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Directed motion of membrane proteins under an entropy-driven potential field generated
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Directed transport of proteins and other molecules in a crowded living cell is often carried out by diffusion
at short distances and by motor-driven cargo transport over long distances. Here we demonstrate, by both
experiments and theory, that anchored proteins inside the cell can generate a spatially varying and temporally
stable potential (free-energy) landscape for intracellular or membrane transport in the mesoscale. By using a
micropatterned substrate, we introduce a periodic array of anchored integrins on the basal membrane of cultured
Xenopus muscle cells. This patterned array of anchored integrins imposes a periodic potential U (x) to the lateral
motion of nicotinic acetylcholine receptors (AChRs) on the cell membrane. From a thorough analysis of a large
volume of AChR trajectories obtained over a wide range of sampling conditions and long durations from 385
cells, we find the trapping potential U (x) and its effects on the drift velocity Vx (x) and diffusion coefficient Dx (x)
of AChRs. Our findings suggest that anchored proteins may play an essential role in generating an effective
potential landscape to guide molecular motion in the mesoscale ranging from protein trapping and directed
motion to enhanced protein-protein interactions over a long range.

DOI: 10.1103/PhysRevResearch.3.043195

I. INTRODUCTION

A living cell is a densely packed compartment filled with
individual proteins, lipids, and sugars in the cell cytoplasm,
as well as the filamentous networks permeating the cell [1].
How a protein molecule wades through and functions in such
a crowded environment is an outstanding issue in cell biol-
ogy and biological physics, which has been under ongoing
debates [2–6]. From a wealth of new data obtained in re-
cent years, our general view of intracellular dynamics and
transport has evolved into a new paradigm, in which two
intracellular constituents play very different roles. One is an
adenosine-triphosphate-(ATP)-dependent mobile component,
such as molecular motors and ATP-driven polymerization
forces, which provide active mechanisms for molecular trans-
port, signaling, and control [6–9]. The other is an immobile
or transiently confined component [10–13], such as various
anchored proteins. Cellular ATP is also required to keep these
proteins in place against random diffusion [14,15].

Compared to the rapid growth of knowledge on active
transport and dynamics, our current understanding of an-
chored proteins is still primitive. For example, in the study
of membrane diffusion of eukaryotic cells, one found that
about half of the transmembrane proteins, corresponding to
10–20 % of total membrane area, are bound to the underlying
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cortical actin network and, therefore, are effectively immobile
on timescales of minutes to hours [16]. These anchored pro-
teins were assumed to be random obstacles in the membrane
and hinder the motion of other mobile proteins [17–23]. The
protein diffusion on a live cell membrane was found to be
significantly reduced (up to 25 times) compared to that in
artificially reconstituted membranes [15,24]. Up to now, we
did not know why a living cell spends energy (ATP) to lock
certain proteins in place, which in turn put a “brake” [2] on all
other mobile proteins inside the cell or on the cell membrane.
More recent studies [11,25–27] revealed that the anchored
proteins are not evenly distributed on the membrane, as is
commonly believed, but in an organized manner.

In this paper we demonstrate, by both experiments and
theory, that a nonuniform concentration field n(r) of anchored
proteins can generate a spatially varying and temporally stable
potential (free-energy) landscape U (r) to other (nonmotor)
mobile proteins in the region. This entropy-driven potential
field offers a novel way for directed molecular transport in the
mesoscale (20 nm–1 μm), which complements the conven-
tional methods of directed molecular transport by diffusion
at short distances and motor-driven cargo transport over long
distances. This finding suggests an important and biologically
tunable mechanism for intracellular transport, protein trap-
ping, and protein-protein interactions initiated not by specific
chemical signaling, as is usually assumed, but by nonspecific
physical forces that yield remarkably simple universal laws.

II. EXPERIMENTAL RESULTS

For the sake of simplicity, we first consider the an-
chored proteins having a one-dimensional (1D) concentration
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distribution n(x) (area fraction). Because of the excluded vol-
ume effect of the anchored proteins, the Gibbs free energy
(or chemical potential) of a mobile protein is increased by
−kBT ln[1 − n(x)] [�n(x)kBT for small n] due to the reduced
available space. This gives rise to an entropy-driven potential
field U (x) � n(x)kBT for mobile proteins, pushing them to
move from a high concentration region of anchored proteins
to a low concentration region. Here kBT is the thermal energy
of a mobile protein. This potential field can be readily gen-
eralized for a 2D distribution n(x, y), and thus can generate
a trapping potential (funnel) in the mesoscale with an energy
barrier Eb ∼ kBT , as expected. Higher energy barriers can be
obtained if the effects of the size and concentration of the
anchored proteins and their interactions with mobile proteins
are included (see more discussions in Sec. III below).

The anchored protein chosen for this study is integrin
containing β1 subunit (integrin for short), which facilitates
cell-extracellular matrix (ECM) adhesion and is abundantly
expressed on the membrane of muscle cells [25,28]. To
alter the spatial distribution of anchored integrins, we use
the technique of micropatterning [29] to construct a patterned
substrate for cell culture. The patterned substrate consists
of identical parallel microgrooves of height = 1 μm and
separation λ = 2 μm, which are made on a thin layer of
poly(dimethylsiloxane) (PDMS) coated on a glass coverslip
(see Secs. IV A and IV B below for more experimental de-
tails). To quantitatively study the effect of the patterned
array of anchored integrins on other mobile transmembrane
proteins, we follow the motion of nicotinic acetylcholine re-
ceptors (AChRs) on live muscle cell membrane cultured from
embryos of Xenopus laevis (see Sec. IV C 1 below for more
experimental details). AChR is a well-characterized neuro-
transmitter receptor for the study of neuromuscular junctions
(NMJs) [13,30,31]. The lateral mobility of AChRs plays an
essential role in determining the response of the postsynaptic
membrane to neurotransmitter stimuli. In this study, we focus
on AChRs because their lateral motion on a live muscle cell
membrane cultured on a flat substrate has been carefully stud-
ied in recent experiments [13,15]. It was found that the motion
of AChRs for cells cultured on a flat coverslip is isotropic
without any preferred direction, and they have a high mobile
ratio (�65%), which is defined as the number ratio of the
mobile trajectories to the total number of AChR trajectories
recorded.

As illustrated in Fig. 1(a), the microgroove pattern allows
the integrins to predominantly anchor on the ridge, so that the
resulting distribution of β1-integrins shows a parallel-stripe
pattern, as shown in Fig. 1(b). By comparing the fluores-
cent image of β1-integrins with the bright-field image of
microgrooves (see Sec. IV C 2 below for more experimen-
tal details), we find the parallel green stripes lie on top of
the underlying microgroove ridges with the same spacing λ.
Because of the anisotropy of the microgroove pattern, the
cultured muscle cells are elongated along the microgrooves.
Furthermore, the cortical F-actin network is also aligned along
the trough of the microgrooves. Figures 1(b) and 1(c) reveal
that the spatial distribution of the integrins and cortical F-
actin both exhibit a stripe pattern, but the stripe position is
staggered. For muscle cells cultured on a flat glass coverslip,
integrins are found to be randomly distributed across the basal

(a)

(b)

(c)

(d)

FIG. 1. Microgroove-patterned substrate induces a periodic ar-
ray of 1D potential traps for AChRs. (a) A schematic top view of
a Xenopus muscle cell (green) cultured on a 2-μm-microgroove-
patterned substrate (upper panel) and a magnified side view of the
membrane-substrate interface showing the anchored integrins on the
ridge and mobile AChRs diffusing over a single microgroove (lower
panel). (b) Comparison of bright-field (BF) and costained fluorescent
images of muscle cells cultured on a 2-μm-microgroove-patterned
substrate. The fluorescent images, which are obtained by averaging
the vertical z-sections of the basal membrane of ∼1 μm thickness,
show the spatial distribution of β1-integrins (green), cortical F-actin
(red), and their superposition (merged) on the basal membrane. The
scale bar is 20 μm. (c) Relative fluorescent intensity of β1-integrins
(green) and cortical F-actin (red) (in arbitrary units) across the paral-
lel microgrooves (x-axis). The intensity profiles are averaged along
the microgrooves (y-axis) in the region as marked by the white
dashed box in (b). (d) Measured effective trapping potential Ueff(x)
for mobile AChRs as a function of the normalized position x/λ
across a single microgroove with λ = 2 μm. Here x/λ = 0 is set at
the bottom of the microgroove. The inset shows two representative
AChR trajectories (blue and yellow) with 1500 time steps (300 s)
over the BF microgroove pattern. The white dashed lines indicate the
ridge of the microgrooves. The scale bar is 2 μm.

membrane without any ordered pattern [see Fig. 6(a) below].
Figure 1 thus demonstrates our ability to use micropatterning
to modulate/control the spatial distribution of the anchored
integrins in a cell membrane.

