are approximately isotropic with a zero mean,
the velocity field near the sidewall is anisotropic with a
dominant mean flow in the vertical direction.47 Figure 10
shows the normalized histograms H�dT /dx� /H0 �circles�,
H�dT /dy� /H0 �triangles�, and H�dT /dz� /H0 �diamonds� for
the three components of the temperature gradient vector near
the sidewall. In the plot, the gradient variables dT /dxi

�xi=x ,y ,z� are normalized by their standard deviation �g. It
is found that fluctuations of the two horizontal components
are symmetric relative to the zero mean and their histograms
overlap well over an amplitude range of more than five de-
cades. The measured H�dT /dz� /H0, however, shows a high
level of asymmetry and is strongly skewed toward the nega-
tive derivatives. The negative skewness is caused by the fact
that there are many warm plumes in the region and they lose
heat while moving upward toward the top plate. In contrast,
the measured H�dT /dz� /H0 at the cell center has approxi-
mately the same shape as that of H�dT /dx� /H0 and
H�dT /dy� /H0.4

Figure 11 shows the compensated plot of the moments
����

z�p� / ���0
z�p��z�p�� as a function of � for p=2, 4, and 6 �from

bottom to top�. Similar to the situation at the cell center, a
common scaling �flat� region in � is found for all the values
of p, suggesting that the vertical moment ����

z�p� / ��0
z�p has a

good power-law scaling on �. The scaling range in � is be-
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FIG. 8. Measured power-law exponents �x�p� �circles� and �y�p� �triangles�
as a function of p at the cell center with Ra=8.3�109. Error bars are shown
for circles. The solid line is a plot of Eq. �8� with c=1, �=2 /3, and

=1 /3 �Eq. �14��.
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tween 1 and 10 s, with the lower bound remained the same as
that in the central region. The upper bound of the scaling
range is reduced by a factor of 2 when compared with that at
the cell center because the large-scale fluctuations are cut off
by the nearby cell wall. Similarly, good power-law scaling is
also found for the two horizontal moments ����

x�p� / ��0
x�p and

����
y�p� / ��0

y�p �not shown�. Using a fixed scaling region in �
�which is chosen from the p=6 curve�, we fit all the data to
a power law and find the exponents �i�p� �i=x ,y ,z� for all
values of p up to 6.

Figure 12 compares the three power-law exponents
�x�p� �circles�, �y�p� �triangles�, and �z�p� �diamonds� as a
function of p. The scaling exponents in the two horizontal
directions overlap very well and can be described by the
same equation as observed at the cell center �Eq. �8�� and
with the same set of parameters c, � and 
, given in Eq. �14�
�dashed line�. Figure 12 thus demonstrates that the horizontal
exponents �i�p� �i=x ,y� near the sidewall remain the same
as those at the cell center. The vertical exponent �z�p� is,
however, different from the horizontal exponents and can be
described by Eq. �8� with a different set of parameters c, �,
and 
 given below �solid line�

c = 2, � = 2
3 , 
 = 2

3 .

�15�
�Vertical exponent in sidewall region� .

As discussed in Sec. II, the value of � is determined by the
strength of buoyancy effects, which should only depend on
the height of the measuring position. This is indeed observed
with the value of � �=2 /3� obtained in the sidewall region �at
midheight of the cell� remaining the same as that at the cell
center. On the other hand, the value of c changes with the
orientation with the vertical exponent being different from
the horizontal ones. For the vertical exponent near the side-
wall, we find c=2, suggesting that the most dissipative struc-
tures along the vertical direction are filamentlike.

