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Abstract 

The photon correlation spectroscopy technique was exploited to study tur- 
bulent pipe flow behind a grid. The correlation function of the scattered light 
intensity, g(t) ,  was found to be a scaling function of qu(L)t(Lo/L)l when the 
Reynolds number Re > 460. Here q is the scattering vector, L,, the outer 
scale of the turbulent flow, and u(L) is the characteristic turbulent eddy 
velocity associated with eddies of size L. The exponent B is a function of Re. 
The measurements of the half-decay time of g ( t )  as a function of L and Re 
reveal an abrupt change in the character of the turbulent flow at Re = 460. 

1. Introduction 

A standard technique for studying laminar or turbulent flow 
is that of laser-Doppler velocimetry (LDV) [l,  21. The flowing 
fluid is seeded with small particles which scatter the light 
while following local flow. The Doppler shifted light is mixed 
with the incident beam in a square-law detector, usually a 
photomultiplier. The detected signal then contains a com- 
ponent of the Doppler shift, q * v(r ,  t ) ,  where v(r, t )  is the 
velocity of scatterers in the fluid. The scattering vector q has 
the amplitude q = (4742) sin (8/2), where 8 is the scattering 
angle, n is the refractive index of the fluid, and I is the wave- 
length of the incident light. This technique is especially useful 
for the case of laminar or weakly turbulent flow [3], where a 
single frequency q v(r, t )  persists long enough to be measured. 

For strongly turbulent flow it is more interesting to 
measure velocity differences rather than the local velocity 
v(r ,  t ) .  With a simple modification of the above LDV scheme, 
the difference V(R,  t )  = v(r, I) - v(r + R, t )  is also measur- 
able, as was demonstrated many years ago by Bourke et al. 
[4]. Here one records the intensity correlation function g ( t )  = 
( Z ( t ’ )  Z(t’ + I)), where Z ( t )  is the intensity of light falling on 
a photodetector. The technique yields information about 
velocity fluctuations without introducing an invasive probe, 
such as a hot wire anemometer [5].  Nor is it necessary to 
invoke Taylor’s “frozen turbulence” assumption [6] to inter- 
pret the measurements. Intensity correlation spectroscopy 
has been especially fruitful in the study of diffusion motion of 
small particles in solution and molecular motion as well [7]. 

When the photon correlation technique is applied to the 
study of turbulence, one scatters and incident beam from seed 
particles, as in LDV, and g ( t )  is the sum of terms, each of 
which contains the difference in Doppler shifts of particle 
pairs with velocity difference V ( R ,  t ) .  As will be seen, g ( t )  is 
simply related to the velocity distribution function, P( V(R) ) ,  
that such a particle pair, separated by a distance R, has 
velocity difference V(R, t ) .  More precisely, the measurement 
of g ( t )  yields a weighted integral of the Fourier Cosine Trans- 
form of P( V(R)).  By varying the direction of the scattering 
vector q, one can measure the component of V ( R ,  t )  in 
various directions with respect to the direction of mean flow. 
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In the theories of fully developed turbulence, the velocity 
difference V ( R ,  t )  is expected to have self-similar character, 
i.e. the complete statistics of the velocity differences over 
varying length scales become identical under an appropriate 
scaling of velocity [8]. It is easy to show that the self-similar 
behavior of the moments of velocity difference can be obtained 
if the probability density function P( V ( R ) )  has the scaling 
form P( V(R)/u(R)),  where u(R) is a characteristic scaling 
velocity associated with size R. Theoretical models have been 
developed [9-111 and have led to predictions of self similarity 
of fully developed turbulence. Experiments at very large 
values of Re in air channels, ducts, and in the atmosphere 
confirm these predictions [12, 131. 

Paralleling this research on strong turbulence, there have 
been recent developments in the theory of chaotic dynamics 
which provides a new paradigm for the understanding of the 
onset of turbulence [ 141. The experiments described here are 
an investigation of turbulent flow between these two regimes. 