In the experiment, the individual AChRs are labeled by
bright and photostable fluorescent quantum dots (QDs) (see
Sec. IV C 3 below for more experimental details). We obtain
the AChR trajectories from consecutive images of the QDs,
and we find their position r(t ) (and hence the position of
AChRs) at time t using a homemade single-particle tracking
program with a spatial resolution of ∼20 nm (see Sec. IV D
below for more experimental details). Because the viscosity of
the plasma membrane is approximately 500 times higher than
that of the extracellular medium, the motion of the QD-labeled
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(a) (b) (c)

FIG. 2. Statistical properties of the displacements �x(τ ) and �y(τ ) for AChRs. (a) Measured MSDs 〈�x2(τ )〉 (circles) and 〈�y2(τ )〉
(triangles) as a function of delay time τ for muscle cells cultured on a 2-μm-microgroove-patterned substrate (blue symbols) and on a flat
substrate (black symbols). The solid line indicates the relationship 〈�x2(τ )〉 ∼ τ with a slope of unity in the log-log plot. (b) Measured
short-time diffusion coefficients Dx (red circles) and Dy (black triangles) as a function of x/λ for muscle cells cultured on a 2-μm-microgroove-
patterned substrate. (c) Measured drift velocities Vx (red circles) and Vy (black triangles) as a function of x/λ for muscle cells cultured on a
2-μm-microgroove-patterned substrate.

AChRs is determined primarily by their transmembrane do-
mains [15,32]. With the help of the advanced single-molecule
tracking algorithm, we are able to obtain a large volume of in-
dividual AChR trajectories from more than 385 live cells over
a wide range of sampling rates (up to 80 Hz) and long dura-
tions (up to 300 s) (see Sec. IV D below for more experimental
details). Moving in the patterned array of anchored integrins,
the AChRs do not enjoy unrestricted lateral diffusion as was
observed for cells cultured on a flat substrate [13,15]. Instead,
the AChR trajectories reveal a confined diffusion within a sin-
gle groove and occasional hopping to a neighboring groove,
as shown in the inset of Fig. 1(d).

From the AChR trajectories, we obtain the probability den-
sity function (PDF) H (x, y) of finding an AChR at location
(x, y), where the x-axis is normal to the microgroove and the
y-axis is in parallel with the microgroove [see the coordinates
shown in Fig. 1(b)]. By averaging the AChR trajectories along
the microgroove (y-axis) and over different grooves, we obtain
the PDF H (x) = 〈H (x, y)〉y, from which we define the effec-
tive potential field Ueff(x) as Ueff(x)/kBT = − ln H (x), where
H (x) is normalized in such a way that Ueff(x) = 0 at the bot-
tom of the potential well. As shown in Fig. 1(d), the obtained
trapping potential Ueff(x) across a single microgroove has a
U-shape with an energy barrier height Eb � 1.0kBT . A unique
advantage of using the parallel microgrooves is that it allows
us to pick up targeted signals of AChRs with a specific spatial
period λ along the normal direction of the microgrooves and
average out uncorrelated noise resulting from other unknown
anchored proteins or interactions with the surroundings. With
this lock-in technique in space, the spatial period λ used is
much smaller than the cell size [see Fig. 1(a)] so that one
can average many AChR trajectories obtained from the bulk
region of the cell membrane without any edge effect. Mean-
while, the value of λ is large enough to avoid seeing peculiar
effects of molecular complexes associated with anchored in-
tegrins, such as focal adhesion complexes [33].

From the obtained AChR trajectories, we also compute
the statistics of the displacements, �x(τ ) = x(t + τ ) − x(t )
across the microgroove and �y(τ ) = y(t + τ ) − y(t ) along
the microgroove. The statistical averages are taken both along

the microgroove and over different grooves (see Sec. IV D
below for more experimental details). As shown in Fig. 2(a),
the measured mean-squared displacements (MSDs) 〈�x2(τ )〉
and 〈�y2(τ )〉 for cells cultured on a flat substrate overlap with
each other and are a linear function of delay time τ . This sug-
gests that the motion of AChRs on a flat substrate is isotropic
and can be well described by diffusion with a long-time (τ >

1 s) diffusion coefficient, (DL )y � 0.025 μm2/s [13,15]. The
measured MSDs for cells cultured on a microgroove patterned
substrate, on the other hand, exhibit an anisotropic diffusion
behavior with the measured 〈�y2(τ )〉 being nearly the same
as those for a flat substrate. The measured 〈�x2(τ )〉 in the
log-log plot is not a linear function and exhibits a crossover
behavior from short-time diffusion (τ < τL � 1 s) to long-
time diffusion (τ > τH � 50 s), with the long-time diffusion
coefficient, (DL )x � 0.014 μm2/s, being much smaller than
(DL )y. In the crossover region τL � τ � τH , the motion of
AChRs becomes heterogeneous and undergoes subdiffusion,
〈�x2(τ )〉 ∼ τα , with 0.6 � α � 0.8. Such a crossover be-
havior of MSD has been observed previously for colloidal
diffusion over potential barriers [13,35–37].

The local diffusion of AChRs reveals a strong x-
dependence inside the potential trap. Here the local (or
short-time) diffusion coefficients are defined as Dx(x) =
〈�x2〉/(2τ ) and Dy(x) = 〈�y2〉/(2τ ), where the delay time τ

is taken at the smallest value τ = 0.2 s. As shown in Fig. 2(b),
the measured Dx(x) reaches its maximal value at the bottom
of the microgroove where the concentration of anchored in-
tegrins is minimal, as observed from the fluorescent intensity
profile of the integrins [see Figs. 1(c) and 3(c) below]. The
value of Dx(x) is reduced by more than 40% at the ridge of
the microgroove where the integrins are densely populated.
The obtained Dy(x) exhibits a similar profile. The fact that the
measured maximal value of Dx is significantly smaller than
that of Dy suggests that the alignment of the cortical F-actin
network at the bottom of the microgroove also plays a role in
hindering the motion of AChRs.

Similarly, we determine the drift velocities, Vx(x) =
〈�x〉/τ and Vy(x) = 〈�y〉/τ , with τ = 0.2 s. An intriguing
effect of the potential trap is to produce a nonzero drift
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(a) (b) (c)

(d) (e) (f)

FIG. 3. Effects of the Matrigel treatment. (a) Comparison of fluorescent images of β1-integrins (green) on the basal membrane for muscle
cells with the Matrigel treatment (upper panel) and without the Matrigel treatment (lower panel). The scale bars are 20 μm. (b) Relative
fluorescent intensity of β1-integrins (in arbitrary units) across the parallel microgrooves (x-axis) with (red circles) and without (black triangles)
the Matrigel treatment. The intensity profiles are averaged along the microgrooves (y-axis) in the regions as marked by the white dashed boxes
in (a). (c) Normalized fluorescent intensity profile I (x) of β1-integrins as a function of x/λ across a single microgroove. The values of I (x) are
normalized between 1 and 0 (black circles) and are obtained from different cells without the Matrigel treatment. The red solid line shows the
mean profile 〈I (x)〉. (d)–(f) Measured (d) effective potential Ueff(x), (e) short-time diffusion coefficient Dx , and (f) drift velocity Vx as a function
of x/λ. The comparison between the Matrigel-treated cells (red circles) and untreated cells (black triangles) is made using the same batch of
cells cultured on a 2-μm-microgroove-patterned substrate under the same conditions, except for the use of different culture media, one with
Matrigel added (0.45 mg/mL) and the other without Matrigel. The green diamonds in (d) show the calculated Ueff(x) using Eq. (6). The green
diamonds in (e) show the calculated Dx (x) using Eq. (7). The best-fit result is obtained with D0 = 0.03 ± 0.005 μm2/s, α = 0.55 ± 0.05,
β = 0.95 ± 0.05, and Dmin = 0.028 ± 0.005 μm2/s. The green diamonds in (f) show the calculated Vx (x) using the first equality in Eq. (5).
The blue dashed line in (f) shows the calculated Vx (x) [or Vl (x)] using the second equality in Eq. (5) with D0 = 0.03 μm2/s, α = 0.55, and
β = 0.95.

velocity Vx across the microgroove. As shown in Fig. 2(c), the
measured Vx reaches its maximal value (Vx )m � 0.13 μm/s in
the ridge region where the concentration of anchored integrins
has a large gradient. The net movement of AChRs is always
directed toward the bottom of the microgroove, where the
concentration gradient of the integrins is close to zero and the
resulting Vx also reduces to a value close to zero. With this
value of (Vx )m, it will take approximately 8 s for the AChRs
to move 1 μm, which is about 10 times faster than diffu-
sion. Because the motion of AChRs along the microgroove
is random, the drift velocity Vy(x) along the y-axis is zero
at any x-position. Figure 2(c) thus demonstrates that AChRs
have a reduced diffusion coefficient in the crowded region
of anchored integrins and tend to move to a less crowded
region following the direction of the concentration gradient
of the integrins. This gives rise to an effective way of using
a potential gradient to produce directed motion of mobile
proteins toward a low potential region.

