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Unified description of compressive modulus revealing multiscale mechanics of living cells
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How to accurately characterize the modulus of living cells at the whole-cell level with a well-defined
measurement geometry and precise mathematical modeling of viscoelastic relaxation is an ongoing challenge
in biophysics and mechanobiology. Here, we report combined atomic-force-microscopy (AFM) measurements
of stress relaxation and indentation force for 10 cell types ranging from epithelial, muscle, and neuronal cells
to blood and stem cells, from which we obtain a unified quantitative description of the compressive modulus
E (t ) of individual living cells. The cell modulus E (t ) is found to have an initial exponential decay at short
times t followed by a long-time power-law decay together with a persistent modulus. The three components of
E (t ) at different timescales thus provide a digital spectrum of mechanical readouts that are closely linked to the
hierarchical structure and active stress of living cells. This work provides a reliable experimental framework that
can be utilized to characterize the mechanical state of living cells and investigate their physiological functions
and diseased states.
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I. INTRODUCTION

A hallmark of active biological materials, such as living
cells and tissues, is their emergent mechanical properties ex-
hibiting a mixture of fluid- and solidlike behaviors across
multiple spatial and temporal scales [1–6]. Living cells reg-
ulate their mechanical properties dynamically together with
their shape and volume in a variety of cellular functions and
activities [7,8]. For example, mammalian cells become nearly
spherical in shape and mechanically stiffer during the mitotic
phase of cell division [9–11]. Abnormal changes in the me-
chanical properties of cells are closely connected to various
human diseases and aging [12–15]. For these reasons, the
experimental and theoretical efforts aimed at understanding
the mechanics of living cells and its relation to the underly-
ing cellular structure and response have recently witnessed a
continuing growth.

Various experimental techniques have been recently devel-
oped to measure the viscoelastic properties of living cells.
Examples include micropipette aspiration [16,17], microplate
or colloidal probe indentation [18,19], magnetic and opti-
cal tweezers [20,21], and microrheology methods based on
single- or two-particle tracking [22,23]. Among these tech-
niques, atomic force microscopy (AFM) has served as an
effective and versatile platform for studying a range of prob-
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lems in mechanobiology, such as cell adhesion, locomotion,
differentiation, division, cancerization, cytoskeleton remodel-
ing, and tissue development [9,14,15,24–31].

Although considerable progress has been achieved in re-
cent years, our fundamental understanding of the multiscale
mechanics of living cells is often challenged by incomplete
experimental characterization and oversimplified theoretical
modeling. For example, the Young’s modulus E of living cells
obtained from different specimens and using experimental
techniques under different sampling conditions and at dif-
ferent temporal and spatial scales varies by three orders of
magnitude (0.1–100 kPa) [25]. The theoretical models used
for calculating E are often oversimplified with assumptions
that can hardly accommodate the actual measurement ge-
ometry and complex material parameters of living cells. At
present, a unified theory that can explain the viscoelastic
properties of living cells across different scales remains lack-
ing. The contact mechanics models used in AFM indentation
measurements, such as the Hertz, JKR, and DMT models
[27,32,33], assume that the living cell is purely elastic and has
a constant E . Meanwhile, recent stress relaxation measure-
ments show that living cells have a time-dependent relaxation
modulus E (t ) [4,32,34–37]. A unified description of stress
relaxation and indentation measurements is needed in order to
understand the viscoelastic nature of living cells across differ-
ent scales. This description will improve our understanding of
the major roles played by the mechanical properties of cells
and their response to external mechanical cues in regulating
the essential cellular events and functions at an integrated
cellular level.

In this paper, we report a systematic study of stress relax-
ation and indentation force of individual living cells by using
an AFM-based force apparatus. With the help of a specially
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FIG. 1. Cellular stress relaxation reveals a crossover from a short-time exponential decay to a long-time power-law decay. (a) Sketch of
force relaxation measurement by AFM for a living cell. Force relaxation F (t ) is measured as a function of time t after a constant indentation
δ is quickly applied to the cell at t � 0, as shown in the inset of (c). (b) A sketch of the essential mechanical structures inside a living cell
responsible for the compressive modulus E (t ). When an AFM colloidal probe of diameter d presses the cell surface and generates a downward
indentation δ, the impact region in the cell has a radius Ω � √

dδ/2. (c) Example of the measured F (t ) for a living MDCK II cell. The black
curve shows a sharp increase of F (t ) to reach a preset maximum value F0 = 10 nN within 10 ms, as the AFM probe compresses the cell at a
constant loading speed v = 100 μm/s. The red curve shows the force relaxation when the indentation δ (∼1 μm) is held constant. The green
dashed line indicates the initial exponential decay of the measured F (t ), and the blue dashed line shows the long-time power-law decay to
a constant value. (d) Log-log plots of the normalized force relaxation F (t )/F0 for MDCK II cells. The black curve is the averaged F (t )/F0

over N = 39 MDCK II cells, and the grey shaded area indicates the standard deviation of the measurements. The red and glue curves show
two typical curves of F (t )/F0 located near the upper and lower bounds of the standard deviation. The vertical black dashed line indicates the
crossover time tc (� 8.4 ms) from the exponential (I) to power-law (II) decays. (e) Measured F (t )/F0 for living cells from five different cell
lines. (f) Measured F (t )/F0 for four different types of primary cells. The white dashed lines in (d)–(f) indicate the fit of Eq. (1) to the data
points, and the fitting results are given in Table I.

designed colloidal probe, we are able to obtain a large volume
of simultaneously measured relaxation and indentation curves
over a five-decade time span ranging from 0.1 ms to 10 s and
a two-decade velocity span ranging from 1 to 100 μm/s. A
central finding of this investigation is that the measured relax-
ation and indentation curves for 10 different cell types can all
be described by a universal compressive modulus E (t ), which
contains three relaxation modes at different timescales. The
modulus E (t ) is found to be closely related to the hierarchical
structure and active stress of living cells. Our experiment
thus provides new insights into the origin of the multiscale
mechanics of living cells.

II. RESULTS

A. Stress relaxation of living cells reveals a time-dependent
compressive modulus E(t )

Force relaxation measurement for a living cell is per-
formed by using an AFM-based force apparatus, as sketched
in Fig. 1(a). The AFM probe consists of a glass sphere of
diameter d (7–18 μm), which is glued on the front end of
a rectangular cantilever beam. The size of the glass sphere is
chosen to be comparable with the cell size (10–50 μm). The

glass sphere is coated with a thin layer of poly(L-lysine)-graft-
poly(ethylene glycol) to effectively reduce the cell adhesion to
the probe [29]. In the experiment, a constant indentation δ is
quickly applied to the cell at a loading speed v = 100 μm/s.
This loading speed is chosen to be as fast as possible while
avoiding unwanted hydrodynamic effects. The value of δ is
typically set at 10%–20% of the cell height H (5–15 μm),
which gives rise to an impact range of radius Ω � √

dδ/2
[38], as shown in Fig. 1(b). For the largest probe size d �
18 μm and indentation δ � 1 μm used on a living cell with a
height H � 10 μm (such as MDCK II), we have Ω � 3 μm.
After the elastic restoring force of the cell reaches its preset
maximal value F0 (2–10 nN), the AFM records the force relax-
ation F (t ) while keeping the indentation δ constant, as shown
in Fig. 1(c). We are able to measure F (t ) over a five-decade
time span ranging from 0.1 ms to 10 s. The long-time limit is
set to avoid possible influences from the cytoskeleton remod-
eling and water penetration through cell membrane [39,40].