We have exploited the photon correlation scheme to 
explore the small-scale turbulence at moderate Reynolds 
number in the familiar geometry of pipe flow through a grid 
[I51 and find several notable features of the small-scale 
turbulence. At all but the smallest values of the Reynolds 
number Re, g ( t )  obeys a scaling form, g ( t )  = g(x ) ,  where 

x = qu(L)t(Lo/L)B. (1.1) 

Here Lo is the outer scale of the turbulence which is propor- 
tional to the grid aperture size M ,  and u(L) -   EL)"^ is the 
characteristic turbulent eddy velocity associated with eddies 
of size L. The exponent p turns out to be a function of 
Reynolds number Re. The parameter L is the width of a slit 
on which the scattered laser beam was focused. By varying 
the slit width one controls the size of the largest eddy and thus 
the largest velocity difference, V ( R ,  t ) ,  which contributes to 
the intensity Z ( t )  from which g ( t )  is extracted with a standard 
photon correlator. As expected, the largest eddies have the 
largest velocity, so that a wide slit width implies a short decay 
time of g( t ) .  The fact that the argument x in eq. (1.1) is 
proportional to q rather than q2, assures that V ( R ,  t )  is not 
Gaussianly distributed and that one is not dealing with a 
diffusive phenomenon. 

It will be seen in Section 2 that the factor U(L)(L~/L)~ in 
eq. (1.1) resembles the characteristic eddy velocity for fully 
developed intermittent turbulence even though we are far 
from this state. The maximum Reynolds number which can 
be reached in circulating water flow through a grid is much 
smaller than that which can be achieved in, say, an air channel, 
a jet, or in the open atmosphere. The exponent p appears in 
the theories of fully developed turbulence to characterize 
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its intermittent nature. Here j3 is not a function of Re. 
Experiments have provided approximate values for 
through measurements of higher moments of the velocity 
fluctuations in the inertial range of spatial scales [12, 131. In 
the Kolmogorov theory of fully developed turbulence [ 161, 
only two parameters are relevant, namely the kinematic vis- 
cosity v of the fluid and the energy dissipation rate E .  At lower 
turbulent levels many parameters are presumably required to 
characterize the velocity field. We found, however, that in the 
range of 460 < Re < 2500, the scaling picture could still be 
applied to the velocity fluctuations, and the single additional 
parameter fi(Re) of eq. ( 1 . 1 )  sufficed to reduce g ( t )  to scaling 
form for all values of the parameters L and q. By measuring 
how the half-decay time T of g ( t )  depends on L, we extract 
the functional dependence of j3 on Re. The exponent j3 vs Re 
exhibits a kink at Re = 460, suggesting the onset of the 
turbulent velocity distribution having scaling character. Near 
the maximum attainable value of Re, j3 has climbed to zero 
(Kolmogorov value). At the maximum accessible turbulent 
levels fl begins to decrease, an indication that the turbulence 
begins to be intermittent. 

It is useful to keep in mind the range of the controllable 
parameters in our experiment, and to compare them with 
relevant length and time scales of the fluid motion. The 
Reynolds number Re = MU/v could be varied from 31 to 
3100 by adjusting the mean velocity, U ,  at the center of the 
pipe. Here v is the kinematic viscosity which is 0.001 cm2 s-’ 
in water. The Kolmogorov dissipation length [16], L, N 

Lo(Re)-3’4, was of the order of 10 microns at Re = 3000. 
Since this is much larger than the wavelength of light one 
could, in principle, reduce L well below Ld, in which case u(L) 
would be constant over L, and the decay time of g( t )  may 
become independent of L. In practice we have not been able 
to focus the width of the laser beam below 0.1 mm. 