C. Near the lower conducting plate

Unlike the situation in the bulk and sidewall regions,
temperature fluctuations near the lower conducting plate are
governed by a characteristic length, i.e., the thermal bound-
ary layer thickness 	, which decreases with increasing
Ra.58,61 Figure 13 shows the measured mean temperature
profile T�z� �open circles� and rms temperature profile �T�z�
�solid circles� as a function of the vertical distance z away
from the center of the bottom plate. The measurements are
made by moving the temperature probe vertically along the
central axis of the cell at a fixed Ra=1.75�109. In the plot,
the mean temperature Tbot−T�z� relative to the bottom plate
temperature Tbot is normalized by �T /2 and �T�z� is normal-
ized by �T. The vertical distance z is normalized by 	
��0.99 mm at Ra=1.75�109 �Ref. 61��. It is seen that the
measured �T�z� /�T peaks at the shoulder of the thermal
boundary layer with z /	�0.55 �dashed line�.

To study the scaling behavior of ���r , t� near the lower
conducting plate, we examine three sets of time series data.
One is obtained at a fixed value of Ra�=1.75�109� but with
varying positions z; at each position we typically take 8-h-
long time series data �corresponding to 1.15�106 data
points�. The other two sets of data are obtained at two fixed
locations �z=0.3 mm and z=0.9 mm, respectively� but with
varying Ra �9�108�Ra�9�109�; at each Ra, we typically
take 8-h-long time series data. It is found that the scaling
behavior of ���r , t� near the thermal boundary layer can be
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z�p��z�p�� as a function of � for
p=2, 4, and 6 �from bottom to top�. The measurements are made near the
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FIG. 12. Measured power-law exponents �x�p� �circles�, �y�p� �triangles�,
and �z�p� �diamonds� as a function of p near the sidewall at Ra=8.3�109.
Error bars are shown for circles and diamonds. The dashed line is a plot of
Eq. �8� with c=1, �=2 /3, and 
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classified into two distinct regions. �i� Peak region �0.5
�z /	�0.9� is located around the peak of the measured
�T�z� �near the dashed line shown in Fig. 13�, which is on the
verge of the boundary layer and there are many detached
thermal plumes in the region. �ii� Outer region �z /	�1.05�
is a transition region further away from the boundary layer,
where the mean temperature gradient becomes small.

All the time series data obtained at different values of z
and Ra can be characterized by the two scaling regions, once
they are presented in units of the normalized distance z /	. In
this section, we focus our attention on the scaling behavior of
���r , t� in peak region. The transitional behavior of ���r , t� in
the outer region has been reported elsewhere.46 Because of
the limited resolution of the temperature gradient probe used
in the experiment, we were unable to resolve the detailed
changes of ���r , t� deep inside the thermal boundary layer
�z /	�0.4�, where the mean temperature gradient is large but
there are not many detached thermal plumes. The measured
histogram of temperature fluctuations in this region is sym-
metric and has a Gaussian shape.

Figure 14 shows the normalized histograms
H�dT /dx� /H0 �circles�, H�dT /dy� /H0 �triangles�, and
H�dT /dz� /H0 �diamonds� for the three components of the
temperature gradient vector. To compare the three histograms
in the same graph, we normalize the gradient variables
dT /dxi �xi=x ,y ,z� by their standard deviation �g. The mea-
surements are made at z /	�0.66 above the center of the
lower conducting plate. At this location, the LSC is along the
x-axis and shears the entire thermal boundary layer. Such a
shearing introduces asymmetric fluctuations in the x-z plane,
causing the histograms H�dT /dx� /H0 and H�dT /dz� /H0 to
be asymmetric. The histogram H�dT /dy� /H0 is more sym-
metric because the flow along the y-axis perpendicular to the
LSC plane is symmetric.