Although the above potential traps in the plasma membrane
are induced by a patterned substrate, they nevertheless are

very much relevant to cell biology. First, the substrate-induced
(nonuniform) distribution of anchored integrins can be altered
by adding soluble extracellular matrix (ECM) proteins (Ma-
trigel, 0.45 mg/mL) in the culture medium (see Sec. IV C 1
below for more experimental details). These proteins adsorb
on the outer side of the suspended cell membrane, allowing
integrins to anchor in the suspended membrane [38–40]. As a
result, the microgroove-induced stripe pattern of anchored in-
tegrins is erased and the spatial distribution of the β1-integrins
becomes uniform across the basal membrane without a visible
pattern, as shown in Figs. 3(a) and 3(b) (and supplementary
Fig. S1 [41]). The Matrigel treatment, therefore, gives us an
effective key to turn off the effective trapping potential Ueff(x)
induced by anchored integrins without changing the shape of
the cell membrane.

The membrane shape modulation on the microgroove-
patterned substrate can be checked by measuring the fluo-
rescent intensity variation of the QDs that are conjugated to
the AChRs moving on the cell membrane. Because the focal
plane of the microscope used in the experiment is always set at
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(a) (b)

FIG. 4. Effects of ATP depletion. (a) Comparison of bright-field (BF) and costained fluorescent images of a muscle cell cultured on a
2-μm-microgroove-patterned substrate with the ATP depletion (DATP) treatment. The fluorescent images, which are obtained by averaging
the vertical z-sections of the basal membrane of ∼1 μm thickness, show the spatial distribution of β1-integrins (green), cortical F-actin
(red), and their superposition (merged) on the basal membrane. After ATP depletion, the stripe pattern of β1-integrins, which was observed
for untreated control cells, becomes invisible and their fluorescent images reveal a diffusive ground-glass pattern. Under a prolonged DATP
treatment (>1 h), the muscle cells begin to gradually detach from the microgroove-patterned substrate, indicating a full loss of anchored
integrins in the cell membrane. The scale bar is 20 μm. (b) Measured effective potential Ueff(x) as a function of the normalized position x/λ
across a single microgroove with λ = 2 μm. Here x/λ = 0 is set at the bottom of the microgroove. The comparison between the DATP-treated
cells (red circles) and untreated control cells (black triangles) is made using the same batch of cells cultured on a 2-μm-microgroove-patterned
substrate under the same conditions, except for the use of different culture media, one with the DATP drug added and the other without the
DATP drug.

the interface between the cell membrane and the ridge of the
microgrooves, individual QDs moving away from the ridge
region will undergo a small vertical deviation from the focal
plane, which gives rise to a slight decrease in the fluores-
cent intensity. The relative fluorescent intensity change of the
QDs thus provides a measure of the actual shape modulation
of the cell membrane. Supplementary Fig. S2 [41] shows a
comparison of the normalized fluorescent intensity profiles of
the QD-labeled AChRs across a 2-μm-microgroove for the
Matrigel treated (red triangles) and untreated (black circles)
cells. It is seen that the cell membrane sags slightly with an
approximately 15% height variation across the microgroove
and is not highly curved. The height variation for the Matrigel
treated cells remains the same as that for the untreated cells.

Figure 3(c) shows the normalized fluorescent intensity
profile I (x) of the anchored integrins without the Matrigel
treatment. By assuming n(x) � β〈I (x)〉, with 〈I (x)〉 being the
mean value of I (x) (red solid line) and β being a propor-
tional constant, we obtain the spatial distribution of anchored
integrins n(x) across a single microgroove. Without this con-
centration gradient, the measured effective potential Ueff(x)
for cells with the Matrigel treatment is flattened out, as shown
in Fig. 3(d). Similarly, the spatial variations of the measured
diffusion coefficient Dx(x) and drift velocity Vx(x) all disap-
pear once the distribution of anchored integrins is randomized
[see Figs. 3(e) and 3(f)]. Because the large effects of the
Matrigel treatment shown in Fig. 3 are obtained when the
membrane shape is kept the same as the untreated cells,
they clearly demonstrate that the effective trapping poten-
tial Ueff(x) and its effects on the AChR’s motion are indeed
caused by the nonuniform distribution of anchored integrins
but not by some geometric effects of membrane shape, such

as membrane curvature or any direct interactions of AChRs
with either the curved substrate or the cortical actin network.

Because of the anisotropy of the microgroove pattern, the
cortical F-actin filaments are found to be aligned along the
trough of the microgrooves (see supplementary Fig. S1 [41]).
The local accumulation of F-actin filaments allows other
transmembrane proteins to anchor in the trough region, which
gives rise to a small bump in the measured Ueff(x) around
x/λ � 0 [see Figs. 1(d) and 3(d)]. A similar effect is also
observed in the measured Ueff(x) for cells with the Matrigel
treatment. As shown in Figs. 3(d)–3(f) (red circles), the effect
of this local accumulation of F-actin filaments is small and
can be treated as a background contribution, which can be
subtracted out from the actual signal (see the discussions on
Fig. 5 below).

Second, cellular ATP is needed to keep the integrins at
the anchoring state against diffusion and fluctuations from
the surrounding molecules. Recent studies have shown that
contractile forces from the cytoskeletal network are required
to activate integrins from their low-affinity conformation to
high-affinity conformation for the adhesion/anchoring of in-
tegrins to the extracellular matrix [14,42]. The generation
of contractile forces by motor proteins requires an energy
input from ATP. In our experiment, we find that deple-
tion of the ATP in live muscle cells by a 1:1 mixture of
2-deoxy-D-glucose and sodium azide [15,43] significantly
reduces the number of anchored integrins on the ridge of
microgrooves (see Sec. IV C 1 below for more experimental
details). After ATP-depletion, the stripe pattern of β1-integrins
becomes invisible and their fluorescent images reveal a diffu-
sive ground-glass pattern, as shown in Fig. 4(a). Meanwhile,
the resulting effective potential Ueff(x) is leveled off with the
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barrier height Eb reduced by ∼60%, as shown in Fig. 4(b).
The loss of anchored integrins after ATP-depletion is further
evidenced by a nearly fivefold increase of the diffusion coeffi-
cient Dx(x) of AChRs compared to the control case, as shown
in supplementary Fig. S3 [41].

While the fluorescent image of integrins appears uniform
after ATP-depletion, there must be some integrins anchored
on the ridge of microgrooves, as the muscle cell itself still
remains attached to the substrate during the experiment. As
a result, the F-actin network is still aligned along the trough
of the microgrooves [see Fig. 4(a)], and the effective poten-
tial Ueff(x) reveals a weak undulation pattern [see Fig. 4(b)].
Compared to the significant reduction of the spatial undula-
tion amplitude of anchored integrins by ATP-depletion, the
Matrigel treatment discussed above results in an enhanced
uniform distribution of anchored integrins across the whole
plasma membrane, so that the short-time diffusion coefficient
Dx(x) of AChRs is reduced significantly and becomes a con-
stant across the microgroove, as shown in Fig. 3(e). Although
ATP depletion may have other effects on living cells, Fig. 4
shows the direct experimental observation of the effects of
ATP depletion on anchored integrins. The experimental find-
ings suggest that living cells may use the energy input from
ATP to actively regulate the spatial distribution of anchored
proteins and produce a free-energy landscape for molecular
transport in the mesoscale.

To check whether the above experimental findings are in-
fluenced by active agitations from the actin cortex [4,6], we
repeat the same measurements as those shown in Fig. 2 for
the cells that are treated by blebbistatin to inhibit the activity
of myosin II motors. Myosin II is a nonprocessive motor pro-
tein that generates active contractions in the cortical F-actin
network upon ATP hydrolysis. In the blebbistatin treatment,
we follow the standard protocol [43] of adding 10 μM bleb-
bistatin to the cell culture medium for 30 min. Supplementary
Fig. S4 [41] shows a comparison of the measured effective
potential Ueff(x), short-time diffusion coefficients Dx(x) and
Dy(x), and drift velocities Vx(x) and Vy(x) across the mi-
crogroove for the blebbistatin-treated cells (red symbols) and
untreated cells (black symbols). It is seen that the blebbis-
tatin treatment does not make any significant change to the
measured profiles of Ueff(x), Dx(x), Dy(x), Vx(x), and Vy(x).
This result thus demonstrates that the active agitations from
the actin cortex do not play a major role in the measurements
discussed above.

III. FURTHER ANALYSIS AND DISCUSSIONS

A. Comparison with theory

To quantitatively describe the motion of AChRs in the
potential field U (x) generated by anchored integrins, we con-
sider the PDF H (x, t ; x0, t0) [≡ H (x, t ) for short] of finding a
mobile AChR at the position x and time t , whose initial space-
time position is x0 and t0. The 1D Smoluchowski equation for
H (x, t ) reads [44]

∂H (x, t )

∂t
= ∂

∂x

[
dU (x)

dx

H (x, t )

ξ (x)
+ Dx(x)

∂H (x, t )

∂x

]
, (1)

where ξ (x) and Dx(x) are, respectively, the friction and dif-
fusion coefficients of mobile AChRs; both are functions of x.

Note that Eq. (1) is quite general and holds even when ξ (x)
and D(x) do not obey the Stokes-Einstein relation. From the
zero-flux steady-state solution, H (x) = H (0) exp{−[Ueff(x) −
Ueff(0)]}, one obtains an effective potential Ueff(x), which is
equal to the potential field U (x) only when the AChR dynam-
ics is passive.