From the correlation function g( t )  (glance ahead to Fig. 2), 
one gets a feeling for typical decay times; T was always less 
than 100 microseconds in our experiments. This characteristic 
time is much shorter than the turnover time of an eddy, 
tR - R/u(R),  which we estimate to be s or more. Thus, 
in calculating g( t )  it may be assumed that each pair of seed 
particles separated by a distance R is moving at constant 
velocity, V ( R ,  t ) ,  in the time interval t of interest. This 
approximation will be made use of in relating the measured 
correlation function to the velocity distribution function 

It should be noted that even in the absence of flow, g( t )  
will decay by virtue of the Brownian motion (diffusion) 
of the seed particles. With diffusion alone g ( t )  - (1  + 
f ( A )  exp (- 2#Dt), where f ( A )  is inversely proportional to 
the number of coherence areas viewed by the photodetector. 
The diffusivity D is inversely proportional to the radius of the 
diffusers. At q = 2.42 x lo5 cm-’ , corresponding to a scat- 
tering angle of 90°, tD = (q2D)-’ x 1 x s. Only in the 
laminar flow domain did diffusion compete with the flow 
fluctuations in limiting the decay time of g( t ) .  Even in the 
absence of both diffusion and turbulence, g( t )  will still decay 
in a finite time Tu - L/U. This lifetime broadening effect was 
very small in our experiments, the measured decay time T 
being always at least a factor of 10 shorter than Tu. 

When the scatterers move independently, as in diffusion, 
g( t )  can be factored into parts that depend on the spatial 
variables (for example, the angle subtended by the photo- 

P ( V ( R ) ) .  

detector) and the dynamics [7]. In this case g ( t )  = const x 
(1 + f ( A ) G ( t ) ) .  However when the particles move coherently, 
as in laminar flow for example, no such factorization is 
possible [17]. The turbulent situation would seem to lie 
between these two extremes, and empirically is was found 
that g( t )  could be factored as: 

g o )  = ( n > V  + f(L)G(t)), (1.2) 
where (n) is the average number of photon counts per sam- 
pling time andf(L) is a spatial coherence factor. 

The next section of this paper contains the derivation of 
the correlation function of the light intensity scattered by the 
particles in the turbulent fluid. Experimental details appear 
in Section 3, and the results are presented and analyzed in 
Section 4. Finally the work is summarized in Section 5. 

2. Theory 

The starting point is to consider the scattering produced by 
N identical particles suspended in a turbulent fluid. The 
diameter of the particles is taken to be small compared to 
the wavelength A of incident light. In the simple case where 
the polarization of the incident beam is perpendicular to the 
scattering plane, the scattered electric field E(?)  is the sum of 
the fields radiated by each of the particles in the scattering 
volume, and has the form [4] 

E ( t )  = 1 E , ( t )  = Eo exp (-iot) 
N 

j 
N 

x 1 exp (- iq - rj ( t ) ) .  
j 

Here r j ( t )  is the trajectory of thejth particle relative to some 
origin inside the scattering volume, o is the angular frequency 
of the incident light, and Eo is an irrelevant proportionality 
factor involving the distance from source to detector, relative 
refractive index of the particles, and the wavelength A. 

The correlation function of the light intensity scattered by 
the particles in the turbulent fluid is, by definition, 

g( t )  = (E*(t’)E(t’)E*(t’ + t)E(t’ + t)) /(E*(t’)E(t’))2 

= K/Q’. (2.2) 
Here 

K = ( exp (iq - [ r j ( t ’ )  - r,(t’> 
i j ,m,n  

\ 

and 
N 

Q = 1 ( ~ X P  (iq . (rj(t’) - ( r i ( t ’ ) ) ) )  
i j  

N 

= N + 1 (exp (iq - (rj(t’)  - r i ( t ’ ) ) } )  = N .  (2.4) 

The fluctuation terms (i # j )  do not survive a time or ensemble 
average if the scatterers are randomly distributed in the fluid. 