Figure 15 shows the compensated plot of the moments
����

z�p� / ���0
z�p��z�p�� as a function of � for p=2, 4, and 6 �from

bottom to top�. Similar to the situation at the cell center and
near the sidewall, a common scaling �flat� region in � is
found for every value of p, suggesting that ����

z�p� has a good
power-law scaling on �. The scaling range in � is between 4

and 21 s, with the upper bound remained the same as that in
the central region. The lower bound of the scaling range is
increased by a factor of 4 when compared with that at the
cell center. In the numerical simulation by Calzavarini
et al.,23 the local Bolgiano scale near the bottom plate was
found to be LB�0� /H�0.1. The corresponding Bolgiano time
is �B�0�=�0LB�0� /H�3.5 s. Thus, the scaling range near the
bottom plate starts from �B�0� and ends before the large-scale
turnover time �0. Similarly good power-law scaling is also
found for the two horizontal moments ����

x�p� / ��0
x�p and

����
y�p� / ��0

y�p �not shown�.
Figure 16 shows the obtained power-law exponents

�x�p� �circles�, �y�p� �triangles�, and �z�p� �diamonds� as a
function of p. The three scaling exponents overlap very well
and can be described by Eq. �8� with a common set of pa-
rameters c, �, and 
, given below �solid line�

c = 1, � = 2
5 , 
 = 3

5 .

�16�
�Inside the thermal boundary layer� .

The data can be adequately described by Eqs. �8� and �16�
without any adjustable parameter. As discussed in Sec. II, the
value c=1 suggests that the most dissipative structures inside
the thermal boundary layer are sheetlike. In fact, the most
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dissipative structure near the bottom and top plates is the
thermal boundary layer itself, which is clearly two-
dimensional. The value �=2 /5 suggests that velocity fluc-
tuations inside the thermal boundary layer obey the
Bolgiano–Obukhov scaling43,44 for buoyancy-dominated
flows. This result supports the notion that the largest
temperature gradient is concentrated across the thermal
boundary layer,4,9 in which buoyancy effects are strong and
temperature becomes an active scalar.

D. Statistics of the total thermal dissipation rate

With the understanding of the scaling behavior of each
component of the local thermal dissipation rate, we now dis-
cuss the scale-dependent statistics of the total thermal
dissipation rate ���r , t�=	i��

i . In a recent brief report,46

we have discussed the scaling behavior of the moments
��

p����
p�r , t��t and showed how the scaling exponent ��p�,

defined by ��
p����p�, changes with varying positions along

the central axis of the cylindrical cell from the lower con-
ducting plate to the cell center.

Figure 17 shows the obtained ��p� as a function of p at
the cell center �squares�, near the sidewall �circles�, and in
peak region inside the lower thermal boundary layer �tri-
angles�. As shown in Figs. 6 and 8, the statistics of dissipa-
tion fluctuations at the cell center are isotropic and the
power-law exponents for each component �i�p� �i=x ,y ,z�
have the same functional form. Similarly, inside the thermal
boundary layer, the buoyancy effects are strong and tempera-
ture becomes an active scalar. The three individual exponents
�i�p� �i=x ,y ,z�, in this case, are also found to have the same
functional form, as shown in Fig. 16. As a result, one expects
the exponent ��p� for the total dissipation rate at the cell
center to be well described by the same set of equations �Eqs.
�8� and �14�� for passive scalars �lower solid line� and the
exponent ��p� inside the thermal boundary layer should be
well described by the same set of equations �Eqs. �8� and
�16�� for active scalars �upper solid line�. These results are
indeed observed in Fig. 17.

Dissipation fluctuations near the sidewall are found to be
anisotropic with the vertical exponent �z�p� having a func-
tional form different from that of �x�p� and �y�p� �see Fig.
12�. In this case, one does not expect the total moments ���

p�
to be a simple power law of �. However, because the contri-
bution from the vertical direction � f

z�r , t� near the sidewall is
much larger than the horizontal contributions � f

x�r , t� and
� f

y�r , t�, we find ���
p� can still be described by an effective

power law and the resulting exponent ��p� is adequately
described by Eq. �8� with a set of parameters different from
those for the individual components. The dashed line in Fig.
17 is a plot of Eq. �8� with c=2.4, �=2 /3, and 
=0.72.
Here, the values of c and � are chosen to best fit the data
�circles� whereas 
 is given by Eq. �11�. Clearly, the fitting
results for ��p� are affected more by the parameters for
�z�p� �given in Eq. �15�� than those for �x�p� and �y�p�.