To obtain the potential field U (x) produced by fixed obsta-
cles (anchored integrins), a one-dimensional lattice model for
the passive diffusion of AChRs in the presence of the obstacles
(see Appendix 1 for more details) is applied to derive another
Smoluchowski equation,

∂H (x, t )

∂t
=D0

∂

∂x

[(
dc(x)/dx

1 + αn(x)
− α[1 − c(x)]dn(x)/dx

[1 + αn(x)]2

)

× H (x, t ) + 1 − c(x)

1 + αn(x)

∂H (x, t )

∂x

]
, (2)

where c(x) is the probability that the site x cannot be crossed
due to the obstacles and D0 ≡ (dx)2/(2dt ). The factor 1 +
αn(x) is introduced to account for interactions between the
mobile AChRs and anchored integrins, where α is a pro-
portional constant. With the equilibrium solution H (x) of
Eq. (2) and the Boltzmann distribution U (x) = −kBT ln H (x),
we find

U (x) � −kBT ln{[1 − n(x)][1 + αn(x)]}, (3)

where we have assumed that c(x) is proportional to the con-
centration n(x) of anchored integrins, i.e., c(x) � n(x). For
small values of n(x) and assuming α = 0, we have U (x) �
n(x)kBT , as discussed above.

By moment expansion of the time-dependent PDF H (x, t )
and comparing Eq. (1) with Eq. (2) (see Appendix 2 for
more details), we obtain an analytic expression of three dy-
namic properties of the AChRs that can be tested directly
by experiment. The first prediction is the short-time diffusion
coefficient

Dx(x) � D0
1 − n(x)

1 + αn(x)
≡ Dl (x), (4)

where the notation Dl (x) is introduced to indicate that this
expression is obtained based on the passive lattice model.

The second prediction is about the drift velocity,

Vx(x) �
{−Dx (x)

kBT
dU (x)

dx + dDx (x)
dx from Eq. (1),

−2D0
dn(x)/dx
1+αn(x) ≡ Vl (x) from Eq. (2).

(5)

Again, the notation Vl (x) is used to indicate that this expres-
sion is obtained based on the passive lattice model. Equation
(5) suggests that the AChRs will move toward a less populated
region of anchored integrins, and their velocity is proportional
to the concentration gradient of anchored integrins.

The third prediction is an analytic relationship between the
dynamic properties of the AChRs and the effective potential
Ueff(x):

Ueff(x) = U0 − kBT
∫ x

0

Vx(u) − dDx(u)/du

Dx(u)
du, (6)

where U0 is an integration constant.
To compare with the theory, we numerically calculate the

potential Ueff(x) using Eq. (6) with the measured Dx(x) and
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FIG. 5. Potential field U (x) generated by anchored integrins
alone. The potential U (x) (black circles) is obtained by subtracting
the red circles from the black triangles in Fig. 3(d). The calculated
U (x) (green diamonds) is obtained by using Eq. (3) with n(x) =
β〈I (x)〉, where 〈I (x)〉 is the mean fluorescent intensity profile of
β1-integrins, as shown in Fig. 3(c). The best fit is obtained with
α = 0.55 ± 0.05 and β = 0.95 ± 0.05. The red triangles show the
potential U (x) obtained from muscle cells cultured on a 3-μm-
microgroove-patterned substrate.

Vx(x) shown in Figs. 3(e) and 3(f), and the final result is shown
by the green diamonds in Fig. 3(d). The calculated Ueff(x)
agrees well with the experimental data (black triangles) with-
out any adjustable parameter. This result demonstrates that
Eq. (6) is a generic relationship, which is valid even when the
local (nonuniform) distribution of anchored proteins involves
multiple species.

To obtain the potential field U (x) resulting solely from
the anchored integrins, we treat the red circles in Fig. 3(d)
as the background contribution from other anchored proteins
in the region and subtract them from the measured Ueff(x)
(black triangles) in Fig. 3(d). Figure 5 shows a comparison
between this corrected potential U (x) (black circles) and the
calculated U (x) (green diamonds) using Eq. (3) with n(x) =
β〈I (x)〉, where 〈I (x)〉 is the mean fluorescent intensity profile
of β1-integrins, as shown in Fig. 3(c). A good agreement
is observed between the measured U (x) and the theoretical
prediction based on the passive lattice model. The best fit in
Fig. 5 is obtained with α = 0.55 > 0, suggesting that there
is an attractive interaction between the mobile AChRs and
anchored integrins [45]. From the above results, we conclude
that the motion of AChRs is adequately described by the
equilibrium dynamics. This conclusion is further supported by
the measured time correlation function, C(t ) = 〈δx(t )δx(0)〉,
of the AChR movement in the direction normal to the mi-
crogroove. Here δx(t ) = x(t ) − 〈x(t )〉 is the deviation of the
AChR’s position x(t ) from its mean value 〈x(t )〉. As shown
in supplementary Fig. S5 [41], the measured C(t ) reveals a
time-reversal symmetry (within the experimental uncertain-
ties), which is a signature for fluctuations at equilibrium [44].
Because of the effects of molecular motors and ATP-driven
polymerization forces, this equilibrium may not be an exact

thermal equilibrium but an effective equilibrium with an ele-
vated temperature.

To account for the background contributions from other
anchored proteins to Dx(x), we rewrite Eq. (4) as

Dx(x) − Dmin

Dmax − Dmin
� 1 − n(x)

1 + αn(x)
, (7)

which has the same form as Eq. (4) but with an added baseline
Dmin and D0 = Dmax − Dmin. The green diamonds in Fig. 3(e)
show the calculated Dx(x) using Eq. (7) with similar fit-
ting parameters to those for U (x) in Fig. 5. The calculated
Dx(x) agrees well with the experimental result. The obtained
Dmax = 0.058 μm2/s and Dmin = 0.028 μm2/s are close to
the expected values shown in Fig. 3(e).

The blue dashed line in Fig. 3(f) shows the calculated
Vx(x) [or Vl (x)] using the second equality in Eq. (5) with the
same values of D0, α, and β as those for Dx(x). This time
the calculated Vx(x) does not fit the data well, because the
measured Vx(x) is sensitive to small concentration gradients
of all other anchored proteins, which are not included in the
equation and cannot be simply corrected by adding a constant
baseline. Nonetheless, we find that the first equality in Eq. (5)
(green diamonds) fits the data well. Note that the first equality
in Eq. (5) is just the derivative form of Eq. (6), and thus the
fitting result shown in Fig. 3(f) further confirms that Eq. (6) is
an intrinsic relationship among the three measured quantities
Ueff(x), Dx(x), and Vx(x). The fitting results shown in Figs. 3
and 5 demonstrate that our model on the directed motion of
membrane proteins under the entropy-driven potential field
generated by anchored proteins captures the essential physics.

We also conduct comparative tracking measurements of
AChRs for muscle cells cultured on a 3-μm-microgroove-
patterned substrate with and without the Matrigel treatment.
Supplementary Fig. S6 [41] shows the experimental results,
which are presented in the same way as Fig. 3. It is found
that the three measured quantities Ueff(x), Dx(x), and Vx(x)
for the 3-μm-microgrooves behave the same as those for
the 2-μm-microgrooves. For example, the red triangles in
Fig. 5 show the corrected potential U (x) for the 3-μm-
microgrooves, which overlaps with the measured U (x) for
the 2-μm-microgrooves once the position x across the mi-
crogroove is normalized by the microgroove spacing λ. It
is seen that the barrier height Eb remains approximately the
same when λ is changed from 2 to 3 μm. While the groove
height is kept unchanged in the experiment, we believe it is
not a sensitive parameter to change Eb either, so long as the
groove height remains tall enough so that the portion of the
cell membrane over the microgrooves can be kept suspended.
As shown in Eq. (3), the value of Eb depends sensitively
on the concentration variation n(x) of anchored integrins,
which is determined primarily by the available integrins in
the cell membrane and the local contact area between the
cell membrane and the ridge of parallel microgrooves. The
latter is not very sensitive to the geometrical parameters of the
microgrooves, such as their spacing and height, used in the
experiment.

A noticeable difference between the two cases is that the
local alignment and accumulation of F-actin in the wider
trough region of the 3-μm-microgrooves (see supplementary
Fig. S6 [41]) have a larger effect compared with that for
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the 2-μm-microgrooves. As a result, the corrected potential
U (x) for the 3-μm-microgrooves still exhibits a small residual
bump near x/λ � 0, because of the limited statistics of the
measured Ueff(x) for cells with the Matrigel treatment [see
Fig. S6(d) [41]]. The effect of the local accumulation of extra
anchored proteins is also reflected in the measured Dx(x) with
a small dent [see Fig. S6(e) [41]] and a small drift velocity
Vx(x) [see Fig. S6(f) [41]] in the trough region.