Figure 1(d) shows the normalized force relaxation F (t )/F0

from 39 MDCK II cells. While the measured F (t )/F0 shows
some cell-to-cell variations, all the single-cell relaxation
curves exhibit two common features. First, the measured F (t )
has a fast exponential-like decay at short times (regime I)

043166-2



UNIFIED DESCRIPTION OF COMPRESSIVE MODULUS … PHYSICAL REVIEW RESEARCH 3, 043166 (2021)

TABLE I. Measured mechanical properties of ten different cell types and their responses to drug treatments. The values of the weighting
factor Ci for each relaxation mode, the relaxation time τ1 (� τ2), and the power-law exponent α are obtained from the averaged force relaxation
curves as illustrated in Fig. 1. The absolute values of the modulus Ei for each relaxation mode are obtained from the indentation force
measurements as illustrated in Fig. 2. In this case, the values of Ci, τ1, α, and Ei are obtained from the measurements on the same individual
cell. The error bars of Ei indicate the standard deviations for the number N cells studied in each cell type. Typical error bars of τ1 and α are
indicated in Figs. 4(e) and 4(g).

Cell type C1 C2 C∞ τ1, τ2 (ms) α E0 (Pa) E1 (Pa) E2 (Pa) E∞ (Pa) N

MDCK II [black in Fig. 1(d)] 0.28 0.64 0.08 2.78 0.30 2543 ± 1099 678 ± 298 1703 ± 614 162 ± 73 39
MDCK II [red in Fig. 1(d)] 0.27 0.62 0.11 2.88 0.28 2048 558 1264 226 1
MDCK II [blue in Fig. 1(d)] 0.32 0.63 0.05 2.61 0.34 2378 762 1502 113 1
MDCK II (+dATP) 0.21 0.78 0.01 ↓ 3.11 0.30 2199 ± 826 371 ± 103 1813 ± 590 15 ± 10 20
MDCK II (+Bleb) 0.33 0.64 0.02 ↓ 2.60 0.29 1591 ± 901 358 ± 136 1210 ± 470 23 ± 14 21
MDCK II (+LtnA) 0.36 0.63 0.01 ↓ 3.00 0.41 ↑ 767 ± 164 250 ± 82 508 ± 116 9 ± 6 20
MDCK II (PFA-fixed) 0.28 0.72 ∼ 0 ↓ 6.80 0.05 ↓ 14553 ± 5389 4165 ± 1882 10353 ± 3695 ∼ 0 15

HeLa 0.34 0.56 0.10 3.84 0.27 3222 ± 1322 1112 ± 542 1853 ± 623 257 ± 144 33
HeLa (+dATP) 0.29 0.68 0.02 ↓ 4.34 0.26 2202 ± 762 352 ± 175 1827 ± 569 24 ± 18 18
HeLa (+Bleb) 0.29 0.70 0.01 ↓ 4.30 0.26 1501 ± 399 357 ± 158 1111 ± 353 34 ± 24 19
HeLa (+LtnA) 0.23 0.77 0.01 ↓ 2.91 0.41 ↑ 952 ± 145 264 ± 65 675 ± 68 14 ± 11 20

HEK293T 0.11 0.84 0.04 3.97 0.17 1228 ± 475 134 ± 83 1060 ± 433 35 ± 32 23
BEAS-2B 0.36 0.59 0.04 3.68 0.16 2264 ± 998 703 ± 396 1461 ± 576 100 ± 79 19
ReNcell VM 0.49 0.47 0.04 2.77 0.28 3439 ± 1042 1716 ± 701 1601 ± 357 122 ± 90 16
Muscle cells 0.12 0.82 0.06 5.08 0.37 4254 ± 2258 593 ± 403 3436 ± 1376 225 ± 77 16
Glia 0.51 0.46 0.02 3.69 0.18 4083 ± 1557 2071 ± 1089 1880 ± 710 132 ± 94 19
Neuron 0.25 0.73 0.02 3.01 0.41 2025 ± 708 527 ± 264 1463 ± 495 34 ± 28 20
Leukocyte 0.48 0.48 0.04 4.50 0.18 1172 ± 422 529 ± 251 580 ± 200 63 ± 59 16
Erythrocyte 0.96 ∼ 0 0.04 2.08 – 1723 ± 483 1657 ± 471 ∼ 0 66 ± 48 19

followed by a slow power-law decay at long times (regime
II). The crossover time tc between these two regimes ranges
in several milliseconds. Second, the measured F (t ) relaxes to
a nonzero value, which is (14 ± 6)% of its initial value F0 at
the longest time t = 10 s. These two common features are also
observed in the measured F (t ) for other cell types, as shown
in Figs. 1(e) and 1(f).

It is found that the measured F (t )/F0 for different cell
types can all be well described by a common function,

F (t )/F0 = C1e−t/τ1 + C2(1 + t/τ2)−α + C∞, (1)

where Ci is the weighting factor of each relaxation mode,
τ1 and τ2 are the corresponding relaxation times, and α is
the power-law exponent. The last term C∞ (= 1 − C1 − C2)
represents the residual constant force (or stress) in a living
cell, which is extrapolated at large t (→ ∞). The white dashed
line in Fig. 1(d) shows the best fit of Eq. (1) to the data with
five fitting parameters. The fitted results are given in Table I.
It is found that the fitted value of τ1 (= 2.8 ms) is always very
close to τ2 (2.5 ms), and in the following, we set τ1 = τ2 to
reduce the number of fitting parameters.

Equation (1) thus quantitatively describes the three relax-
ation modes of living cells with four fitting parameters. At the
crossover time tc � 3τ1 (= 8.4 ms), we find the ratio of the
exponential term to the power-law term in Eq. (1) is about
0.03, indicating that the exponential decay almost vanishes
while the power-law decay becomes dominant for t > tc. The
constant term C∞ (� 0.08) is important for living cells and
cannot be simply ignored (see more discussions below). The
measured F (t )/F0 for other cell types can also be well de-
scribed by Eq. (1) [see white dashed lines in Figs. 1(e) and
1(f)], and the fitting results are given in Table I.

