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A LIGHT SCATTERING STUDY OF TURBULENCE

W.I. GOLDBURG, P. TONG !'and H.K. PAK
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA

By scattering light from a turbulent fluid seeded with small particles, one obtains information about turbulent velocity fluctua-
tions over varying spatial scales, R. The measured intensity autocorrelation function, g(¢), is related to the probability density
P(V(R)) of finding velocity fluctuations of magnitude V(R) associated with eddics of size R. The measurements described here
strongly suggest that the energy-containing eddies occupy a fractal region whose dimension (or spectrum of dimensions) increases
with the Reynolds number Re when Re exceeds some threshold value.

1. Introduction

In his seminal book, The Fractal Geometry of Na-
ture, Benoit Mandelbrot [ 1] makes clear his deep in-
terest in the geometrical nature of turbulence. As he
points out, the description of the visual appearance
of a turbulent fluid, such as smoke curling up from a
cigarette, taxes our powers of description. It seems
that present-day speech is not well suited to evoking
the image of self-similar structures. After all, it takes
a series of images, one magnified with respect to the
other, to identify fractal structures. And turbulence
is, by all evidence, a fractal thing at its roots[2].

There are many ways of revealing the fractal or
spotty nature of a turbulent fluid. One technique is to
measure the time variation of the square of the veloc-
ity at a point in the fluid [3]. Another is to add a
small amount of long-chain molecules to the fluid and
observe it through crossed polaroids [4]. The mole-
cules are locally aligned by turbulent shear forces.
These molecules, being anisotropic scatterers, depo-
larize the light in regions where the shear is large,

making the local structure of the strong vorticity di-
rectly visible.

Herein we describe experiments, carried out at the
University of Pittsburgh, which provide a new ap-
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proach to the study of the small-scale structure of tur-
bulence. The method involves a measurement of the
autocorrelation function of the light intensity scat-
tered by small particles suspended in the turbulent
fluid. For this technique there is no need to invoke
the “frozen turbulence assumption” to translate tem-
poral information to spatial information. According
to this assumption, small-scale eddies (the ones of
interest), are transported past a velocity measuring
device with the mean velocity U of the flow. If these
small-scale eddies remain intact for a long enough
time, a time record of the velocity v(¢) at a point will
reveal spatial features of the flow through the equa-
tion v(¢) =v(x/U). The frozen turbulence assump-
tion fails unless the velocity fluctuations V(R) asso-
ciated with eddies of size R are uncoupled from the
larger-scale eddies.

The technique of photon correlation homodyne
spectroscopy (HS) [5], which we have used in our
experiments, is that of recording the beating of scat-
tered light waves that have been Doppler shifted by
pairs of particles seeded in the turbulent fluid. The
technique was introduced many years ago by Bourke
et al. [6], but seems largely to have been ignored.
Being an optical technique, it permits non-invasive
observation of velocity fluctuations at very small
scales.

The homodyne scheme is readily understood from
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fig. 1, which shows two movin.g particlgs at .a partic-
ular instant of time when their separation 1§ R and
their velocities are v, and »,. The se?:d part.1cles are
small enough that they scatter light 1sotrop1ca}1y. A
photodetector (PMT), located at an angle 6 with re-
spect to the incident beam, receives the light fr.om
both particles. The scattered light from each particle
is Doppler shifted by an amount k-», and k-», re.spec-
tively, where k is the scattering vector, of magnitude
k= (4nn/A) sin(40). Here 4 is the vacuurg wave-
length of the light (1=488 nm in our experlme.nts.),
and # is the refractive index of the turbulent ﬂglde in
our case the fluid was water. The photomulgpl}er,
which receives the light from the particle pair, is a
square-law detector, so that its output cur.rent, I(t),
contains a beating term proportional to
cos[kVi(R)t], where V is the projection of the ve-
locity difference »,—v, along the direction of k.
Henceforth the subscript on ¥, (R) will be dropped,
but its R dependence will be retained.

The essential aspect of turbulence is that the veloc-
ity difference between two points in the ﬂuid de-
pends on the separation R of these two points. Ac-
cording to the theory of Kolmogorov [6], the
moments of the velocity fluctuations V'(R) obey a
scaling law

. B_‘y"
JR e e .

