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Non-Gaussian fluctuations with an exponential tail in their probability density function
(PDF) are often observed in nonequilibrium steady states (NESSs) and one does not
understand why they appear so often. Turbulent Rayleigh-Bénard convection (RBC) is
an example of such a NESS, in which the measured PDF P (δT ) of temperature fluctuations
δT in the central region of the flow has a long exponential tail. Here we show that because
of the dynamic heterogeneity in RBC, the exponential PDF is generated by a convolution
of a set of dynamics modes conditioned on a constant local thermal dissipation rate ε. The
conditional PDF G(δT |ε) of δT under a constant ε is found to be of Gaussian form and its
variance σ 2

T for different values of ε follows an exponential distribution. The convolution
of the two distribution functions gives rise to the exponential PDF P (δT ). This work thus
provides a physical mechanism of the observed exponential distribution of δT in RBC and
also sheds light on the origin of non-Gaussian fluctuations in other NESSs.
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While much is known about fluctuations at equilibrium, our current understanding of fluctuations
in nonequilibrium states is rather limited [1]. Because most equilibrium processes, such as Brownian
motion of molecules, usually have a finite correlation time, their fluctuations will eventually be
randomized after a sufficiently long delay time, to which the central limit theorem applies and thus
they follow the Gaussian statistics. Nonequilibrium states, on the other hand, differ significantly
from the equilibrium ones in that they often involve a net flux of mass, momentum, or heat
with a long correlation time, so that they do not follow the Gaussian statistics. Experimentally,
a nonequilibrium state can be generated by applying a generalized force, such as a gradient of
concentration, temperature, velocity, or (chemical) potential, to the system. When the generalized
force is a constant independent of time, the system can be driven into a nonequilibrium steady state
(NESS), which is perhaps the simplest class of nonequilibrium states [2,3].

Turbulent Rayleigh-Bénard convection (RBC) is an example of such a NESS, in which a confined
fluid layer of thickness H is heated from below and cooled from the top with a constant vertical
temperature gradient parallel to gravity. When the temperature difference �T across the fluid
layer or its dimensionless expression, the Rayleigh number Ra [4], is sufficiently large, the bulk
fluid becomes turbulent and heat is transported predominantly by convection. In the past decades,
considerable experimental and theoretical efforts have been made to understand the observed scaling
laws in turbulent heat transport and temperature and velocity fluctuations over varying Rayleigh
numbers [5–9]. An intriguing feature of RBC is the continuing appearance of large fluctuations in
the temperature field, which do not follow the Gaussian statistics [10]. As shown in Fig. 1 below,
the measured probability density function (PDF) P (δT ) of temperature fluctuations δT from the
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FIG. 1. Measured unconditional PDF P (δT ) of temperature fluctuations δT at the cell center for three
different values of Ra: 1.3 × 109 (blue squares), 3.8 × 109 (black triangles), and 8.3 × 109 (red circles). In the
plot, δT is normalized by its rms value σ0, and the error bars show the standard deviation of the red circles. The
solid line shows a plot of Eq. (4).

mean value in the central region of the cell has a long exponential tail with its amplitude varied
by more than 4 decades, which falls off much slower than a Gaussian. The exponential PDF was
found in a wide dynamic range with Ra varied from 4 × 107 up to 1015, and its functional form
remains universal and independent of Ra, once δT is normalized by its standard deviation σ0

[5,11–14]. It was observed in various convecting fluids, such as low-temperature helium gas [5,11,14],
mercury [12], sulfur hexafluoride gas [15], fluorocarbon FC72 [16], and water [13,17,18]. These
measurements have stimulated considerable theoretical efforts [5,8,19–21], aimed at explaining the
dynamic origin of the anomalously large temperature fluctuations. While the physical mechanism of
the non-Gaussian behavior in RBC still remains elusive, it was believed that the large temperature
fluctuations are probably produced by the thermal plumes, which are intermittently emitted from the
thermal boundary layers (BLs) and carry temperature fluctuations from the BLs to the bulk region
of the flow [10,19].