With the linear relation F (t ) ∼ εE (t ) for a constant strain
ε = δ/H , we find that the time-dependent Young’s modulus
under compression (namely, compressive modulus) E (t ) of
living cells can be expressed as

E (t ) = E1e−t/τ1 + E2(1 + t/τ2)−α + E∞, (2)

where E1, E2, and E∞ are the elastic coefficients of the three
relaxation modes. With the initial modulus E0 defined as E0 =
E (t = 0) = E1 + E2 + E∞, we have Ei = CiE0 (i = 1, 2,∞),
where Ci is given in Eq. (1).

B. Speed dependence and hysteresis of indentation
force F(δ) results from E(t )

Another mechanical measurement for living cells is the
indentation force F (δ) measured as a function of indenta-
tion δ = vt , where v is the loading speed when the AFM
probe moves downward against the cell surface (approach) or
moves upward away from the cell surface (retract), as shown
in Fig. 2(a). The contact point (δ = 0) between the AFM
probe and cell surface is defined as the point at which the
slope of F (δ) begins to increase above the noise level. In the
experiment, the approaching curve of F (δ) is measured first
until reaching a preset maximal value F0, and the AFM probe
retracts away from the surface. The value of F0 (2–10 nN) is
chosen so that the resulting maximal strain ε = δ/H � 0.2,
which is the same as that for the stress relaxation measure-
ment on the same cell. Figure 2(b) shows the measured F (δ)
for a MDCK II cell at three different speeds. The measured
approaching (solid lines) and retracting (dashed lines) curves
of F (δ) demonstrate speed dependence and hysteresis. The

043166-3



GUAN, SHEN, ZHANG, HUANG, LAI, AND TONG PHYSICAL REVIEW RESEARCH 3, 043166 (2021)

FIG. 2. Cellular indentation force reveals a speed dependence and hysteresis. (a) Sketch of indentation force measurement by AFM for a
living cell. The indentation force F (δ) is measured as a function of indentation δ when the AFM probe first moves downward against the cell
surface at a constant loading speed v (approach) and then moves backward away from the cell surface at the same speed (retract). (b) Measured
F (δ) for a living MDCK II cell at three different speeds: v = 1 (black curve), 10 (red curve), and 100 μm/s (blue curve). The solid lines are
obtained in the approaching direction and the dashed lines are obtained in the retracting direction. (c) Normalized plot of F (δ)/C∗(t ) using
the three approaching curves shown in (b). The green dashed line indicates the fit of Eq. (4) to the master curve with E0 = 3583 Pa. (d) Replot
of the measured F (δ) at v = 10 μm/s (red curve). The black solid line shows the calculated retracting curve using Eq. (3) with a continuous
piecewise linear loading function of δ(t ), as shown in the inset.

cell appears to be stiffer with faster pushing, given that a larger
force is required to deform the cell with the same δ.

For a pure elastic body without surface adhesion, the
measured F (δ) is expected to follow the Hertz equation
[41], F (δ) = (4R1/2δ3/2E )/[3(1 − ν2)], where R = 1/(2/d +
1/R2) is the effective radius at contact with R2 being the
radius of curvature of the elastic body, ν is the Poisson’s ratio
(ν � 0.5 for living cells [19]), and E is the Young’s modu-
lus. The Hertz equation predicts that F (δ) is a single-valued
function of δ and should not exhibit any speed dependence or
hysteresis. With the time-dependent modulus E (t ) in Eq. (2),
we have the modified Hertz equation [36,42,43],

F (δ, t ) = 4R
1
2

3(1 − ν2)

∫ t

0
E (t − t ′)

∂δ
3
2

∂t ′ dt ′. (3)

With a linear loading δ = vt for the approaching curve, we
obtain

F (δ, t ) = 4R
1
2 δ

3
2 E0

3(1 − ν2)
C∗(t ), (4)

where t = δ/v and

C∗(t ) � C1
3

2

{
τ1

t
−

√
π

2

(τ1

t

) 3
2
e−t/τ1 Erfi

[( t

τ1

)1/2
]}

+C2
3
√

π
(1 − α)

4
( 5
2 − α)

( t

τ2

)−α

+ C∞. (5)

In the above, Erfi[x] is the imaginary error function and 
(x)
is the gamma function (see Appendix A 1 for more details).
Equation (4) takes the Hertz form, once F (δ, t ) is normalized
by C∗(t ).

Figure 2(c) shows a normalized plot of F (δ, t )/C∗(t ) using
the same approaching data shown in Fig. 2(b). Indeed, the
three approaching curves obtained at different speeds col-
lapse into a single master curve, which is well described by
Eq. (4) (green dashed line) with a single fitting parameter
E0 = 3583 Pa. By using Ei = CiE0, we find E1 = 1003 Pa,
E2 = 2293 Pa, and E∞ = 287 Pa. With the measured E (t ),
we can also calculate the retracting curve by using Eq. (3)
with a continuous piecewise linear loading function δ(t ), as
shown in the inset of Fig. 2(d) (see Appendix A 3 for more
details). As shown in Fig. 2(d), the calculated retracting curve
agrees well with the data, except for a slight deviation at small
δ (<1 μm). This deviation is likely caused by a weak adhesion
between the AFM probe and cell surface.

Figure 2 thus demonstrates that the observed speed de-
pendence and hysteresis in the measured F (δ) are caused by
the time-dependent compressive modulus E (t ) and that our
multiscale modeling of E (t ) in Eq. (2) captures the essential
physics. The two sets of AFM experiments complement each
other, with the force (or stress) relaxation measurement deter-
mining the functional form of E (t ) and the indentation force
measurement further determining the absolute value of E (t )
and validating the stress relaxation measurement. This unified
description of multiscale cell mechanics is found to be appli-
cable to ten different cell types studied and their mechanical
properties are summarized in Table I. In the experiment, we
measure F (δ) and E (t ) simultaneously on the same cell, and
calculate C∗(t ) with Eq. (5) by using the fitting parameters
from the measured E (t ) of the same individual cell. In this
way, we obtain consistent results with reduced systematic
errors and the error bars shown in Table I result mainly from
cell-to-cell variations.
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FIG. 3. Speed dependence of cellular stress relaxation. (a) Measured F (t )/F0 for a MDCK II cell at different loading speeds: v = 1 (blue),
10 (red), and 100 μm/s (black). The yellow solid lines show the exponential fits to the data points at short times. The green dashed lines show
the calculated F (t )/F0 using Eq. (3) with a continuous piecewise linear loading function of δ(t ), as shown in the inset. (b) Obtained apparent
exponential decay time τ ′

1 as a function of v. (c) Measured F (t )/F0 for a MDCK II cell at v = 100 μm/s. The measurements are made with
different maximal forces (or indentations): F0 = 10 (δ = 1.6 μm, black), 20 (δ = 2.2 μm, red), and 30 nN (δ = 2.6 μm, blue).