To illustrate the confining effect of the resulting po-
tential U (x), we measure the residence time tR of the
AChRs diffusing inside the potential trap induced by the 2-
μm-microgroove-patterned substrate. The obtained histogram
H (tR) of the residence time tR (see supplementary Fig. S7
[41]) is found to be well described by a simple exponential
function, H (tR) ∼ exp(−tR/〈tR〉). This result suggests that the
AChR hopping events between different microgrooves occur
randomly in time and can be described by a Poisson process.
The obtained mean residence time 〈tR〉 � 42 s is in agreement
with the crossover time τH shown in Fig. 2(a) (blue circles),
above which the measured MSD 〈�x2(τ )〉 enters the long-
time diffusion regime. In this regime, the AChRs have hopped
over enough energy barriers so that their trajectories are fully
randomized.

B. Biological implications

The above results suggest that anchored proteins in the
membrane are not simply passive random obstacles for mobile
proteins, they may also play an active role in generating an
effective potential landscape to guide molecular motion in the
mesoscale. This finding offers a transport mechanism that has
important biological implications.

First, anchored proteins can help to build molecular traps,
such as those “hot spots” observed on the plasma mem-
brane of various cell types [46–48], which facilitate the
compartmentalization of receptors and downstream signal-
ing molecules for more efficient signaling. To demonstrate
this effect, we fabricate identical cylindrical holes (microw-
ells) of diameter d = 2 μm and depth = 1 μm arranged on
a hexagonal lattice of 2.5 μm in lattice constant. The 2D
microwell-patterned surface is made on a thin layer of PDMS
using an approach similar to that for microgroove patterning
(see Secs. IV A and IV B below for more experimental de-
tails). Figure 6(a) reveals that the β1-integrins are strongly
enriched at the ridge of microwells and form a continuous and
periodic network on the basal membrane, which has a similar
pattern to that of the substrate. For the muscle cells cultured
on a flat glass coverslip, on the other hand, the β1-integrins
are found to be evenly distributed across the basal membrane
without any ordered pattern. Figure 6 thus suggests that the
basal membrane is freely suspended over the microwells, and
the β1-integrins are predominantly anchored on the ridge of
microwells.

From the AChR trajectories, we obtain the PDF H (x, y) of
finding an AChR at location (x, y) and corresponding potential
Ueff(x, y)/kBT = − ln H (x, y). Figures 6(b) and 6(c) show,
respectively, the 1D and 3D plots of the obtained potential
trap with the trap boundary uniquely defined by the ridge of
the microwells where the integrins reside. The barrier height
Eb of the trap is Eb � 2kBT . Over this potential landscape,

(a) (b)

(c)

FIG. 6. Microwell-patterned substrate induces a periodic array of
2D potential traps for AChRs. (a) Comparison of bright-field (BF)
and costained fluorescent images of a muscle cell cultured on a
2-μm-microwell-patterned substrate (left panel) and on a flat sub-
strate (right panel). The fluorescent images, z-sections-averaged for
the patterned substrate, show the spatial distribution of β1-integrins
(green) and cortical F-actin (red) on the basal membrane. The insets
show a magnified view of a portion of the images. Scale bars are
20 μm. (b) 1D plot of the measured trapping potential Ueff(x) for
mobile AChRs across the microwell diameter x/d with d = 2 μm.
Here x/d = 0 is set at the microwell center. The inset shows a
representative AChR trajectory (blue) with 1500 time steps (300 s)
over the bright-field microwell pattern. (c) 3D plot of the measured
trapping potential Ueff(x, y) for mobile AChRs. Approximately 8000
AChR trajectories are used to obtain Ueff(x, y).

the AChR trajectories exhibit a short-term confined diffusion
within a trap and an occasional long-term hopping between
traps [inset of Fig. 6(b)]. The value of Eb remains approx-
imately the same when the diameter of the microwells is
changed to d = 3 μm (see supplementary Fig. S8 [41]).

Molecular traps or “hot spots” with similar values of Eb

were also reported for physiologically relevant systems. For
example, at the inhibitory synapse, glycine neurotransmitter
receptors were found to encounter potential traps with Eb �
3kBT , which involve integrins and scaffolding molecules
gephyrin [46,47]. On the plasma membrane of the Chinese
hamster ovary (CHO)-K1 cells and primary human umbili-
cal vein endothelial cells, G-protein-coupled receptors were
found to experience “hot spots” with Eb � 1kBT , which in-
volve actin fibers, microtubules, and clathrin-coated pits [48].
The size of these potential traps is in the range of 100–200 nm,
which is much larger than the interaction range of individual
proteins.

Second, a concentration gradient of anchored proteins can
produce directed motion along the gradient for intracellular
transport in the mesoscale. The axon initial segment (AIS) that
sits between the neuron cell body and the axon is an example
in which the cell adhesion molecules—neurofascins—were
found to have a long-range concentration gradient up to
∼60 μm (with a reducing population along the axon) [49].
The location and length of AIS are important for neurons to
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fine-tune their excitability and modulate their plasticity in
response to activity [12,50]. The concentration gradient of
anchored neurofascins in the AIS may provide an effective
channel for directed transport of membrane proteins in the re-
gion. This hypothesis is supported by the experimental finding
that the diffusion coefficient of membrane proteins increases
gradually along the AIS [26]. As shown in Eq. (5), such
an increase in diffusion coefficient leads to a directed drift
velocity along the AIS.

The concentration gradient of anchored proteins could
be utilized to build a mesoscale funnel-shaped potential
landscape around a molecular trap to guide the molecular
motion toward the trap. For example, during synaptogenesis
of the vertebrate neuromuscular junction (NMJ), the dispersed
AChRs become highly concentrated on the postsynaptic mem-
brane of the NMJ after motor nerve innervation for a few
hours [28,51]. A long-standing debate is how can an AChR
move into the nerve-muscle contact region? The diffusion-
trap hypothesis [52,53] assumes that the AChRs diffuse into
the junctional region and are trapped at the site of nerve
contact. Because the contact area δs is much smaller than
the open area S available for free diffusion of AChRs, the
probability for an AChR to get trapped in the contact area
by sheer luck, p ∼ δs/S, is very small (<0.1%) [51]. The
probability for N AChRs to get trapped in the same area,
pN , is even smaller. Thus, free diffusion in open space, such
as a 2D plasma membrane, is not very efficient for molec-
ular transport to a targeted location. Directed motion by a
mesoscale funnel-shaped potential landscape could provide an
answer.

Finally, other spatial arrangements of anchored proteins,
such as protein scaffolds [51,54] and condensates [55,56],
may also help to build a local potential landscape to enhance
the protein-protein interactions by increasing their interaction
range. To fulfill their biological functions, the anchored pro-
tein networks or clusters need to be stable over a long enough
time against diffusion and fluctuations from the surrounding
mobile molecules. This lock in place (or “brake” [2]), how-
ever, does not need to be permanent and can be modified
over a longer timescale. In this way, molecular transport in
the mesoscale can be actively regulated in living cells via the
anchoring dynamics with either extracellular or intracellular
matrices, which requires a constant input of energy from the
ATP hydrolysis.

In this work, we use an ordered array of anchored integrins
to generate a free-energy landscape to guide the motion of
membrane proteins and trap them in space. Like many other
proteins inside a living cell, the membrane proteins that we
refer to here are nonmotor proteins, which undergo a stochas-
tic random motion when no external potential is applied. The
free-energy landscape induced by anchored integrins provides
a biased potential equal to or larger than 1 kBT , so that a single
protein molecule can overcome its random motion and move
to a location with a lower free-energy. What matters here is
the potential difference, which sets the direction of molecular
motion, rather than the actual value of the force involved,
which only determines how fast the protein molecule can
reach its destination. This is because the mobile proteins of
interest are usually abundant in the cell membrane, and the
typical timescales involved in intracellular transport are in

FIG. 7. A schematic illustration of the fabrication processes of
the microwell- and microgroove-patterned PDMS substrates on a
glass coverslip.

hours and even days [57]. This time is adequate for most
protein transport processes, and thus they are not diffusion-
limited [53].

While the resulting landscape is determined primarily by
physical interactions and thus is uniformly applicable to all
the membrane proteins, this coarse-grained approach can be
readily expanded to construct a potential trap for a specific
type of protein by using a mixture of anchored proteins with
different chemical interactions with the targeted proteins. In
fact, such a chemically specific trap for glycine neurotrans-
mitter receptors at inhibitory synapses has been identified and
characterized by Masson et al. [47]. The trap involves inte-
grins and gephyrin scaffolds. Evidently, further investigations
are needed to test the hypotheses and predictions as discussed
above.