It is seen from Fig. 17 that the value of ��p� near the
sidewall �for a fixed p� is increased when compared with that
at the cell center. Using the refined similarity ideas, one finds
��p� is directly linked to the scaling exponent ��p� of the
temperature structure function Sp�r� �or Sp����. Thus, the in-
crease in ��p� near the sidewall would give rise to an in-
crease in ��p�.42 Indeed, such an increase has been observed
in previous measurements of the temperature structure func-
tion and power spectrum near the sidewall.35,38,62 This in-
crease in ��p� was interpreted as a signature for active sca-
lars, but the early interpretations used the global Bolgiano
scale LB �or the corresponding Bolgiano time �B� based on
the global viscous and thermal dissipation rates averaged
over the entire cell. As discussed in Sec. IV A, such an esti-
mate of LB does not apply to the local regions considered
here because of the spatial inhomogeneity of the convective
flow in small aspect-ratio cells. Our measurements in Secs.
IV B and IV D together clearly demonstrate that the increase
in ��p� �and hence ��p�� is caused by the anisotropy of the
flow near the sidewall, so that the codimension of the most
dissipative structures is changed from sheetlike to filament-
like, rather than a transition of temperature from being
passive to active. This conclusion is further supported by
the fact the lower end of the scaling range in � near the
sidewall remains unchanged when compared with that at the
cell center.

V. SUMMARY

We have systematically studied the statistical properties
of the locally averaged thermal dissipation field in turbulent
Rayleigh–Bénard convection. A local temperature gradient
probe consisting of four identical thermistors was made to
measure the instantaneous thermal dissipation rate �T�r , t� in
an aspect-ratio-one cell filled with water. The measurements
were conducted at a fixed Prandtl number �Pr�5.5� and over
varying Rayleigh numbers and spatial positions r across the
convection cell. From the measured �T�r , t� we construct a
locally averaged thermal dissipation rate ��

i �r , t� over a time
interval �, as defined in Eq. �7�, and study the �-dependence
of the moments, ����

i �p�. It is found that ����
i �p� exhibits good

scaling in � �����
i �p����i�p�� for all three contributions from

the three temperature gradient components �i=x ,y ,z� and for
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FIG. 17. Power-law exponent of the total dissipation ��p� as a function of p
obtained at the cell center �squares�, near the sidewall �circles�, and in peak
region inside the lower thermal boundary layer �triangles�. Plots of Eq. �8�
are shown with three different sets of parameters: �i� c=1, �=2 /5, and

=3 /5 �Eq. �16�� �upper solid line�; �ii� c=2.4, �=2 /3, and 
=0.72
�dashed line�; and �iii� c=1, �=2 /3, and 
=1 /3 �Eq. �14�� �lower solid
line�. All the measurements are made at Ra=8.3�109.
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all values of p up to 6. This scaling behavior of ����
i �p� is

observed at three representative locations in the convection
cell: at the cell center, near the side wall, and near the lower
conducting plate.

In the central region of the cell, we find that the scale-
dependent statistics of dissipation fluctuations are isotropic
and the power-law exponents �i�p� �i=x ,y ,z� have the same
functional form, which is well described by Eq. �8� with the
parameters c, �, and 
 given in Eq. �14�. Furthermore, the
exponent ��p� for the total dissipation is also well described
by the same set of equations. From the obtained values of c,
�, and 
 in Eq. �14�, we conclude that in the central region,
the most dissipative structures are sheetlike and temperature
behaves like a passive scalar.