C. Characteristics of exponential decay at short times

To understand the physical origin of the exponential de-
cay in E (t ), we conduct force relaxation measurements with
varying loading speeds v and maximal forces F0. As shown in
Fig. 3(a), the initial decay of the measured F (t )/F0 becomes
slower with decreasing speed v. As a result, the crossover
time to the long-time power-law decay is delayed up to 0.3 s
for the slowest loading speed v = 1 μm/s. It is found that
the initial decay of the measured F (t )/F0 can still be fit to
a simple exponential function (yellow solid lines), but the
obtained apparent decay time τ ′

1 changes with v. As shown
in Fig. 3(b), the obtained τ ′

1 decreases with increasing v and
situates at a stable value τ1 when v � 100 μm/s. Therefore,
we choose v = 100 μm/s to conduct all the stress relaxation
measurements, so that the obtained τ1 is an intrinsic decay
time independent of v.

As shown in Fig. 3(c), the obtained F (t )/F0 and τ1 are
not sensitive to the magnitude of the maximal force F0 or
indentation δ used in the measurement. We also find that the
measured F (δ) follows the modified Hertz equation (4) when
the maximal strain ε = δ/H � 0.3. These results indicate that
the mechanical response of the AFM probed region is linear
and is not influenced very much by the nucleus and substrate,
whose mechanical responses should be significantly different.
Furthermore, our results suggest that the observed exponential
decay in E (t ) is not caused by the redistribution of intracel-
lular water within the cytoplasm under compression, which
typically takes a longer time of the order of 0.1–0.5 s [39]. In
fact, the speed-dependent F (t )/F0 can be calculated using a
continuous piecewise linear loading function δ(t ), as shown
in the inset of Fig. 3(a) (see Appendix A 2 for more details).
The calculated F (t )/F0 (green dashed lines) agrees well with
the measurements.

D. Characteristics of power-law decay at long times

When t > tc, the measured E (t ) moves to the power-law
decay regime covering a three-decade time span from 10 ms
to 10 s. The obtained power-law exponent α is in the range of
0.16-0.41, depending on the type of cells (see Table I). The
obtained values of α fall in the previously reported range of
0.1–0.5 for living cells [4,44,45]. Power-law rheology with

0 � α � 1 is used to characterize the slow reorganization of
soft glassy networks [46]. A network behaves more like a solid
if its value of α is close to zero, and behaves more like a fluid
if its value of α is close to unity. The power-law relaxation
for living cells was found to be associated with the F-actin
network in the cytoplasm [4,20,47]. To further verify that the
observed power-law relaxation is indeed linked to the F-actin
network, we examine how the measured E (t ) changes when
the live MDCK II cells are under different drug treatments
to alter the dynamics of their F-actin network. Our drug
treatments include depletion of the cellular level of adenosine
triphosphate (ATP) by sodium azide and 2-deoxy-d-glucose
(dATP), disruption of the actin network by Latrunculin-A
(LtnA) and inhibition of the myosin II activity by Blebbistatin
(Bleb).

Among these drug treatments, disrupting the actin network
by LtnA produces the largest effect. Both E0 and E2 decrease
significantly [Figs. 4(b) and 4(f)], and α increases [Fig. 4(g)],
indicating that the actin network becomes softer and more
fluid-like. Myosin II motors are cross-linkers of the actin
network and inhibiting their activity by Bleb also reduces the
values of E0 and E2. Depleting the ATP level produces little
effect on E0 and E2. Using immunostraining and confocal
microscopy, we find that the actin network is disrupted sig-
nificantly by LtnA. dATP and Bleb produce similar effects
on the actin network, but not as severe as that by LtnA (see
supplementary Fig. S1 [48]). Similar drug effects are also
observed for HeLa cells (see supplementary Figs. S2 and S3
[48] and Table I).

Figure 4(h) shows a comparison of the relaxation modulus
E (t ) of different cell types. The measured F (t )/F0 for a red
blood cell (erythrocyte) only reveals an exponential relaxation
and does not have a long-time power-law relaxation like many
other adherent cells. This is because erythrocyte is a special
suspension cell that only has a thin sheet of spectrin and
actin adjacent to the plasma membrane and does not have
a three-dimensional (3D) actin network filling in the cell
body. The absence of an actin network results in the unique
cell shape and mechanical properties of erythrocyte. We also
measure F (t )/F0 for the MDCK II cells that are fixed by
paraformaldehyde (PFA). After PFA fixation, the molecules
in the cytoplasm are covalently cross-linked so that the
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FIG. 4. Variations of relaxation modulus E (t ) under drug treatments. (a) Measured F (t )/F0 for the MDCK II cells under different drug
treatments: (i) ATP depletion (dATP, pink), (ii) inhibition of Myosin II activity (Bleb, blue), and disruption of actin network (LtnA, red). For
comparison, control experiments are made in the PBS buffer and in the culture medium containing DMSO. The white solid lines show the fits
of Eq. (1) to the data points. (b) Obtained initial modulus E0 and its constituent components, E∞, E1, and E2, for the MDCK II cells under
different drug treatments. (c)-(g) Obtained values of E∞, E1, τ1, E2, and α for the MDCK II cells under different drug treatments. The error bars
indicate the standard deviations of the measurements. The inset of (c) shows the color codes used for (c)–(g). The significant levels of the t-test
are set as: not significant (ns) p > 0.05, statistically significant (*) 0.01 � p < 0.05, highly significant (**) 0.001 � p < 0.01, and extremely
significant (***) p < 0.001. (h) Measured F (t )/F0 for three different cell types: (i) PFA-fixed MDCK II cell (blue curve), (ii) MDCK II cell
(black curve), and (iii) erythrocyte (red curve). The white dashed lines indicate the fit of Eq. (1) to the data points. The fitting parameters are
given in Table I.

entire cytoskeleton is frozen like a solid. Indeed, the measured
F (t )/F0 for the PFA-fixed cells is significantly slowed down
and the power-law exponent α is changed from 0.30 (for live
MDCK II cells) to 0.05 in line with the behavior of solids.
Furthermore, the value of E0 increases 5.7 times (see Table I).

III. DISCUSSION

The above results establish a unified description of the
compressive modulus E (t ) of living cells, which is ap-
plicable to 10 different cell types studied. As shown in
Eq. (2), E (t ) contains three relaxation modes with different
timescales. We now provide some simple scaling analy-
sis and order-of-magnitude estimate of the six parameters
(E1, τ1; E2, τ2, α; E∞) involved in characterizing the three re-
laxation modes of E (t ). Our main aim here is to find the
physical origin of each modulus component, so that these
parameters could be used as effective indexes for “mechanical
profiling” of living cells.