(V(R)"> ~u(R)"~R*, (1)

with &,= {n. The homodyne technique is well suited
to measure the lower moments of V(R), but not the
higher moments. On the other hand, the method
yields information about the functional form 9f the
probability density P(¥(R)), that two points 1r.1 the
fluid, separated by a distance R, have velocity differ-
ence lying within V(R) and V(R)+dV(R). Our cen-
tral finding is that P(V(R)) is well represented by a
Lorentzian function,

P(V(R)) {1+ [V(R)/u(R)1?} ', (2)

for relatively small values of V(R). We also find tbat
the scaling velocity #(R) ~ R, where ( is a function
of Reynolds number, Re. The measurements were
made at very modest values of the Reynolds number.
In fact the turbulence was so weak that one might not
have thought the flow would exhibit the self-siryilar-
ity which was indeed observed. Throughout this pa-

. —per the Reynolds number is defined as Re=Uly/,

where Uis the mean velocity of the flow, [, is the outer
scale of the turbulence, and v is the kinematic viscos-
ity of the fluid.

_________________________________

i tered and incident
Fig. 1. A schematic diagram showing scattering geometry. The scattering vector k=k,— ko, where k, and k; are the scat

wave vectors respectively.
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2. Experimental

The detailed experimental setup can be found in
ref. [8]. The fluid flow was generated in a closed

water tunnel comprised of a cylindrical pipe and a

pump of variable speed. The turbulence is generated

by a grid within the pipe. The grid can be removed to
permit study of wall-generated turbulence (pipe
flow). A baffle section placed in the high-pressure side
of the grid, suppresses the turbulence generated by
the pump and by those sections of pipe on the high-
pressure side of the grid. With this arrangement all of
the turbulence is generated by the grid only. In most
of the experiments discussed here the diameter of the
bipe was 4.4 cm, and the aperture size of the grid was

3.1 mm. These parameters are taken to be /, in cal-

culating the Reynolds number. The measurements
were made 28 cm downstream from the grid. The
water which flowed through the pipe was seeded with
polystyrene spheres 60 nm in diameter. These parti-
cles were small enough to scatter light isotropically
and in sufficient concentration that their mean sepa-
rgtion was much less than the Kolmogorov dissipa-
tion length /,, which was estimated to be a fraction of
a millimeter.

. On the downstream side of the grid there is an op-
tically transparent section of piping to admit the in-
cident laser beam and observe the scattering. Be-
C.ause the flow is seeded, a thin column of the scattered
lightis produced in the water and that light is imaged
with a lens, on a slit of variable width, L. By varying
L, the homodyne scheme permits the probing of ve-
locity fluctuations V(R) from the smallest scale l;to
that of the width of the slit, L.

.Using a standard light scattering apparatus and a
digital correlator, we measure the intensity autocor-
relation function, g(z)=(¢I(¢') I +1)> /I(t)>2,
where I(¢) is the scattered light intensity measured
at scattering angle 6, and the angle brackets represent
a time average over 7. One can show [8] that the
correlation function g( 1) has the following form:

8()=1+/14) G(z). (3)

The geometrical factor f(A) is of order unity if the

photodetector receives light from only one coherence
:area [5]. All of the interesting physics is contained
in G(¢), which is proportional to a sum of the time.
averaged phase factors cos(kt¥) coming from the
Doppler shift of all particle pairs in the scattering
volume. The function G (2) can be written as [8]

G(t):JdRh(R) f dV(R) P(V(R))

Xcos[kV(R)t], (4)

wh.ere A(R) is the probability of finding a particle
E&ur, separated by R, in the columnar region of length

.If the image on the slit is taken to be quasi-one-
dimensional, which is valid when the slit width re-
mains large compared to the diameter of the laser
beam, #(R)=2(1 —R/L)/L. Note that the inner in-
tegral in eq. (4) is the Fourier cosine transform of
P(V(R)), and the G(t) may be thought of as a trans-
form of the characteristic function. If the probabil-
ity density P(V(R)) has the scaling form
P( V(R)):Q[V(R)/u(R)]/u(R), €q. (4) becomes