Since the particles are assumed to follow the motion of the 
fluid, we have 

i # j  

ri(t’ + t )  = ri(t’)  + i,:+* dt” u(r i ( t”) ,  t”),  (2.5) 

where v ( r i ( t ) ,  t )  is the flow velocity at position r i .  Then 
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eq. (2.3) becomes 

K = f (exp {iq - [r j ( t ’ )  - r, ( t ’ )  + r,(t’> - r,,(t’)]} 
ij.m,n 

x exp {iq - j;’‘ dt”[u(r,(t”)) - v(r,(t”))] . (2.6) 

With the same assumption as we made for eq. (2.4), the 
fluctuation terms in eq. (2.6) may be dropped, and the 
remaining terms satisfy the condition, 

1) 

r,(t) - r , ( t )  + r,(t) - r , ( t )  = 0, (2.7) 
when q # 0. The two possible choices to satisfy eq. (2.7) are 
j = i, m = n, j # m and j = n, m = i, m # n. On dropping 
the inconsequential contribution from the term i = j = 
m = n, eq. (2.6) becomes, 

K = N 2  + (exp {iq - V(R(m, n), t ’ ) t } )  
N 

m f n  

N 

= N~ + 2 (cos {q  - V(R(m,  n), t ’ ) t } ) ,  (2.8) 
m > n  

and 

g( t )  = 1 + ( 2 / N 2 )  (cos {q - V(R(m, n) ,  [’It}). (2.9) 

Here V(R(m, n), t )  = ~ ( r , ,  t )  - u(rm + R(m, n), t) ,  
R(m, n)  = rn(t)  - r,(t), and the integral in eq. (2.6) is 
replaced by V(R(m, n), t) x t because the turbulent eddy 
turnover time, t ,  - R/u(R),  is much longer than the delay 
times t of interest in our experiment. 

When N 9 1 ,  the summation in eq. (2.9) can be con- 
verted into an integration over the scattering volume. 
Therefore eq. (2.9) becomes [ 181 

N 

m > n  

g(t) = 1 + joL dR h(R) (cos {q - V ( R ,  t ’ ) t } ) .  (2.10) 

Here the scattering volume is assumed to be quasi-one dimen- 
sional with length L ,  and h(R) is the number distribution 
of particle pairs separated by distance R in the scattering 
volume. When N particles are evenly distributed in a one- 
dimensional scattering volume with length L ,  the fraction of 
particle pairs separated by R is 

h(R) = ( N  - n ) / ( N ( N  - 1)/2) N ( 2 / N ) ( 1  - n / N )  
= (2 /L)(1  - R / L ) .  (2.11) 

If we assume the ensemble average of the turbulent velocity 
distribution is equivalent to the time average, eq (2.10) may 
be written in an alternative form 

g( t )  = 1 + loL dR h(R) 

x J” P(V,(R) cos {qV,(R)& (2.12) 
- m  

where V,(R) is the component of Y ( R )  along q. If the 
turbulence is isotropic P( V,(R)) is independent of q. 

If P(V,(R)) is assumed to have the scaling form 

P(V,(R)) = u ( W l  Q(V,(R)/u(R)), (2.13) 

where u(R) is a characteristic scaling velocity. Then eq (2.12) 
becomes 

g(t> = 1 + joL dR h(R) JIX. d(V,(R)/u(R)) 

x Q { V,(R)/u(R)) cos {qu(R)t V,(R)/u(R)} 
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= 1 + 1: dR h(R) F(qu(R)t), (2.14) 

where F(qu(R)t) is the Fourier Cosine Transform of the 
velocity distribution function Q (  h(R)/u(R)) .  

The Kolmogorov theory of fully developed isotropic tur- 
bulence [ 161 gives 

(V(R ,  t ) ” )  = B , ( V ( R ,  t )2)n’2,  (2.15) 

where B, are apparatus-independent constants and V(R,  t )  is 
the amplitude of V ( R ,  t ) .  Equation (2.15) applies to separa- 
tion R is in the inertial range L, 4 R < Lo,  where Ld is the 
Kolmogorov dissipation length and Lo is the outer scale of 
turbulence. Using eq. (2.13), we have 

<V(R, 2 ) ” )  = j:a d(V(R)/u(R)) Q { v ( R ) / u ( R ) }  J’(W 
= B,,u(R)“, (2.16) 

where 

(2.17) Bn = j-m dz Q ( 4  y .  