A. Exponential decay at short times indicates a diffusive
relaxation of confined proteins in cytoskeleton

Various techniques, such as AFM compression, microma-
nipulator stretching and micropipette aspiration, have been
used recently to study the stress relaxation of single cells
[34,35,39,45] and tissues [30,49]. Most of the studies found

that the force relaxation F (t ) has an initial exponential-like
decay with an apparent decay time τ ′

1 in the range of 0.1–10 s.
This relaxation was attributed to solvent (water) redistribution
within the meshwork of cytoskeleton, namely, poroelasticity
of the actin network [39]. Because of the time dependence
of the modulus E (t ), the obtained value of τ ′

1 depends sensi-
tively on the loading speed v, at which the cell deformation
is applied. As shown in Fig. 3(b), the intrinsic decay time
τ1 without much speed dependence is obtained only at the
high speed limit, v � 100 μm/s. Under this condition, the
obtained values of τ1 for different cell types all range from 2 to
5 ms (see Table I), which is at least 20 times faster than those
obtained in the previous experiments with a loading speed
slower than 10 μm/s.

This exponential decay can be explained by a diffusive
relaxation of local concentration rearrangement of cytosolic
proteins, which are partitioned into nanoscale domains by
the deformed cytoskeleton under compression. The pore size
a of the cytoskeleton, therefore, becomes the largest length
of concentration variations in the cytosol and their diffusive
relaxation time is of the order of [50,51] τ1 � a2/D, where
D is the diffusion coefficient of cytosolic proteins. With a
typical value of a � 20 nm [52,53] and D � 0.15 μm2/s [54],
we find τ1 � 2.7 ms, which agrees with the typical values
of τ1 obtained for different cell types (see Table I). In addi-
tion, we find the estimated value of the modulus component,
E1 � kBT/a3 � 500 Pa, agrees with the typical values of E1
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obtained for different cell types (see Table I). While details
about the diffusion dynamics of cytosolic proteins across the
cytoskeleton need to be further studied, the above numerical
estimates indicate that the relevant length for the short-time
exponential relaxation is the pore size a, rather than the in-
dentation impact range Ω � 3 μm. With these results, we
conclude that the short-time exponential decay is determined
primarily by the local concentration rearrangement of con-
fined cytosolic proteins in the cytoskeleton.

B. Power-law decay at long times reveals slow relaxation
of deformed cytoskeletal network

The long-time power-law decay in the measured E (t ) is
caused primarily by the slow relaxation of deformed cy-
toskeletal network, which is made of cross-linked protein
filaments, such as actin filaments (F-actin), microtubules and
intermediate filaments. For eukaryotic cells, the mechanical
response of their cytoskeleton is determined primarily by the
F-actin network [2,5]. In the time domain, the power-law
decay is described by E2(1 + t/τ2)−α , where the constant term
of unity is introduced to separate the effect of the power-law
relaxation from that of the short-time exponential relaxation.
As shown in Fig. 1(c), the two relaxation modes are well
separated by a crossover time tc � 3τ2 (∼10 ms), after which
E (t > tc) ∼ (t/τ2)−α for t/τ2 � 1. Physically, τ2 represents
the fastest relaxation associated with the smallest scale of the
F-actin network, which is the mesh size a. This explains why
the fitted value of τ2 is close to τ1.

The power-law rheology of living cells has been studied in
the time domain by using the AFM and microplate techniques
[39,44,45], and in the frequency domain by using magnetic
and optical tweezers [4,22,34]. In the frequency domain, the
measured shear modulus takes the form, G′(ω) = G0(ω/ω0)α ,
where G0 and ω0 are two scaling factors, which are often not
independently determined as ω0 is often chosen to be 1 Hz for
convenience. In this experiment, we are able to determine the
absolute values of E2 and τ2 with the combined measurements
of F (t ) and F (δ) (see Table I). The power-law exponent α has
been systematically evaluated in both the time and frequency
domains for living cells and other soft glassy materials [55].
In our experiment, the obtained values of α range from 0.16 to
0.41 for 10 different cell types (see Table I), which fall in the
previously reported range of 0.1–0.5 [4,44,45]. With a typical
binding energy Eb � 4kBT for actin-binding proteins (which
are cross-linkers of the F-actin network) [56], we find that the
estimated value of the actin network modulus, E2 � Eb/a3 �
2 kPa, which agrees with the typical values of E2 obtained for
different cell types (see Table I).

C. Origin of persistent modulus E∞

For living cells, we find their relaxation modulus E (t ) does
not decay to zero but reaches to an asymptotic value E∞,
which is typically (2-10)% of E0 (see Table I). As shown in
Fig. 4(c), the value of E∞ is reduced significantly under the
three drug treatments, which reduce the activity of molecular
motors and other active cellular processes. Furthermore, for
the PFA-fixed cells, their E∞ is diminished to zero, even
though their E1 and E2 increase drastically. These results

prompt us to link E∞ to the active stress of the actin network
generated by molecular motors.

Myosin II is a common type of molecular motor that
constantly pulls the actin filaments and produces a persistent
contractile stress in the cytoskeleton network [4,57]. When
a living cell is under no external strain, its F-actin network
is randomly orientated so that the contractile stress is ap-
proximately isotropic and acts like a negative pressure −σ0.
This contractile stress is balanced in part by the extensile
stress generated by microtubules and, more importantly, by
the external contacts of the adherent cell or its adhesion to
the substrate [57,58]. When a living cell is vertically com-
pressed by an external strain ε = δ/H , its F-actin network
aligns primarily in the two horizontal directions. This “ne-
matic ordering” increases the contraction in the two horizontal
directions and reduces the contractile stress in the vertical
direction [59,60]. In this case, we find that the scalar order
parameter of the nematic phase is proportional to the exter-
nal strain ε [61], and the corresponding modulus component
E∞ � 2σ0/3 is positive against compression (see Appendix B
for more details).

When sliding on an actin filament with a step size b �
10 nm, a single myosin II motor exerts a transient force
fm � 4 pN, or a mechanical energy of fmb � 10kBT , to the
actin filament [62], which is approximately half of the free
energy generated by a single ATP hydrolysis [57]. For a typ-
ical myosin II concentration of n � 4 μM in nonmuscle cells
[63], we find that the estimated value of the active modulus
component E∞ � n fmb � 100 Pa, which agrees with the typ-
ical values of E∞ obtained for different cell types (see Table I).
The corresponding persistent stress E∞(δ/H ) obtained in our
experiment also agrees with the previously reported values of
the active stress for a reconstituted actin network (∼10 Pa)
[64] and for the cell cortex (∼100 Pa) [9,65]. Furthermore,
our finding that the measured active stress E∞(δ/H ) is about
(2–10)% of the passive stress (E1 + E2)(δ/H ) for the living
cells studied agrees with the calculations based on the hydro-
dynamic theory of active gels [59,65].