G(t)= deh(R)F(ktu(R)), (5)
0

where F is the Fourier cosine transform of Q[ V(R)/
u(R)]. It is easy to show that the scaling law in eq.
(1) follows if the probability density function
P(V(R)) has the above mentioned scaling form.
The above equations for 8(2) have quite general
validity. They hold, for example, even if the fluid is
stationary, and the seed particles are undergoing
Brownian motion only. In that case, V'(R) is inde-
pendent of R and P( V(R)) is a Gaussian function.
Then the function G (¢) is an exponentially decaying
function [51, G(¢) =exp(—2Dk?t), where D is the
diffusivity of the Brownian particles, and is given by
Stokes’ law. This contribution to the decay of G(t)
will be present, even when the fluid is turbulent.
However, in a turbulent fluid, the decay time 7 of
G(t) is much shorter than the diffusive decay time,
Ty=1/2DK?, so that the latter contribution can be
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safely ignored. From eq. (5), it follows that the tur-
bulent decay time should be of the order of T=
1/ku(L), because the fastest decay rate is associated
with the largest eddies of size L.

3. Results

Over a wide range of slit widths and Reynolds
numbers, we find that the function G (t) exhibits the
scaling form,

G(kt, L,Re)=G(x) , (6)

with x~k#L¢t. This scaling behavior of G(¢) is ob-
served only when the Reynolds number exceeded a
certain value Re.. In the case of the grid flow de-
scribed above, Re. was roughly 500, which corre-
sponds to much weaker turbulence than that one nor-
mally associates with scaling behavior. It is quite
possible that the scaling behavior is seen at such small
values of Re because the simultaneous velocity dif-
ference V(R) is measured and no frozen turbulence
assumption is needed in the data analysis.

The exponent 4 in eq. (6) was measured as fol-
lows. For a fixed slit width L and a fixed Re, G(¢)
was measured at several scattering angles and hence
several values of k. All of the plots of log [G(t) ] ver-
sus log(z) could be superimposed by horizontal
translation of one graph with respect to another. The
amount of translation, d(k), is found to be roughly
proportional to k, i.e. =1, when Re exceeded the
critical value Re.. However, in the absence of flow,
u=2, as expected for Brownian motion of the seed
particles. Similar measurements were made in which
k and Re were held fixed, and L was varied. Again all
the plots of log[ G(¢) ] versus log(¢) could be super-
imposed, yielding the result x~kL*, as long as Re
exceeded Re.. In these experiments, { is found to be
Re dependent. We return to this important observa-
tion below.

Fig. 2, a log-log plot of G(x) versus k, shows the
scaling behavior of G(¢) discussed above. The mea-
surements correspond to several values of scattering
angle, or k-value, several slit widths and at various
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Fig. 2. The scaling function G (k) versus k=qu (L)t in pipe flow
and grid flow.

Reynolds numbers. In one set of measurements
(closed circles), the grid was present; in the other two
sets (crosses and triangles), the grid was removed
(pipe flow). The correlation functions G(¢) have
been horizontally (and vertically) translated so that
they coincide. In the pipe flow measurements, the
Reynolds number is based on the pipe diametér,
making it an order of magnitude larger than that for
the grid flow, even when the mean flow velocities U
are comparable in both cases.
An alternative way to determine the exponent { was
to plot, on a double logarithmic scale, the slit-width
dependence of the decay time, T, of G(¢), keeping Re
and k fixed. As is shown in fig. 3, linear variation of
log(T") with log(L) was seen at intermediate values
of L. The data in fig. 3 were obtained in the grid flow
at three different Reynolds numbers Re=460, 1400,
and 2200. Since T=1/ku(L) and u(L)~L" the
slope of this line yields the exponent ¢, which is 1/3
in the Kolmogorov theory. We have verified that the
power law behavior at large L was limited by the outer
scale, [;, of the turbulence. At small values of L the
beam diameter was no longer negligibly small, which
could account for the decrease in T at small values of
L. Imperfections in the optical system may also be
responsible for the decrease in T at small slit widths.
The behavior of T (L) at small L has more recently
been reexamined in a water tunnel of much superior
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Fig. 3. The decay time T(L) versus slit width L in grid flow. The
number below a line is the slope of that line.