So according to the Kolmogorov picture the characteristic 
scaling velocity u(R) in eq. (2.13) is 

u(R) = ( V ( R ,  t ) 2 ) 1 / 2  - (&R)l’3, (2.18) 

where E is the energy dissipation rate of turbulent flow. 
Taking the intermittency of turbulence into account, the 

/?-model predicts [8] that 

( V ( R ,  t ) ” )  = B , ( E R ) ” ’ ~ ( R / L ~ ) ~ ( ) - ” ) ,  (2.19) 

with P = ( d  - D)/3 ,  where d is the imbedding dimension, 
and D is the fractal dimension of the turbulent active region. 
Then we have 

g( t )  = 1 + jOL dR h(R)(R/L0)3B F { ~ ( E R ) ~ ’ ~ ~ ( L , / R ) ~ } .  

Clearly, h(R)(R/L0)38 is the joint probability that a pair of 
particles separated by a distance R belongs to the same active 
region (a fractal) of turbulent flow, and ( E R ) I ’ ~ ( L ~ / R ) ~  is 
the characteristic turbulent eddy velocity with intermittency 
corrections. 

It should be noted that g( t )  is not assured of having scaling 
form g( t )  = g(x), where x is defined in eq. ( l . l ) ,  merely 
because the characteristic function F (  y )  in eq. (2.20) is of this 
form. However if F (  y )  is an exponentially decaying function 
of its argument, and h(R) in eq. (2.20) is an algebraic function 
of R, then it is indeed true that g( t )  = g(x) ,  in accordance 
with our observations. We now examine the implication of 
the assumption that 

m 

(2.20) 

F { ~ ( E W / ~ ~ ( L ~ / R ) ~ }  = F ( y )  - exp ( - -Y) ,  (2.21) 

where y = ~ ( E R ) ” ~ ~ ( L , / R ) ~ .  Inserting eq. (2.21) and eq. (2.1 1 )  
into eq. (2.20) gives 

g(x) = 1 + 2 ( ~ / ~ ~ ) ~ f l  exp ( - x )  x“ 
m 

n = O  

x + 9PM1 - 38) + 1 1 ) / ( ( 1  + 3/31 

- r { ( 6  + 9P)/(1 - 3/91 + 1)/((2 + 3P) 
x r{(6 + 9P)/(l  - 38) + 1 + n} ) ) .  

x r{(3 + 9p) / ( l  - 38) + 1 + n } )  

(2.22) 

Here x is defined in eq. ( 1 . 1 )  with u(L) - (EL)”) ,  and T(z} is 
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~ ~ 

L = 0.6” 

8 = goo 

Re= 1395 

I I I 

Fig. 1 .  Schematic diagram of the experimental setup. LS-Argon Ion 
Laser, L, , L,-Lenses, S-Slit, G-Grid, SC-Screen, BT-Air Bubble Trap, 
PM-Photomultiplier, COR-Correlator, CP-Computer, IN-Inlet of flow, 
OUT-Outlet of flow. 

\ 

the Gamma Function. If d = D ( f l  = 0), eq. (2.22) becomes 
g(x’) = 1 + exp ( - x ’ )  

oc 
x 1 x’.(l2/(n + 3)! - 720/(6 + n)!). (2.23) 

where x’ = qu(L)t. Note that the assumption of a single- 
exponential decay of F ( y )  implies that P(V(R) /u (R) )  is a 
Lorentzian function, for which all moments higher than the 
first diverge. 