Although the active modulus component E∞ is small com-
pared with the other two passive components of E (t ), it plays
an important role in cell migration and division, which are
slow cellular processes with a typical time scale of several
minutes [9,11,57,58]. During this period, the two passive
components of E (t ) have decayed to zero. Because the pro-
duction of active stress requires a continuing energy input
from the ATP hydrolysis, depletion of the cellular ATP level
results in a significant decrease in E∞, as shown in Fig. 4(c).
Furthermore, because the actin filaments serve as the stress
fibers for myosin motors, disruption of the actin network and
its activity by LtnA and Bleb results in a significant decrease
in E∞. With the above results, we conclude that the persistent
modulus E∞ results mainly from the unbalanced active stress
of deformed actin network under compression.

D. Biological implications

Unlike previous AFM indentation measurements, which
only provide a single elastic modulus E0 for a living cell
at a particular loading speed, our combined stress relaxation
and indentation force measurements clearly demonstrate that
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living cells are a special kind of viscoelastic materials with
three relaxation modes at different timescales and can be
characterized by a set of six parameters (E1, τ1; E2, τ2, α; E∞).
With the accurate determination of the six viscoelastic param-
eters from the same cell, we are able to provide a coherent
physical picture to quantify the interplay among the six
viscoelastic parameters and their connections with specific
biological parameters of the cell. This mechanical description
of living cells is particularly important for the application of
the AFM technique in analyzing the viscoelastic properties of
healthy and diseased cells.

Living cells are often thought to have a thin stiff cortex
overlying a much softer cytoplastic interior with a nucleus
inside [10]. While the AFM measurements only sense the
rheological rather than structural properties of the cell, our
results shown in Figs. 1 and 2 nevertheless provide new in-
sights into the cell cortex model. First, the cell cortex is not a
pure elastic but viscoelastic sheet so that it has a relaxation
modulus, which decays with time t . Second, although the
cortical modulus is large compared with that of the cytoplastic
interior, the mechanical contrast between the two components
is not as large as was originally envisioned for a cortical shell
with a liquid-like interior [66], in which case the measured
indentation force would follow the relation F (δ) ∼ δ [30],
instead of F (δ) ∼ δ3/2 as shown in Fig. 2(c). Third, because
the three components of the cytoskeleton are interconnected
and linked to the nucleoskeleton [67], it is difficult to dis-
tinguish the mechanical responses between the cytoskeletal
network and the nucleus. Our model in Eq. (2) represents
a coarse-grained description of the mechanical response of
living cells as a three-dimensional continuum, even through
the cell cortex and interior may have different contributions to
the three components of the relaxation modulus E (t ). Further
theoretical and experimental studies are needed to understand
the spatial inhomogeneity of the cell.

With a proper calibration, the six parameters
(E1, τ1; E2, τ2, α; E∞) as a matrix of mechanical indexes
could be used to characterize the homeostasis of living cells
in relation to their healthy and diseased states. To achieve
this goal, one needs to control cell-to-cell variations that
any quantitative measure of living cells will encounter.
The experimental uncertainties can be reduced if the fitting
parameters are obtained from the same batch of cells cultured
under the same condition. For example, the red and blue
curves in Fig. 1(d) show variations of the two stress relaxation
curves obtained near the upper and lower bounds of the
standard deviation. The first three rows in Table I give the
fitting results from the three stress relaxation curves shown in
Fig. 1(d). Except E∞ (which is very small compared with the
other two components), the other fitting parameters obtained
from the red and blue curves show less than ±20% deviations
from their mean values. These deviations are small compared
with the effects caused by using different drug treatments (see
Figs. 4(c)–4(g)) or cell types.

By systematically varying the control parameters
for cell treatments, such as using different biochemical
markers/inhibitors, cell line subtypes, or microenvironments
including different substrate stiffnesses, one will be able
to map out the landscape of the mechanical goals of living
cells, identify the physical causes behind cellular desires, and

provide a coarse-grained “mechanical profiling” for a given
group of cells that complements molecular profiling, such as
the gene expression and immune-histochemical expression
profiling. For example, Table I reveals that the cancerous
epithelial cells, such as HeLa cells, appear stiffer than normal
epithelial cells, such as MDCK II and BEAS2B cells. In
particular, the value of E∞ for HeLa cells is comparable to
that for muscle cells and is significantly larger than that for
MDCK II and BEAS2B cells. This result suggests that the
contractile stress in cancer cells is enhanced, which agrees
with the early finding [68] that cancer cells of various origins
express a high level of myosin motors to drive cell protrusion
formation and cell motility.

Our quantitative description of multiscale cell mechanics
together with biological and biomedical methods will pro-
vide a reliable experimental framework that can be utilized
to analyze the viscoelastic properties of healthy and diseased
cells extracted from the same type of tissue and investigate in
what ways a specific disease affects cell’s physical properties.
The systematic study of single cell mechanics will also pave
the way forward for future studies of tissue mechanics. The
present study is the first step toward this direction.

IV. MATERIALS AND METHODS

A. AFM setup and operation

An AFM (MFP-3D, Asylum Research Inc.) was set up on
an inverted microscope (IX71, Olympus) equipped with an
EMCCD camera (Ixon3, Andor). The AFM used a colloidal
probe for the stress relaxation and indentation force measure-
ments. The cantilevers used in the experiment were tipless
cantilevers (CSC12, MikroMasch) featuring a spring constant
0.6 N/m. The colloidal probe was assembled as described
previously by adhering a glass sphere of diameter d (in the
range of 7–18 μm) to the front end of the cantilever [69]. The
surface of the colloidal probe was coated with a thin layer
of PLL-g-PEG (SuSoS AG.), which effectively reduces the
adhesion between the probe and living cell and also provides
a high degree of resistance to protein adsorption in the cell
culture medium (see the next section for more details). Prior to
each force measurement, the spring constant of the colloidal
probe is calibrated in situ using the thermal power spectral
density method [69].

Live cells cultured on a coverslip are placed in a closed
fluid chamber of the AFM. The AFM cantilever holder is
mounted on the top of the fluid chamber, which is covered by
a flexible rubber diaphragm to minimize liquid evaporation in-
side the chamber. An extra hole on the sidewall of the chamber
is used for slow infusion of a humidified gas mixture of 95%
air and 5% CO2. All the force measurements for the living
cells except Xenopus muscle cells were made at a temperature
∼37 ◦C, which is monitored and maintained by a local tem-
perature control inside the fluid chamber. These experimental
conditions ensured that the living cells under study were in a
good physiological state. The inverted microscope was used to
observe the location of the living cells and colloidal probe. By
adjusting the scanning stage of the AFM, the colloidal probe is
aligned on the top of a single cell and to face the central part of
the cell body. After the alignment, AFM measurements were
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then performed on this cell. The force relaxation and indenta-
tion measurements were conducted at least twice on the same
cell in different conditions (e.g., v = 1, 10, and 100 μm/s)
to make sure the data are repeatable.