design to that used in the studies reported above. In
this experiment, the optically transparent pipe, where
g(t) was measured, was square in cross section, rather
than cylindrical, so that the laser beam was undis-
torted in passing through it. In this square pipe, the
beam diameter was less than 0.1 mm, which is smaller
than the smallest value of L at which g(t) was mea-
sured. Using laser Doppler velocimetry and invoking
the frozen turbulence assumption one can determine
the smallest eddy size /,. At Re=850, we obtained
[4=0.4 mm. At values of L between 0.4 mm (=)

and 0.1mm, the decay time of G(z) became indepen-

dent of L, i.e. {~0 when L</,. This result is very

different from the Kolmogorov prediction, {=1 when
L<l,.

From the straight-line segment (solid line in fig. 3)
we can extract the slope { which shows a Re-depen-
dent feature. Fig. 4 shows ¢ as a function of Re for
both pipe flow and grid flow (insert). The exponent
{ is seen to increase from 0 to a 1/3 (the Kolmogo-
rov value) as Re is increased. When the Reynolds
number is below Re,, G(¢) fails to exhibit scaling be-
haviour. The measured Re,~ 300-400 in the grid flow
and Re.~3000~4000 when the grid was removed.
Measurements in the improved water tunnel give
similar results. These observations are consistent with
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Fig. 5. A plot of log[ G (g1, L)] versus ¢ in pipe flow at indicated
parameters.

the notion that the turbulence becomes increasingly
three-dimensional as Re is increased above Re, and
that in the vicinity of Re,, the turbulence is two-di-
mensional [9].

We now turn to the discussion about the functional
form of G(¢). Fig. 5 is a semilog plot of G(t) versus ¢
in pipe flow at the indicated values of L, 8, and Re.
The straight line is a linear fit to the data points at
small 2. It is seen that only at large time does the curve
start to deviate from the linear behavior. If we as-
sume that the characteristic function F (ku(R)t) in
eq. (5) has the form F~exp[—ku(R)t], G(t) then

==

becomes an incomplete gamma function with ku (L)t
as its argument [8]. This equation is well fitted to
our measurement of G(¢). An example of this good
fitis shown in fig. 6. Note that the assumption of F(x)
being a single exponential decaying function implies
that P(V(R)) is of Lorentzian form as shown in eq.
(2). This function has a diverging second moment,
to which the energy density in the fluid is propor-
tional. Therefore G(¢) cannot have this form for large
values of V(R). We indeed observed departures from
this Lorentzian form for P(V(R)) with very large
values of V(R) (corresponding to very small ¢ for
G(t)) [10,11]. However, these observations will not
be discussed further here. Most theories of turbu-
lence concentrate on the scaling behavior of the mo-
ments of V(R), rather than in P(V(R)) itself. Quite
often, P(V(R)) is assumed to be of Gaussian form,
P(V(R))~ exp{—[V(R)/u(R)]?}, but this form of
P(V(R)) is clearly contrary to our findings.

How can one understand that the exponent ¢ in-
creases from 0 to = 1/3 as the fluid becomes increas-
ingly turbulent? A fundamental understanding of this
result is lacking, but it can be said that the observa-
tion is consistent with the notion that the turbulent
active region is a fractal [12]. Let the fractal dimen-
sion of the turbulent region be D. Since the turbulent
energy is confined to active regions of dimension
D <3, the concentration of the turbulent energy is in-
creased to smaller regions, relative to the case of vol-
ume-filling turbulence. Modifying the Kolmogorov
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Fig. 6. A typical autocorrelation function g(¢) versus ¢ in grid
flow. The solid line is a fit to the incomplete gamma function.
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theory to take this effect into account [13], one has
#(R) ~R¢, with {=4(14+D-3). According to this
model, the increase of { from 0 to ~ § corresponds to
an increase of D from 2 to 3.

It should be stressed that our measurements of g(f)
described above, do not directly give information
about the fractal dimension of the energy-containing
eddies; it can only be said that the data invite such an
interpretation. The above interpretation of the data
in fig. 4 is supported by the recent work of Shreeni-
vasan et al. [3]. They measured the fractal dimen-
sion of the interface of two counter-flowing fluids, one
of which has been dyed. Such measurements, made
in the vicinity of Re,, support the conclusion that in-
creasing Re above Re, increases the dimensionality
of the turbulent active region. With one adjustable
parameter, Re,, the data of Shreenivasan et al. canbe
directly superimposed on the measurements in fig. 4
[3].