n = O  

3. Experimental details 

Figure 1 shows the physical arrangement of the experimental 
setup. The fluid, water, is circulated through a closed system 
by a pump. The water was seeded with polystyrene spheres of 
diameter 0.06 microns, the number density of polystyrene 
spheres being such that their mean spacing is much larger 
than their diameter (dilute solution) and much smaller than 
the smallest eddy size of the turbulent flow, Ld . This assures 
adequate sampling of the turbulent flow. A section of the pipe 
of 2.0 inch-diameter, is made of glass to admit the probing 
focused beam from an Argon-ion or He-Ne laser. Undesir- 
able velocity fluctuations produced by the pump or by the 
pipe walls are damped out by a screen (SC) (aperture size = 
2.0”) on the high-pressure side of the grid (G), which 
generated the turbulence. The spacing M between the grid 
rods was 3.1 mm and their diameter d‘ = M/2. The measuring 
point was on the axis of the pipe and 28 cm downstream from 
the grid ( x / M  = 90). The circulating fluid is temperature 
controlled. Ancillary LDV measurements established that the 
mean velocity profile was virtually flat rather than parabolic 
in the direction transverse to the mean flow direction when 
Re > 280, and that the turbulent intensity, ( V ’ ) ~ / ~ / U ,  was 
7% at Re = 700, where z, is the fluctuation part of the mean 
velocity. These results suggest that the turbulence in our 
system did indeed originate from the grid, rather than from 
other sources. 

The lens L, in Fig. 1 focuses the laser beam to make the 
scattering volume as one dimensional as possible on the axis 
of the pipe, while L, forms an image of this volume on the 
adjustable slit S, of width L. It is the light passing through the 
slit which illuminates the photomultiplier (PM). The water 
inlet and outlet as well as a stand-pipe (BT) where air bubbles 
can leave the fluid, are shown in Fig. 1. The output pulse train 
from the photodetector went to a commercial correlator 
(COR), whose output is g(t). Also indicated is the computer 
(CP) for storing and analyzing the data. 

The laser beam was sometimes brought into the fluid along 

the flow axis, as shown in the figure, but in other experi- 
ments where the direction of q was kept in parallel with the 
mean flow direction, it entered through the cylindrical glass 
pipe wall. 

4. Results 

The measured correlation functions were extremely well 
fitted to eq. (2.23) when 460 < Re < 1400, as may be seen 
in Fig. 2 (solid line), which shows g(t)  at Re = 1395, q = 
2.42 x lo5 cm-I and L = 0.6”. Our experimental results 
could be fitted to eq. (2.23) only if x’ is replaced by x of 
eq. (1.1) and let fl be a function of Re. The fitting parameter 
T’(x = t /T’) exhibits the same slit width dependence as that 
of the half-decay time T of g(t) .  Lacking a fully understand- 
ing of the functional form of g(t)  throughout the whole range 
of Re we have characterized g(t)  by its half-decay time T.  

This fitting suggests that the velocity probability density 
function P( V ( R ) )  has the scaling form of P (  V(R) /u (R) )  even 
though the flow falls far short of being fully developed. The 
fitting also indicates that the functional form of this scaling 
function P(  V(R)/u(R))  is Lorentzian-like, at least for the 
most probable part of P (  V(R)/u(R))  since g(t)  is relatively 
insensitive to the rare fluctuations of velocity. Our results of 
P(  V(R))  are consistent with that obtained in strongly 
turbulent systems by Anselmet et al. [12]. They find that 
P {  V(R) /u (R)  > 2.0) decays exponentially over five decades 
( P  varies from lo-’ to lo-’). However, the most probable 
part of P ( V ( R ) / u ( R ) )  ( P  > 0.1) is clearly not of exponential 
form, and indeed decays roughly as a Lorentzian function out 
to V ( R )  N 2u(R), where u(R)  = (V(R)2)I12. 