B. Surface treatment of AFM colloidal probe

After assembly, the freshly made colloidal probe was
plasma cleaned using a low-vacuum plasma cleaner (Harrick
Plasma, PDC-32G) at the power of 40 W for 15 min. The
vacuum level of the cleaner was kept at about 600 milli-torr
during the plasma cleaning. The colloidal probe was then
coated with a thin layer of poly(L-lysine)-graft-poly(ethylene
glycol) (PLL-g-PEG), which effectively reduces the cell adhe-
sion to the probe and also provides a high degree of resistance
to protein adsorption in the cell culture medium. The fol-
lowing is the coating procedure. First, an aqueous solution
of 0.5 mg/mL PLL-g-PEG is made using the PLL-g-PEG
powder (SuSoS AG.) and deionized water obtained from a
Barnstead three-column e-pure system at the resistivity of 18
MΩ cm. Then, the colloidal probe is placed in a disposable
petri dish and a 100 μL PLL-g-PEG solution is added to the
petri dish to cover the whole body of the colloidal probe. The
entire petri dish is sealed and the colloidal probe is kept in
the PLL-g-PEG solution for 2 hours (or overnight) at room
temperature. Finally, the PLL-g-PEG solution is removed, and
the colloidal probe is rinsed with deionized water for three
times. Incidentally, the coated PLL-g-PEG layer of a used
colloidal probe can be readily removed by plasma cleaning.
After plasma cleaning, the colloidal probe can be coated with
PLL-g-PEG again and reused.

C. Cell culture and drug treatments

Ten different cell types ranging from epithelial, muscle
and neuronal cells to blood and stem cells were used in this
study. BEAS-2B cells, HeLa cells and HEK293T cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM,
Life Technologies); and MDCK II cells (Madin-Darby canine-
kidney cells) were cultured in Dulbecco’s Modified Eagle
Medium/Nutrient Mixture F-12 (DMEM/F-12, Invitrogen).
Both media were supplemented with 10% fetal bovine serum
(FBS) and penicillin/streptomycin (1×, Invitrogen). ReN-
cell VM human neural progenitor cells (Chemicon, SCC008)
were cultured in ReNcell NSC Maintenance Medium (Milli-
pore, SCM005) supplemented with 20 ng/mL basic fibroblast
growth factor (bFGF) and 20 ng/mL of epidermal growth
factor (EGF). Muscle cells were obtained from the dis-
section of myotomes of the fertilized Xenopus embryos as
described previously [70], and raised in a culture medium
composed of 88% Steinberg’s solution, 10% L-15 medium
(Leibovitz Co.), 1% fetal bovine serum and 1% gentamicin
(50 mg/mL, Sigma-Aldrich) and maintained at 23 ◦C. Disas-
sociated hippocampal neurons and glial cells were prepared
from fetal mouse (E16.5) as described previously [71] and
cultured in neurobasal medium (Invitrogen) supplemented
with B-27 (1×, Invitrogen), glutamine (2mM, Invitrogen)
and penicillin/streptomycin (1×, Invitrogen). All cell cultures
were maintained in a 95%-air/5%-CO2 atmosphere at 37◦C
unless specified otherwise. Leukocytes and erythrocytes were

prepared from ∼0.5 mL mice blood in an anticoagulant-
treated tube and maintained in PBS on ice before use. To
perform AFM measurements on these two nonadherent cells,
the cells were seeded and allowed for attachment for 15 min
on a poly-D-lysine (0.5 mg/mL in PBS, Sigma) coated glass
coverslip.

The following drug treatments were made to the MDCK
II and HeLa cells to alter their activities and cytoskeletal
network. (i) 3 mM sodium azide and 30 mM 2-deoxyglucose
in PBS was treated to cells for 1 h to deplete the cellular level
of adenosine triphosphate (dATP) and hence inhibit the motor
activities. (ii) 20 μM Blebbistatin (Bleb) dissolved in DMSO
was added to the cell medium (DMSO:medium = 1:1000)
for 30 mins to inhibit the activity of myosin II motors. (iii)
1 μM Latrunculin-A (LtnA) dissolved in DMSO was added
to cell medium for 30 mins to disrupt the F-actin network.
After each drug treatment, the AFM force relaxation and force
indentation measurements were made on the living cells in the
same drug-treated medium.

The staining process was performed at room tempera-
ture. Briefly, cells were fixed with 4% paraformaldehyde in
PBS (for 10 min) and subsequently permeabilized with 0.2M
NH4CL/PBS containing 0.2% Triton X-100 (for 10 min), and
then blocked with 4% bovine serum albumin (Sigma-Aldrich)
in PBS (for 2 h). To visualize the cell morphology and F-
actin network, F-actin and cell nucleus were stained with
Phalloidin-TRITC (2 μg/mL; Sigma-Aldrich) and DAPI (1
μg/mL; Sigma-Aldrich) for 60 min, respectively. Finally, the
cell sample was washed with PBS (5 min each for three times)
and mounted onto a microscope slide with Citifluor-AF-1
(Ted Pella), and then examined under a confocal microscope
(LSM710, Zeiss).
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APPENDIX A: THEORETICAL CALCULATIONS

1. Modified Hertz model with a time-dependent modulus E(t )

Theoretical models that are used to extract the modulus E
from the force indentation measurement of F (δ) often assume
that E is a time-independent constant. For example, the widely
used Hertz model [41] describes the contact mechanics be-
tween two elastic bodies with no surface adhesion as

F (δ) = 4R
1
2 δ

3
2 E

3(1 − ν2)
, (A1)

where F is the reacting force exerted on the spherical indenter
of radius R1, E is the Young’s modulus of the test material
with an effective radius R2, R = 1/(1/R1 + 1/R2) is the ef-
fective radius at the contact, ν is the Poisson’s ratio of the
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test material (ν � 0.5 for living cells), and δ is the indentation
depth of the test material under compression. Equation (A1)
shows that F (δ) is a single-valued function of indentation δ

and should not exhibit any speed dependence or hysteresis.
This prediction does not agree with the experimental results
for the living cells, as shown in Fig. 2. This is because the
measured modulus E (t ) for living cells is not a constant but a
time-dependent quantity, as shown in Fig. 1.