IV. MATERIALS AND METHODS

A. Fabrication of microwell- and microgroove-patterned
PDMS substrates on a glass coverslip

The technique of micropatterning was used to con-
struct a patterned surface with either identical cylindrical
holes (microwells) or parallel microgrooves. Figure 7 il-
lustrates the main fabrication procedures. (i) A thin layer
of poly(dimethylsiloxane) (PDMS) prepolymer [a 10:1 mix-
ture (by w/w) of the base material and curing agent] was
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FIG. 8. (a) AFM topographic image of the top surface of the 2-
μm-microwell patterned PDMS substrate in air. (b) Cross-sectional
view of the measured height image of the PDMS top surface. The
height profile is obtained along the vertical direction as indicated by
the red dashed line shown in (a). (c) AFM topographic image of the
top surface of the 3-μm-microwell patterned PDMS substrate in air.
(d) Cross-sectional view of the measured height image of the PDMS
top surface. The height profile is obtained along the vertical direction
as indicated by the red dashed line shown in (c).

spin-coated on a precleaned glass coverslip at 4000 rpm
for 10 min. (ii) A silanized silicon mold [vapor-coated with
dichlorodimethylsilane (Sigma)] carrying either the microwell
or microgroove feature was brought in close contact with
the PDMS-coated glass coverslip. The silicon molds with the
microwell and microgroove patterns were made, respectively,
by deep-reactive ion etching and anisotropic wet etching in
a tetramethyl ammonium hydroxide (TMAH) solution, as
described previously in Ref. [58]. (iii) The silicon-PDMS-
glass-coverslip sandwich was heated at 100 ◦C for 1 h. (iv)
After the thermal curing, the micropatterned PDMS substrate
was peeled off from the silicon mold. (v) The micropatterned
glass coverslip was then cleaned, dried, and subsequently
treated by O2 plasma for 1 min before being coated with a
thin layer of ECL cell attachment matrix [containing primarily
laminin, collagen IV, and entactin with a 1:200 dilution by the
culture medium (Upstate Co.) at 37 ◦C for 1 h]. The glass
coverslip was placed in a 35-mm polystyrene tissue-culture
dish and further rinsed with phosphate buffered saline (PBS)
for three times before cell seeding.

B. Atomic force microscopy characterization

An atomic force microscope (MFP-3D, Asylum Research)
was used to examine the surface profile of the microwell-
and microgroove-patterned PDMS substrates. Figure 8 shows
the atomic force microscopy (AFM) topographic images of
the top surface of two microwell-patterned PDMS substrates
in air. From the measured height profile of the microwell
patterns, we find that the resulting microwell patterns are
smooth and uniform in size and depth. The microwells shown

FIG. 9. (a) AFM topographic image of the top surface of the
2-μm-microgroove patterned PDMS substrate in air. (b) Cross-
sectional view of the measured height image of the PDMS top
surface. The height profile is obtained along the horizontal direction
as indicated by the red dashed line shown in (a). (c) AFM topographic
image of the top surface of the 3-μm-microgroove patterned PDMS
substrate in air. (b) Cross-sectional view of the measured height
image of the PDMS top surface. The height profile is obtained along
the horizontal direction as indicated by the red dashed line shown
in (c).

in Fig. 8(a) have a uniform diameter of d = 2 μm, and their
center-to-center separation is 2.5 μm. The microwells shown
in Fig. 8(c) have a uniform diameter of d = 3 μm, and their
center-to-center separation is 3.5 μm. The two kinds of mi-
crowells have the same depth of 1 μm.

Figure 9 shows the AFM topographic images of the top
surface of two microgroove-patterned PDMS substrates in air.
From the measured height profile of the microgroove patterns,
we find that the resulting microgroove patterns are smooth
and uniform and have a triangle-shaped cross-section. The mi-
crogrooves shown in Fig. 9(a) have a uniform spacing of λ =
2 μm. The microgrooves shown in Fig. 9(c) have a uniform
spacing of λ = 3 μm. The two kinds of microgrooves have
the same height of 1 μm.

C. Preparation of biological samples

The experimental procedures used in this work, such as
cell culture, drug treatments, quantum dot (QD) labeling, im-
munostaining, and optical and confocal imaging, have been
described in detail in previous publications [13,15], and here
we only mention some key features.

1. Cell culture and drug treatments

The AChR is a cation-selective, ligand-gated ion channel
and consists of five subunits with diameter ∼7 nm. It is an
integral membrane protein that responds to the binding of
acetylcholine, which is a neurotransmitter. The AChR spans
the membrane of muscle cells with most of its mass in the
extracellular space [59]. Muscle cells were obtained from
dissection of fertilized embryos of Xenopus laevis (or African
clawed frog) at the stages 20-22, as described previously in
Ref. [60]. The dissected muscle cells were then seeded on flat
or micropatterned glass coverslips coated with a thin layer of
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an ECL cell attachment matrix and raised in a culture medium
composed of 88% Steinberg’s solution, 10% L-15 medium
(Leibovitz Co.), 1% fetal bovine serum, and 1% gentamicin
(50 mg/mL, Sigma-Aldrich) and maintained at 23 ◦C.

To alter the spatial distribution of β1-integrins in the
plasma membrane of live muscle cells cultured on the
microgroove-patterned substrate, the culture medium was
supplemented with the growth-factor-reduced Matrigel (Corn-
ing, no. 354230) at a concentration of 0.45 mg/mL. The
Matrigel comprises primarily soluble extracellular matrix
(ECM) proteins, including laminin, collagen IV, and entactin,
and it was applied to 2-day-old muscle cells following their
attachment and spreading on the microgroove-patterned sub-
strate. Single-particle tracking of AChRs was performed 1 day
after the addition of Matrigel. A control group was prepared
using the same batch of cells and culture medium without
Matrigel added.

To reduce the intracellular ATP (adenosine triphosphate)
level in living muscle cells, the cells were treated with a 1:1
mixture of 2-deoxy-D-glucose (30 mM, Sigma-Aldrich) and
sodium azide (30 mM, Sigma-Aldrich) in the PBS buffer for
1 h [43] and then imaged in PBS for tracking experiments.
Cells in the control group were incubated in PBS for tracking
experiments.

2. Immunostaining and confocal microscopy

The entire staining process was performed at room tem-
perature. Briefly, the muscle cells were fixed with 4%
paraformaldehyde in PBS (for 10 min) and subsequently per-
meabilized with 0.2 M NH4CL/PBS containing 0.2% Triton
X-100 (for 10 min), and then blocked with 4% bovine serum
albumin (Sigma-Aldrich) in PBS (for 2 h). To measure the
spatial distribution of F-actin and β1-integrins simultaneously,
the cells were first incubated with mouse monoclonal anti-
bodies against the Xenopus β1 integrin subunit (8C8, 1:50
dilution, DSHB) for 1 h [61]. After washing with PBS (5 min
each for three times), the cells were incubated with Alexa
Fluor 488 conjugated goat antimouse IgG (1:200 dilution,
Abcam) and phalloidin-TRITC (0.2 μg/mL, Sigma-Aldrich)
for 1 h. Finally, the cell sample was washed with PBS (5 min
each for three times) and mounted onto a microscope slide
with Citifluor-AF-1 (Ted Pella), and then examined under a
confocal microscope (LSM710, Zeiss).

The fluorescent images for muscle cells cultured on the
patterned substrate were collected over a stack of vertical
z-sections of the basal membrane of ∼1 μm thickness. The
final fluorescent images shown in the main text are the z-
averaged images of the whole basal membrane by using the
ImageJ software (NIH). To obtain the normalized mean in-
tensity profile 〈I (x)〉 associated with the β1-integrins over a
single microgroove period, the relative fluorescent intensity
i(x) over different microgrooves for a single cell was first nor-
malized to become in(x), which is defined as in(x) = [i(x) −
imin(x)]/[imax(x) − imin(x)], where imin(x) and imax(x) are, re-
spectively, the minimal and maximal intensities obtained for
the cell. The intensity profile in(x) was then overlayed into
a single microgroove period to obtain I (x) for each cell.
Figure 3(c) shows the resulting I (x) from different cells, and
〈I (x)〉 is the averaged intensity profile over all the data points.

3. QD labeling and optical imaging

To track the AChRs on a live muscle cell membrane,
individual AChRs are labeled by bright and photostable flu-
orescent QDs [62,63]. This is achieved by first labeling the
AChRs with biotinylated α-bungarotoxin (biotin-BTX, 0.5
nM, Invitrogen Co.) for 10 min. The cells are then washed
with the culture medium three times (5 min each). After
repeated washing to remove unbounded biotin-BTX, 2.5 nM
streptavidin-conjugated Qdot 655 solution (Thermo Fisher
Scientific) is added to the cells for 10 min, after which the
cells are washed with the culture medium three times (5 min
each).

The live-cell sample cultured on a micropatterned or flat
glass coverslip was then mounted on a coverslip holder
(SC15012, Aireka Cells), which was placed on an inverted
microscope (DM-IRB, Leica) with a 100× objective (NA
= 1.40). The motion of QDs (and hence AChRs) was
viewed from below with fluorescence microscopy. Image
sequences were recorded using an ultralow noise sCMOS
camera (ZYLA-4.2P, Andor Technology) and streamed to the
hard drive of a host computer. Image acquisition was con-
trolled by IQ 3.1 software (Andor Technology). The QDs
were excited by visible light with wavelength 400–450 nm,
and the light emitted by the QDs was selected to be in the
wavelength range 645–655 nm. A typical frame rate used in
the movie recording was 5 fps for 5 min with a spatial resolu-
tion of 2048 × 2048 pixels. The exposure time for each frame
is 30 ms, and a mechanical shutter was used to control the
overall UV exposure time and reduce the damage to the living
cells. The recorded images have 16 bits of gray scales, and
each QD typically occupies 11 pixels across their diameter.
The width of each pixel is 50 nm under our optical setup.