From the correlation function g(t) ,  we use eq. (1.2) to 
extract the interesting term G(t)  = (g(t)/(n)’ - l)/f(L), 
which depends on control parameters U ,  q,  and L.  As Fig. 3 
shows, G(t)  has the scaling form implied by eq. (2.23), i.e., 
G(t)  depends on these variables through the combination 
G(t)  = G(x) ,  where x is given by eq. (1.1). The curves in 
Fig. 3 were obtained by first plotting G(t)  vs. t for different 
q and L with Re fixed. At each flow speed one obtains from 
these data curves of the shape seen in the figure. If now such 
a log-log plot is made at different Re, curves of the same 
shape are obtained, i.e. all such curves can be brought into 
coincidence merely by shifting the horizontal scales. Such 
scaling behavior is seen only if Re > 460. The data of Fig. 3 
correspond to Re = 806 and 1364. 

The analysis of our data, which yields Fig. 3, does not 
require knowledge of the scaling velocity u(L). Hence no 
assumption was made for u(L). Nevertheless, we do find that, 
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8(") L h "  Re 
45.2 1.0 8 0 6  

a 60 .5  1.0 1364 
0 
-1 A 90 0.44 8 0 6  

t 1 
IO -3- 

lo-6  IO-^  IO-^ 
Log,, X (a rb .  units) 

Fig. 3. The scaling function G ( x )  = [(g(r)/(n)')  - l]/f(L) vs. x = qu(L) 
x t(L,,/L)8 at indicated parameters. 

the function u(L) which brings our data into scaling form, is 
roughly proportional to the control parameter U(U is pro- 
portional to Re). Therefore eq. (2.18) (u(L) - L1l3) is taken 
as the definition of U@). 

Figure 4 shows how T various with slit width L (in mm) at 
a fixed q = 2.42 x 105cm-l (0 = 90'). The three curves 
correspond to Re = 460, 1400 and 2200. It is seen that 
increasing L reduces Tin the range of 0.1 mm < L 1 .O mm. 
This is because opening up the slit increases the size of eddies 
seen by the photodetector, and larger eddies should have a 
shorter decay time. Using the Kolmogorov theory for a 
crude estimate of the decay time T, one gets, T - l/qu(L) - 
l / q ( ~ L ) ~ / ~ .  The power-law behavior of T o n  L starts at L = 
1 .O mm which can be thought of as the outer scale of the turbu- 
lence generated by grid (A4 = 3.1 mm), i.e., Lo = 1.0". 

Ideally T should be a constant when L < Ld since there 
are no eddies smaller than Ld, and in fact one might hope to 
measure Ld(Ld - 0.01 mm in our experiments) by finding the 
value of L at which T levels off as L is decreased. Unfortu- 
nately Ld could not be determined in this way because the 
diameter D' of the laser beam could not be reduced below 
0.1 mm, and D' %- Ld. Thus the turnover in T(L) at small L 
was controlled by the laser beam diameter. In fact Fig. 4 
reveals a decrease in T as L is reduced below the beam 
diameter, an effect which we do not understand. Focusing 

X 

. 

i 

IO - 6 6  
lo-' 1 

Sl i twidth L ( m m )  

Fig. 4. The half-decay time Tof g(r) vs. slit width L at q = 2.4 x lo5 cm-' . 
The number labeled below a line is the slope of that line. 
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Fig. 5.  The variation of the exponent i(x) and the logarithm of the half- 
decay time, log T(O), with the Reynolds number Re. 

attention on the decade of slit widths, over which log (T) 
varies linearly with log ( L )  (see Fig. 4), we extract the slope 
[ in the equation, T - L-[. If the scaling equations of 
Section 2 are correct, [ = 113 - p. It is seen that 5 does not 
vary with Re in a monotonic fashion. The numbers below 
each straight-line segment in Fig. 4 are the values of ( at the 
three indicated Reynolds numbers. 