Near the lower conducting plate, the large-scale circula-
tion shears the entire thermal boundary layer, which intro-
duces asymmetric dissipation fluctuations in the x-direction
�along the large-scale flow� and z-direction �parallel to grav-
ity�. Such a shearing, however, only affects the amplitude of
dissipation fluctuations and the three power-law exponents
�i�p� �i=x ,y ,z� remain the same. The three exponents can
all be described by Eq. �8� with a common set of parameters
c, �, and 
, given in Eq. �16�. In addition, the exponent ��p�
for the total dissipation is also well described by the same set
of equations. From the obtained values of c, �, and 
 in Eq.
�16�, we conclude that inside the thermal boundary layer, the
most dissipative structures are sheetlike and temperature be-
comes an active scalar. This result agrees with our notion
that the thermal boundary layer itself is two-dimensional and
is the most dissipative structure near the conducting plate.
Inside the thermal boundary layer, the temperature gradient
takes the largest value so that temperature is expected to be
an active scalar.

In the sidewall region, the velocity field is anisotropic
with a dominant mean flow in the vertical �z-� direction. The
two horizontal exponents �i�p� �i=x ,y� are found to be the
same as those at the cell center. The vertical exponent �z�p�
is, however, different from those in the horizontal directions
and can be described by Eq. �8� with a different set of pa-
rameters c, �, and 
, given in Eq. �15�. From the obtained
values of c, �, and 
 in Eq. �15�, we conclude that near the
sidewall the most dissipative structures are filamentlike and
temperature behaves like a passive scalar.

Because of the anisotropy of the flow field near the side-
wall, one does not expect the moments ���

p� for the total
thermal dissipation to be a simple power law of �. However,
because the contribution to the local thermal dissipation rate
from the vertical direction is much larger than those from the
horizontal directions, we find the obtained ���

p� near the side-
wall can still be described by an effective power law and the
resulting exponent ��p� is adequately described by Eq. �8�
with a set of parameters heavily influenced by those for
�z�p�. It is found that the value of ��p� near the sidewall �for
a fixed p� is increased when compared with that at the cell
center. Our analysis demonstrates that such an increase in
��p� �and the observed increase of the scaling exponent for
the temperature structure functions� is caused by a change of
the codimension of the most dissipative structures from be-

ing sheetlike to filamentlike, rather than by a transition of
temperature from being passive to active.

Putting these results together, we conclude that the scal-
ing of the thermal dissipation field in turbulent Rayleigh–
Bénard convection contains two contributions: a background
contribution that comes from the two horizontal exponents
�i�p� �i=x ,y�, which have the same features, and a compo-
nent from the vertical exponent �z�p�. The background con-
tribution has the same value in the bulk region of the cell
�including both the central and sidewall regions� with the
parameters c=1 �sheetlike� and �=2 /3 �passive scalar� but
becomes c=1 �sheetlike� and �=2 /5 �active scalar� in the
thermal boundary layer. Superimposed on this background is
the contribution from the vertical exponent �z�p�, which var-
ies with the position. At the cell center, �z�p� remains ap-
proximately the same as the two horizontal exponents,
whereas near the sidewall, �z�p� becomes different from
�x�p� and �y�p� with the parameters c=2 �filamentlike� and
�=2 /3 �passive scalar�. Inside the thermal boundary layer,
all three exponents �i�p� �i=x ,y ,z� become identical again
but with a different set of parameters c=1 �sheetlike� and
�=2 /5 �active scalar�.

Our experiment clearly demonstrates that the thermal
dissipation field in turbulent convection indeed has the scale-
dependent statistics and its scaling in � is well described by a
set of scaling parameters. Such a set of parameters provides
a scaling description of flow characteristics, including pas-
sive and active temperature fluctuations and geometric shape
of the most dissipative structures. The intermittency problem
of passive scalars has been studied and understood63 in the
Kraichnan model.64–66 However, a quantitative experimental
study of the correlation between the scaling exponents for
the dissipation fluctuations and those for the temperature
�passive or active� and velocity structure functions remains
to be done. Evidently, the present work represents an impor-
tant first step toward this direction, particularly in the context
of turbulent thermal convection.
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