Intriguingly, non-Gaussian fluctuations were also observed in other turbulent flows, such as
turbulent jet, grid-generated turbulence and counterrotating flows [19,20,22–24], and in other
nonequilibrium processes ranging from granular gas and plasma [25–28] to the dynamics of active
matter and protein motion in living cells [29,30]. Given the large variety of nonequilibrium systems
involved, it is unlikely that all of the non-Gaussian fluctuations are produced by a single mechanism.
A number of theoretical models have been proposed to explain the non-Gaussian behavior in the flow
systems [19,21,22,24,31]. Different approximations and assumptions were made in order to fit the
experimental data [8,31]. An interesting hypothesis states that because of the dynamic heterogeneity
in the system, non-Gaussian fluctuations can be generated by a convolution of Gaussian-like dynamic
modes, to which the central limit theorem applies. In this case, one can write [19,24,29–32]

P (δT ) =
∫ ∞

0
G(δT |ε)f (ε)dε, (1)

where the conditional PDF G(δT |ε) has a Gaussian form

G(δT |ε) = 1√
2πσT (ε)

e−δT 2/[2σ 2
T (ε)], (2)

052401-2



DYNAMIC HETEROGENEITY AND CONDITIONAL …

G
(δ

T
|)

δT/σT ( ) δT/σT ( )

FIG. 2. (a) Measured conditional PDF G(δT |ε) for five different values of ε in units of their rms value
σε (from bottom to top): ε/σε = 0.2 (black circles), 0.5 (red circles), 2 (blue circles), 5 (green circles), and
10 (purple circles). The measurements were made at the cell center with Ra = 8.3 × 109. In the plot, δT is
conditioned at a fixed value of ε and is normalized by the corresponding rms value σT (ε). For clarity, the
vertical scale of the four PDFs with ε/σε � 0.5 is multiplied by a factor 10, 102, 103, and 104, respectively.
The solid lines represent Gaussian functions expressed by Eq. (2) with different variance σ 2

T (ε). (b) Similar plot
of G(δT |ε) obtained at the cell center with Ra = 1.8 × 109. The data sets are obtained at five different values
of ε in units of their rms value σε (from bottom to top): ε/σε = 2 (black), 4 (red), 6 (blue), 8 (green), and 10
(purple). For clarity, the vertical scale of the four PDFs with ε/σε � 4 is multiplied by a factor 4, 42, 43, and 44,
respectively. The solid lines show the Gaussian fits of Eq. (2) to the data points with different values of σT (ε).

when the dynamic variable ε is held constant. Here the variance σ 2
T (ε) is a function of ε. For a given

nonequilibrium system, the challenge is to identify the correct dynamic variable ε and its PDF f (ε).
In this Rapid Communication, we show with solid experimental evidence that non-Gaussian

temperature fluctuations in RBC are generated by the thermal plumes detached from the thermal
boundary layers, which can be uniquely characterized by the local thermal dissipation rate ε(t) ≡
κ[∇T (t)]2. With this correct dynamic variable, the exponential PDF P (δT ) is explained by the
measured dynamic heterogeneity of the local thermal dissipation rate owing to rapid mixing and
advection of warm and cold plumes passing through the central region of the cell. It is found (see
Figs. 2 and 6 below) that the conditional PDF G(δT |ε) of the temperature time series data δT (t)
indeed follows the Gaussian statistics and its variance σ 2

T (ε) has an exponential-like distribution

F
(
σ 2

T

) = f (ε)
dε

dσ 2
T (ε)

= 1

σ 2
0

e−σ 2
T /σ 2

0 , (3)

where σ 2
0 is the mean value of σ 2

T (ε) and f (ε) is the PDF obtained from the time series data ε(t),
which is simultaneously measured together with δT (t). With Eqs. (1)–(3), we find the unconditional
PDF

P (δT ) = 1√
2σ0

e−√
2|δT /σ0|. (4)

Equation (4) thus provides a physical explanation of the observed exponential form of P (δT ) in
RBC.