To account for the speed dependence and hysteresis of
the measured F (δ), we modify the Hertz model by using
the Ting’s model [42] for a time-dependent modulus E (t ).
According to the Ting’s model, the constitutive equation
for a linear viscoelastic material indented by a rigid axial-
symmetric indenter with a continuous loading function δ(t )
takes the following integral form:

F (δ, t ) = 4R
1
2

3(1 − ν2)

∫ t

0
E (t − t ′)

∂δ
3
2

∂t ′ dt ′. (A2)

For our AFM measurement with a constant loading speed v,
we have δ(t ) = vt for the advancing curve. With the time-
dependent modulus

E (t ) = E1e−t/τ1 + E2(1 + t/τ2)−α + E∞, (A3)

we obtain

F (δ, t ) = 4R
1
2 δ

3
2 E0

3(1 − ν2)
C∗(t ), (A4)

where

C∗(t ) = 3

2E0t3/2

∫ t

0
E (t − t ′)t ′ 1

2 dt ′

� 3

2

(E1

E0

){
τ1

t
−

√
π

2

(τ1

t

) 3
2
e−t/τ1 Erfi

[√
t

τ1

]}

+ 3
√

π
[1 − α]

4
[ 5
2 − α]

(E2

E0

)( t

τ2

)−α

+
(E∞

E0

)
. (A5)

In the above, Erfi[x] is the imaginary error function, which is a
real function when x is real, and 
[x] is the gamma function.
Except for a correction factor C∗(t ), Eq. (A4) has a similar
form as Eq. (A1).

2. Calculation of the force relaxation F(t )
at different loading speeds v

As shown in Fig. 3(a), the measured force relaxation F (t )
is slowed down when the loading speed v of the AFM probe
is reduced. This is because the cell deformation relaxes more
for a slower indentation process. To quantitatively explain the
effect of the speed-dependent F (t ), we calculate F (δ, t ) using
Eq. (A2) with the continuous loading function δ(t ) given in
Fig. 5.

The final result is given by

F (δ, t ) = 4R
1
2 v

3
2

3(1 − ν2)

[∫ tm

0

3

2
E (t − t ′)t ′ 1

2 dt ′ + 0

]

� 4R
1
2 (vtm)

3
2 E0

3(1 − ν2)

FIG. 5. Continuous piecewise linear loading function δ(t ) for the
force relaxation measurement. The time origin t = 0 is set when
the AFM probe touches the upper surface of the cell. The red solid
line indicates the linear increase of δ(t ) at a constant loading speed
v. At time t = tm, the AFM probe stops and a constant value of δ

is maintained (black solid line) for the measurement of the force
relaxation F (t ) at t > tm.

×
[

3τ1

4tm

(E1

E0

)(
2etm/τ1 −

√
πτ1

tm
Erfi

[√
tm
τ1

])
e−t/τ1

+
(E2

E0

)
2F1

[
3

2
, α;

5

2
;

tm
t + τ2

](
1 + t

τ2

)−α

+
(E∞

E0

)]
, (A6)

where 2F1[x] is the hypergeometric function. As shown in
Fig. 3(a), the experimental results obtained at different loading
speeds v can be well described by Eq. (A6).

For a fast indentation (tm → 0), we have etm/τ1 �
1 + tm/τ1, Erfi[

√
tm/τ1] � 2√

π
(
√

tm/τ1 + 1
3 (tm/τ1)

3
2 ), 2F1[ 3

2 ,

α; 5
2 ; tm

t+τ2
] � 1, and Eq. (A6) becomes

F (t ) = F0

[E1

E0
e−t/τ1 + E2

E0
(1 + t/τ2)−α + E∞

E0

]
, (A7)

where F0 = (4R
1
2 (vtm)

3
2 E0)/[3(1 − ν2)]. Equation (A7) re-

covers to Eq. (1) [or Eq. (A3)], once F (t ) is normalized by its
maximum value F0. Therefore, by measuring the normalized
force relaxation F (t )/F0 at a sufficiently fast loading speed
v (= 100 μm/s), one is able to determine the normalized
relaxation modulus E (t )/E0.

3. Calculation of the retracting curve of F(δ, t )

To quantitatively explain the hysteresis effect between the
approaching and retracting curves of the measured F (δ), we
calculate the retracting curve of F (δ, t ) using Eq. (A2) with
the continuous loading function δ(t ) given in Fig. 6. As men-
tioned above, the approaching curve (0 < t < tm) of F (δ, t ) is
given by Eqs. (A4) and (A5). The calculated retracting curve

FIG. 6. Continuous piecewise linear loading function δ(t ) for
the approaching and retracting curves of force indentation measure-
ments. The time origin t = 0 is set when the AFM probe touches
the upper surface of the cell. The red solid line indicates the linear
increase of δ(t ) at a constant loading speed v during the approaching
process. At time t = tm, the AFM probe stops and retracts back from
the cell surface at the same speed v (black solid line).
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(t > tm) of F (δ, t ) is given by

F (δ, t ) = 4R
1
2 v

3
2

3(1 − ν2)

[∫ tm

0
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2
E (t − t ′)t ′ 1
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. (A8)

As shown in Fig. 2(d), the calculated F (δ, t ) in Eq. (A8)
agrees well with the experimental results. Equations (A4) and
(A8) thus quantitatively explain the differences between the
approaching and retracting curves of the measured F (δ).

APPENDIX B: CALCULATION OF ACTIVE
MODULUS COMPONENT E∞

The orientational order of the actin filaments (F-actin) can
be described by a symmetric and traceless tensor Q, whose
components are given by

Qi j = S
(
nin j − 1

3δi j
)
, (B1)

where S is the scalar nematic order parameter, ni is the ith-
component of a unit vector n representing the local average
orientation of the F-actin, and δi j is the Kronecker delta func-
tion [72]. The active stress exerted by the myosin motors to

the F-actin network can be written as

�i j = α
(
Qi j + 1

3δi j
)
, (B2)

where α is the activity coefficient with a unit of stress [59,60].
It is known that a mechanical strain ε can induce a nematic
order in the F-actin network. Specifically, it was found that
S � ε/2 [61]. A compressive strain in the vertical (z) direction
can induce a nematic order S in the two horizontal directions
by forcing the actin filaments rotate towards the horizontal
plane. In terms of the Q representation, one has �Qxx =
�Qyy = 2S/3. To preserve the tracelessness of the Q tensor,
the change of the nematic order in the z-direction becomes
�Qzz = −4S/3 � −2ε/3. In response to the decrease of the
nematic order, a change of the normal stress in the actin
network becomes ��zz = α�Qzz � −2αε/3. Therefore the
active modulus component E∞ is given by E∞ = (��zz )/ε �
−2α/3. For most living cells, the active stress provided by
the actin network is contractile, i.e., α < 0, and therefore one
has E∞ > 0, in agreement with the experiments. In addition,
the typical value of ε � 0.2 used in the experiment leads to
a weak nematic order S � 0.1, which is consistent with the
literature value [61].
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