Figure 5 shows more clearly the variation of ( with Re 
(dashed curve, scale on right). Note the abrupt change in 
slope at Re = 460. This same kink is seen in the variation of 
T itself with Re (solid curve in Fig. 5, scale on left). These 
latter measurements were made at L = 1.0". Here the 
incident laser beam entered the turbulent stream anti-parallel 
to the flow direction, and the scattering angle is 90'. Some- 
what below Re = 460, the profile of the mean velocity, as 
determined by LDV, has become flat in the direction trans- 
verse to the pipe, i.e., the flow is plug-like, a phenomenon one 
associates with a turbulent state. Combining the discussions 
on Fig. 2 and Fig. 3. We therefore associate the abrupt slope 
change at Re = 460 with the onset of the turbulent velocity 
distribution having scaling character rather than a transition 
from laminar to turbulent flow. 

The dashed curve in Fig. 5 also suggests a change in the 
character of the turbulence at higher Reynolds numbers. The 
exponent [ rises to 0.33 k 0.03 (the Kolmogorov value) at 
Re = 1400 and then decreases to 0.29 k 0.03 at the maxi- 
mum flow speed, which corresponds to Re = 2200. This 
drop in the exponent [ is consistent with a smooth change 
from space-filling (D = d) to fractal (D < d) or intermittent 
turbulence, as seen in eq. (2.20). Intermittent turbulent flow 
is associated with the confinement of regions of high vorticity 
to very small regions of the fluid and is characterized by the 
fractal dimension D of the turbulent active region [19]. The 
decrease in [ at large Re is unmistakable but very small. Only 
by going to higher flow speeds could one be sure that the 
effects is a real one. 

Also measured was the q-dependence of the half-decay 
time T. Here the direction of g was held fixed, namely parallel 
to the flow direction, while its magnitude was varied. The slit 
width was fixed at L = 1 .Omm. To satisfy these conditions i t  
is necessary to vary both the direction of the incident beam 
and the direction of the observation, which limited the range 
of q-values that could be spanned. It was found that T(q) was 
also of power law form, T - q-" Our measurements of 
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Table I. The variation of the exponent p with the Reynolds 
number Re at L = 1.0" 

Re 0 125 280 460 775 1400 1860 

p 2.0 1.92 0.92 0.92 0.76 0.84 1 .o 

Note: Re = 0 is Brownian Motion, Re = 125 is laminar flow. 

p vs. Re are summarized in Table I, where p is given for seven 
values of Re, from 0 to 1860. Note that when the flow is 
absent or laminar, the lifetime of the fluctuations is limited 
by the diffusive motion of the seed particles. In this case 
T = l/Dqz, where D is the Stokes law diffusivity of a 
Brownian particle. As the value of Re increases, the exponent 
p falls below 1 .O from 2.0 and then increases toward 1 .O, a 
value which was obtained at Re = 1860. Thus v = 1 is chosen 
for the scaling form of G ( x ) ,  where x is defined in eq. (1.1). 

5. Summary 

We have studied the small-scale grid-generated turbulence 
with the rarely exploited technique of photon correlation 
spectroscopy. Measurements of this type give access to the 
probability density P (  V ( R ) )  that a pair of particles in the 
fluid, having separation R ,  differ in velocity by V ( R ,  t) .  At 
moderate Reynolds number the intensity correlation function 
g( t )  has the scaling form g(x) ,  where x = qu(L)t(Lo/L>@, 
u(L) - &L)'I3 is the characteristic turbulent velocity, and 
p = p(Re). This scaling behavior is seen only if Re > 460. 
All the measurements suggest that the flow changes its 
character at this point. In this experiment the exponent p 
should probably not be regarded as a measure of the intermit- 
tency. Rather it may be seen as an additional Reynolds 
number dependent parameter that is needed to characterize 
the flow at moderate turbulent levels. The experimental 
technique used here is most sensitive to the most probable 
part of P (  V ( R ) )  and hence to small values of V ( R ,  t ) .  In this 
range our results are consistent with a Lorentzian form for 
P (  V(R) /u (R) )  or, equivalently an exponential decay for its 
characteristic function F(x) .  This finding is a consistent with 
those obtained bv Anselmet et al. [121, though the values of 

Re achieved in the present experiment are much smaller than 
theirs. 
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