Fresh Xenopus muscle cells cultured for 2–3 days after dis-
section were used in the experiment. The QD labeling process
took about 50 min, after which the cells were immediately
transferred to a microscope stage for 1 h imaging. The cell cul-
ture, QD labeling, and fluorescent imaging were all performed
at room temperature. Because the turnover rate of AChRs in
the cell membrane is in days [64], which is much longer than
the processing time (∼2 h), the AChRs are biologically stable
during the labeling and imaging processes. The QD labeling
was conducted at low tag densities to avoid AChR and/or
QD clustering and to reduce tracking ambiguities between the
consecutive images of the QDs [15].

Typically, we have 200 QDs in a viewing area of
100×100 μm2 on the bottom side of the membrane facing the
substrate. At this low tag density, a typical distance between
two adjacent QDs is about 7 μm, which is more than 300 times
larger than the QD radius, and thus QD clustering (and hence
endocytosis of AChR clusters) is effectively removed [15,63].
Xenopus muscle cells in the primary culture are static with no
visible movement during the experiment, and they have a large
area for optical observation. This is an optimal condition that
we choose for tracking a large volume of AChR trajectories.

D. Single-particle tracking and construction
of potential landscape

Single-particle tracking (SPT) was performed using a
homemade tracking program written in MATLAB, which is

043195-11



YUSHENG SHEN et al. PHYSICAL REVIEW RESEARCH 3, 043195 (2021)

based on the standard tracking algorithm [13,15,65,66]. With
this advanced SPT algorithm, we were able to obtain the
AChR position r(t ) at time t , and the AChR trajectories were
constructed from the consecutive images. From the movie of
stationary QDs (stuck on a glass coverslip), we found that
their displacement over a time period of 200 s is less than
24 nm (= 0.48 pixel). This result sets the accuracy of the
measurement of the two-dimensional (2D) displacement vec-
tor, �r(τ ) = r(t + τ ) − r(t ), where τ (�300 s) is the largest
delay time used in the experiment. During this delay time,
AChRs have moved several micrometers.

To study the energetics and dynamics of AChRs, we first
selected the mobile trajectories from the whole set of AChR
trajectories. This is done by computing the radius of gyration
Rg(τ ) of each AChR trajectory obtained over a time period
of τ ,

R2
g(τ ) = 1

N

N∑
i=1

[(xi − 〈x〉)2 + (yi − 〈y〉)2], (8)

where N is the total number of time steps in each trajectory,
xi and yi are the projection of the position of each trajectory
step on the x- and y-axis, respectively, and 〈x〉 and 〈y〉 are
their mean values. Physically, Rg quantifies the size of an
AChR trajectory generated during the time lapse τ . A cutoff
value of (R′

g)c = 0.3 was used in the experiment [13], below
which the AChR trajectories are treated as immobile ones.
Here R′

g = Rg/〈Rg〉 is the normalized radius of gyration, with
〈Rg〉 being the mean value of Rg. To avoid the effect of cell
boundaries on the motion of AChRs, the mobile trajectories
that are located in the boundary region were removed from
the statistical analysis.

There are two special issues associated with the AChR
tracking. One is the nonergodic behavior between the time-
and space-averaged quantities, such as the MSD 〈�r2(τ )〉,
which has been observed for a number of proteins in live
cells [67,68]. In a recent study of the motion of AChRs
for cells cultured on a flat coverslip [13], it was found
that the immobile trajectories play a dominant role in deter-
mining the value of 〈�r2(τ )〉. The measured 〈�r2(τ )〉 for
the immobile AChRs is about two orders of magnitude smaller
than the value of 〈�r2(τ )〉 in the long-time regime (τ � 4 s)
for the mobile AChRs, and thus it contributes many near-zero
values to the ensemble average. Consequently, the immobile
trajectories may play an essential role in determining the
difference between the time- and space-averaged 〈�r2(τ )〉,
because the immobile trajectories are typically included in
the space-averaged 〈�r2(τ )〉, whereas in the time-averaged
〈�r2(τ )〉, one usually only samples the mobile trajectories
[67–69]. For these reasons, we removed the immobile tra-
jectories from the ensemble average as mentioned above, so
that the measured 〈�r2(τ )〉 under different sample conditions
remains the same [13].

The other issue is the blinking effect of the QDs [70].
The fluorescent intensity of the QDs fluctuates constantly and
becomes invisible intermittently. This blinking effect causes
a breakup of some continuous trajectories and thus reduces
the accuracy of the long-time tracking of AChRs. The broken
trajectories can be relinked using a searching algorithm in
Ref. [65]. The algorithm was originally designed to relink the

broken trajectories of those colloid particles moving in and
out of the observation area. It applies well here to reconnect
the fragmental trajectories of QDs [13]. To identify the next
position of a QD from a previous frame, a search radius r is
carefully chosen using the diffusion radius r = (DLτ0)1/2 as
an estimate of the upper limit of a single step displacement,
where DL is the long-time diffusion coefficient of the AChRs,
and τ0 is the time interval between the two adjacent frames.
The program then attempts to find the nearest QD within the
defined radius r. If no QD is present in the searching area,
the QD is missing either permanently or temporarily because
of the QD blinking. A record of missing QD counts is set
up in the tracking program to retrieve those missing QDs
within a time period of 1 s (within 5 frames at 5 fps). This
relinking procedure increases the tracking length of the AChR
trajectories and thus enhances the accuracy of their long-time
statistics.

For the cells cultured on the microwell-patterned substrate,
the AChR trajectories typically occupy multiple potential
traps that are defined by the microwell pattern. To further
improve the statistical accuracy of H (x, y), we take advantage
of the spatial periodicity of H (x, y) and divide the measured
H (x, y) over the entire area into unit cells, each containing
only one peak at the cell center. The measured H (x, y)’s in
these unit cells are added together after a proper alignment,
and we obtain the final H (x, y) over a single potential trap
with the highest statistical accuracy.

Similarly, for the cells cultured on the microgroove-
patterned substrate, we first overlay the AChR trajectories on
top of the bright field image of the microgrooves, and we
define the direction along the microgrooves as the y-axis, so
that the resulting H (x, y) = H (x) depends only on the x po-
sition across the microgrooves. The individual trajectories are
then divided into different grooves. The measured H (x)’s for
different grooves are added together after a proper alignment,
and we obtain the final H (x) over a single groove with the
highest statistical accuracy. With the large volume of AChR
trajectories, as shown in Table I, we obtained the trapping
potentials U (x, y) for a microwell and U (x) for a microgroove
with an accuracy better than 0.1kBT .

For quasi-1D motion of AChRs across the microgroove,
their MSD is defined as

〈�x2(τ )〉y = 〈[x(t + τ ) − x(t )]2〉y = 2DLτ, (9)

where 〈· · · 〉y denotes an average over all values of y,
and the long-time diffusion coefficient DL is obtained by
fitting the MSD data at large values of delay time τ (>40 s)
to the last equality of Eq. (9). The local diffusion coefficients,
Dx(x) and Dy(x), and local drift velocities, Vx(x) and Vy(x), at
the shortest delay time τ = 0.2 s are defined as

Dx(x) = 〈�x2(τ )〉
2τ

, Dy(x) = 〈�y2(τ )〉
2τ

, (10)

and

Vx(x) = 〈�x(τ )〉
τ

, Vy(x) = 〈�y(τ )〉
τ

. (11)

More details about the cell treatments and sample sizes used
in this study are summarized in Table I. To further build up the
statistics, we typically track AChRs from more than 16 cells
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TABLE I. Summary of cell treatments and sample sizes. The columns, from left to right, list the type of substrates
used, the treatments to the live muscle cells, the number of cells imaged, and the total number of trajectories used in
the statistical analysis, respectively.

seirotcejart fo .oNsllec fo .oNnrettap etartsbuS Cell treatment

Microwell (d = 2 μm)

Microwell (d = 3 μm)

Microgroove (λ = 2 μm)

Microgroove (λ = 2 μm)

Microgroove (λ = 2 μm)

QD labelling

QD labelling

QD labelling

QD labelling

No Matrigel treatment (control)

No ATP depletion (control)

28

19

7970

5675

Microgroove (λ = 2 μm)

Matrigel treatment 39 8321

Flat substrate

421103)mμ 2 = λ( evoorgorciM

ATP depletion

Microgroove (λ = 3 μm)

Microgroove (λ = 3 μm)

No Matrigel treatment (control) 47 5979

Matrigel treatment 30 2473

No Blebbistatin treatment (control)

Microgroove (λ = 2 μm)

301161)mμ 2 = λ( evoorgorciM

65 25772

18 12481

18 4791

32 10068

Total: 385 95868

43 5116Blebbistatin treatment

cultured under the same condition, so that more than 4×103

trajectories were used for statistical analysis.
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APPENDIX: THEORETICAL MODEL

1. Potential field generated by anchored proteins

To quantitatively describe the potential field U (x) gener-
ated by anchored integrins, we consider a medium containing
fixed obstacles (anchored integrins) which (i) prevent a
protein molecule (AChR) from passing through (due to a hard-
core repulsion) and (ii) form a temporary bound state with the
protein molecule (due to mutual attraction). Let H (x, t ; x0, t0)
(≡ H (x, t ) for short) be the probability density function (PDF)
of finding an AChR at the position x and time t , whose
initial space-time position is x0 and t0. The PDF H (x, t ) =
p f (x, t ) + pb(x, t ) contains two sub-populations with p f (x, t )
being the PDF that a protein is located at x and is free to
diffuse at t and pb(x, t ) being the PDF that a protein is located
at x and is in a bound state with an obstacle at t .