Even if the energy-containing eddies in a turbulent
field occupy regions with dimensionality less than 3,
it is not necessary that the entire turbulent region be
characterized by a homogeneous fractal. Benzi et al.

[14] have proposed a model that the turbulent re-
gion is a multifractal object. In their model there is a
probability, x, that the turbulent region is space fill-
ing (D=3) and a probability, 1 —Xx, that D=2. Our
measurements are consistent with this model, pro-
vided one makes an additional assumption that x is
a function of the Reynolds number. The details of the
model have been worked out for a general function
of x(Re) and fitted to experiment [9]. At present,
however, our measurements are not precise enough
to confirm that a multifractal model is required to
explain the observations.

4, Concluding remarks

What started out as a study carried out in the time
domain (the measurement of g(¢) ), has ended up by
yielding spatial information about turbulent flow. The
homodyne experiments provide further confirma-
tion of the notion of Mandelbrot that the energy-
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containing eddies are fractal in their geometrical
structure. This finding is not new. What seems to have
gone unnoticed before, is that the fractal dimension
of the turbulence changes with changing Reynolds
number, when some critical value of this parameter
is exceeded. The interpretation of these experiments
makes no appeal to the frozen turbulence assump-
tion. By using the technique of photon correlation
homodyne spectroscopy, we have been able to ob-
serve the self-similar behavior of turbulent flows at
moderate Reynolds number that were heretofore re-
garded as too weak to exhibit universal features.
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ASYMMETRIC RANDOM WALK ON A RANDOM THUE-MORSE LATTICE *
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Dedicated to Benoit Mandelbrot on the occasion of his 65th birthday

We study the behavior of an asymmetric random walk in a one-dimensional environment whose nonuniformity is in between
that of quasi-periodic and random. We construct the environment from arithmetic subsequences of the Thue—Morse sequence.
The construction induces in a natural way a measure 4 on the space of environments which is invariant and ergodic with respect
to translations but is not mixing and has zero entropy. The behavior of the random walk is rather similar to that found by Sinai
for the Bernoulli case, when yu is a product measure for which the entropy has its maximum value; i.e. the particle motion is
subdiffusive, the displacement growing in time as (log t)'/%, B=log 3/log 4. The nature of the dramatic Sinai-Golosov “localiza-
tion” is however quite different, exhibiting an interesting fractal structure whose nature depends upon the time scale of observation.

1. Introduction

We study the behavior of an asymmetric random walk in a one-dimensional environment whose nonuniform-
ity is in between that of quasi-periodic and random. We will specify the environment by a “spin” configuration
E={¢&}, &= 1, jeZ. Given £ and some 0 <e< 1, the random walk has a transition probability at site j to the
right, p; (and to the left, 1 —p;), of the simple form p;=4(1+€&).

We will consider environments = {&;} which are obtained from arithmetic subsequences of the Thue-Morse
substitutional sequence [1,2], in a manner to be described in section 3. The construction will induce in a natural
way a unique measure 4 on the space of configurations (possible environments) {—1, 1}* [2]. This measure u
is invariant and ergodic with respect to translations but is not mixing, and has zero entropy.

We shall later see that despite this lack of randomness in the environment, the behavior of the random walk
is rather similar to that found by Sinai [3] for the Bernoulli case, when 4 is a product measure for which the
entropy has its maximum value; i.e. the particle motion is subdiffusive, the displacement growing as a power of
a logarithm in time. To see how this comes about we now discuss briefly the general setting of the Sinai theorem,
while retaining the simple relation p;=4(1+€&).

In one dimension it is always possible to define a potential energy function U(j) so that the transition proba-
bilities satisfy the detailed balance condition with respect to the (non-normalized ) measure exp[ — U(j) ], i.e.

pil (1=pjwy)=exp[U()-UG+1)]. (1)

Hence the measure exp[ — U(j) ] is stationary. Also, it follows that for a translation-invariant ergodic measure
won the &, the condition of no drift is simply {¢;> ,=0.
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