The binding and unbinding of a protein with an obstacle
can be described by a simple two-state dynamics,

∂ pb

∂t
= kb n p f − ku pb, (A1)

where n(x) is the density (area fraction) of the obstacles, and
kb and ku are, respectively, the binding and unbinding rates.
On the other hand, the evolution of p f has to include the
contribution from protein diffusion,

∂ p f

∂t
= −kb n p f + ku pb + S, (A2)

where S(x, t ) satisfies

S(x, t )dt = −
(

1 − c(x + dx)

2
+ 1 − c(x − dx)

2

)
p f (x, t )

+ 1 − c(x)

2
p f (x + dx, t )

+ 1 − c(x)

2
p f (x − dx, t ).

Here c(x) represents how obstacles at x hinder the motion
of free proteins. Intuitively, c(x) is proportional to n(x), i.e.,
c(x) � n(x). By taking dx → 0, we find

S(x, t ) = D0
∂

∂x

[
[1 − n(x)]

∂ p f

∂x
+ dn(x)

dx
p f

]
, (A3)

where D0 = dx2/2dt .
In the long-time limit t 
 1/kb and t 
 1/ku, we have

kb n p f = ku pb. (A4)

This leads to

p f = H

1 + kbn/ku
. (A5)
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The equation for H (x, t ) can be obtained by first summing
over Eqs. (A1) and (A2) and then substituting Eqs. (A3) and
(A5),

∂H (x, t )

∂t
=D0

∂

∂x

[(
dn(x)/dx

1 + αn(x)
− α[1 − n(x)]dn(x)/dx

[1 + αn(x)]2

)

H (x, t ) + 1 − n(x)

1 + αn(x)

∂H (x, t )

∂x

]
, (A6)

where ∂H (x, t )/∂t = S and α = kb/ku.
At equilibrium, we have(

dn(x)/dx

1 + αn(x)
− α[1 − n(x)]dn(x)/dx

[1 + αn(x)]2

)

× H (x) + 1 − n(x)

1 + αn(x)

dH (x)

dx
= 0. (A7)

It is straightforward to obtain the equilibrium distribution

H (x) = H0[1 − n(x)][1 + αn(x)], (A8)

where H0 is an integration constant. The equilibrium PDF
H (x) is related to the potential U (x) by the Boltzmann dis-
tribution [34,35],

U (x) ≡ −kBT ln H (x)

= U0 − kBT ln ([1 − n(x)][1 + αn(x)]), (A9)

where U0 = −kBT ln H0. Equation (A9) is given in the main
text as Eq. (3). Since the decrease of entropy of a mobile
protein in the presence of fixed obstacles is simply kB ln[1 −
n(x)], Eq. (A9) can be understood as the increase in free
energy of the mobile proteins due to the entropic force from
the anchored integrins. For small values of n(x) and α = 0,
Eq. (A9) becomes

U (x) � n(x)kBT, (A10)

where U0 is chosen in such a way that U (x) = 0 when n(x) =
0. The physical meaning of Eq. (A10) is explained in the main
text.

2. Protein dynamics in the potential field U (x)

While it is convenient to derive the potential field U (x)
from the lattice model as discussed above, a more general
model for the actual dynamics of AChRs in the potential field
generated by anchored integrins may be needed, as the simple
lattice model does not take other complex processes in the
cells into account. In general, the total flux of AChRs can be
expressed as

J (x, t ) = −
[

dU (x)

dx

H (x, t )

ξ (x)
+ D(x)

∂H (x, t )

∂x

]
, (A11)

where ξ (x) and D(x) are, respectively, the friction and diffu-
sion coefficients of mobile AChRs in the x-direction; both are
functions of x. The Smoluchowski equation for H (x, t ) reads
[44]

∂H (x, t )

∂t
= −∂J (x, t )

∂x

= ∂

∂x

[
dU (x)

dx

H (x, t )

ξ (x)
+ D(x)

∂H (x, t )

∂x

]
. (A12)

The zero-flux steady-state distribution of H (x) is obtained
by solving J = 0, and the result is

ln H (x) = −
∫ x

0
du

U ′(u)

ξ (u)D(u)
+ C, (A13)

where U ′(u) = dU (u)/du, and C is an integration con-
stant. With the effective potential defined as Ueff(x) ≡
−kBT ln H (x), we find from (A13) that the derivative of Ueff

is given by

U ′
eff(x) = kBT

U ′(x)

ξ (x)D(x)
. (A14)

Equation (A14) states that in general the effective potential
Ueff(x) is not the same as the actual potential U (x) unless the
local Stokes-Einstein relation, ξ (x)D(x) = kBT , is satisfied.
The proper reconstruction formula for the actual potential is

U (x) = U (0) −
∫ x

0
du

ξ (u)D(u)H ′(u)

H (u)
, (A15)

where H ′(u) = dH (u)/du. If the Stokes-Einstein relation
holds locally, Eq. (A14) reduces to U ′

eff(x) = U ′(x), i.e., there
is no distinction between the effective and actual potentials
apart from an arbitrary additive constant. In this case, the
equilibrium distribution H (x) is of a Boltzmann distribution.

Next, we calculate the first and second moments, 〈�x〉
and 〈(�x)2〉, of AChR’s displacements that can be measured
directly in the experiment. The AChR is initially at x0 and its
location at a (short) time τ later is x, so that the displacement
�x(τ ) = x − x0. For an initial distribution δ(x − x0) and a
small τ , Eq. (A12) gives

H (x, τ ) � (1 + τ∂t )δ(x − x0)

=
[

1 + τ∂x

(
U ′(x)

ξ (x)
+ D(x)∂x

)]
δ(x − x0).

(A16)

Then integrating by parts twice, one gets

〈�x〉
τ

= 1

τ

∫
dx H (x, τ )(x − x0)

�
∫

dx(x − x0)∂x

[
U ′(x)

ξ (x)
+ D(x)∂x

]
δ(x − x0)

= −U ′(x0)

ξ (x0)
−

∫
dx D(x)∂xδ(x − x0)

= −U ′(x0)

ξ (x0)
+ D′(x0). (A17)

Similarly,

〈�x2〉
τ

= 1

τ

∫
dx H (x, τ )(x − x0)2

�
∫

dx(x − x0)2∂x

[
U ′(x)

ξ (x)
+ D(x)∂x

]
δ(x − x0)

= 2D(x0). (A18)

We thus obtain the local drift velocity V (x0) and dif-
fusion coefficient D(x0) from the experimentally measured
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short-time 〈�x〉 and 〈(�x)2〉 as a function of the initial lo-
cation x0,

〈�x〉
τ

≡ V (x0) � −U ′(x0)/ξ (x0) + D′(x0), (A19)

〈�x2〉
2τ

� D(x0). (A20)

Equation (A19) gives the correction of the terminal velocity,
−U ′(x0)/ξ (x0), due to the spatially nonuniform diffusion co-
efficient. Notice that Eqs. (A19) and (A20) hold regardless
of whether the Stokes-Einstein relation holds or not. For the
case of passive diffusion in which the Stokes-Einstein relation
holds, Eq. (A19) can be rewritten as

V (x) = −D(x)U ′(x)/(kBT ) + D′(x), (A21)

which is the first equality of Eq. (5) in the main text.
Finally, substituting Eq. (A19) into Eq. (A14) and integrat-

ing, we have

Ueff(x) = Ueff(0) − kBT
∫ x

0

V (u) − dD(u)/du

D(u)
du. (A22)

Equation (A22) is Eq. (6) in the main text, which we applied
to obtain the effective trapping potential shown in Fig. 3(d).

It is also interesting to check, besides providing the poten-
tial field, if the simple lattice model in Appendix 1 happens

to provide a quantitative description of AChR dynamics. By
comparing Eq. (A6) with Eq. (A12), we find the diffusion
constant Dl (x) of the lattice model

Dl (x) = D0
1 − n(x)

1 + αn(x)
, (A23)

with

D0(1 − α)n′(x) = U ′(x)

ξ (x)
. (A24)

Equation (A23) is given in the main text as Eq. (4).
Substituting Eqs. (A23) and (A24) into Eq. (A19), we

obtain the local drift velocity Vl (x) based on the lattice model,

Vl (x) = −2D0
n′(x)

1 + αn(x)
, (A25)

which is the second equality of Eq. (5) in the main text.
As shown in Figs. 3(e) and 3(f), although Eq. (4) and the
second equality of Eq. (5) agree with the measured D(x)
and Vx(x) qualitatively, they do not agree with experimental
data quantitatively. This is because the dynamics of AChRs in
the potential field are also influenced by small concentration
gradients of other (unknown) anchored proteins, which are not
included in the lattice model.
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