The convection experiment was conducted in an upright cylinder with the inner diameter D =
19.0 cm and height H = 20.5 cm, and thus the corresponding aspect ratio � ≡ D/H = 0.93. The
entire convection cell was placed inside a thermostat box, whose temperature was set to 30 ± 0.3 ◦C,
which matches the temperature of the bulk fluid (deionized water). In the experiment, the value
of Ra was varied in the range 109 � Ra � 1010 and the Prandtl number Pr was fixed at Pr � 5.4.
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Measurements of the local thermal dissipation rate ε(t) at the cell center were made using a homemade
temperature gradient probe, which consists of four identical thermistor beads 127 μm in diameter and
15 ms in time constant. One of the thermistors was placed at the origin (labeled as T0), and the other
three (labeled as Ti) were placed along the i = x, y, and z axes, respectively. By simultaneously
measuring the four temperature signals, we obtained the three temperature gradient components
�Ti/�	, where �Ti = Ti − T0 is the temperature difference between a pair of the thermistors with
separation �	 = 250 ± 100 μm. This gradient probe has an adequate spatial resolution to resolve
the thermal boundary-layer thickness λ (�0.8 mm at Ra � 3.6 × 109), which is the smallest length
scale in RBC. All the thermistors were calibrated individually with an accuracy of 5 mK for each �Ti .
The sampling rate of the temperature measurements was set at 40 Hz. Typically, we took 7-h-long
time series (∼106 data points) at each value of Ra, ensuring that the statistical average is adequate.
Other details about the apparatus and experimental method can be found in [18,33].

Figure 1 shows the measured unconditional PDF P (δT ) at the cell center for three different values
of Ra. The local temperature signals were obtained from a single thermistor. Although the measured
rms value σ0 varies considerably for different Ra, the PDFs collapse onto a single master curve,
once the normalized variable δT /σ0 is used. Except for a small roundoff near the origin, all of the
PDFs have an exponential tail (solid line). Figure 1 thus reveals that P (δT ) has a universal form
independent of Ra. As mentioned above, such an exponential PDF was also observed in the previous
convection experiments. Evidently, the exponential PDF is a leptokurtic distribution, which has a
higher peak and a heavier tail compared with the Gaussian PDF [34].

To obtain the conditional PDF G(δT |ε), one needs to select a subset of temperature fluctuations
δT (ti) at a given value εi of the local thermal dissipation rate. This is achieved by first finding all the
time stamps ti , at which the measured values of ε(ti) fall within εi + δε, where δε is a predetermined
bin width. The subset of δT (ti) is then selected from the temperature time series data, which are
simultaneously measured with the same time stamps ti . Figure 2(a) shows a representative set of
the conditional PDFs G(δT |ε) for five different values of ε, which are obtained at the cell center
with Ra = 8.3 × 109. It is seen that all of the conditional PDFs can be well described by a Gaussian
function given in Eq. (2) with σ 2

T (ε) being the variance of the conditionally sampled δT (ti). Similarly,
the conditional PDFs obtained at other values of Ra are found to have the same Gaussian form, as
shown in Fig. 2(b).

Figure 3 shows how the obtained values of σ 2
T (ε)/σ 2

0 change with ε/σε . The data can be well
described by the power law

σ 2
T (ε)

σ 2
0

= a

[
ε

σε

]α

, (5)

with a = 2.853 and α = 0.363 (solid line). The bin size δε used in Fig. 3 does not change the
Gaussian form of the obtained G(δT |ε) nor the power-law dependence of σ 2

T (ε)/σ 2
0 as shown in

Eq. (5). [(It only changes the error bar of the resulting σ 2
T (ε).] From the temperature resolution of

5 mK, we determine the minimal value εmin that our gradient probe can resolve. For Ra = 8.3 × 109,
we find the normalized resolution of ε is εmin/σε � 0.043, which is the lowest value of ε/σε shown
in Fig. 3.

To understand why the conditionally sampled δT at a constant ε has a Gaussian form, we
examined the temperature PDFs near the lower conducting plate. As a wall-bounded flow, RBC
has a temperature BL adjacent to each conducting plate and its thickness δ decreases with increasing
Ra. Because most of the temperature difference �T across the cell drops within the two BLs,
the local dissipation profile ε(z) across the lower (or upper) BL is predominantly determined
by the large mean temperature gradient and is a unique function of distance z (or H − z) away
from the conducting plate [33,35,36]. As a result, temperature fluctuations at a fixed position z are
equivalently conditioned at a constant ε. Figure 4 shows the measured P (δT ) at two constant values
of z/δ = 0.14 and z/δ = 0.46. Indeed, the measured PDFs have a Gaussian form, which is consistent
with the results shown in Fig. 2.
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FIG. 3. Obtained values of σ 2
T (ε)/σ 2

0 as a function of ε/σε (red circles). The measurements were made at
the cell center with Ra = 8.3 × 109. The error bars indicate the bin size δε used to digitize the measured ε. The
solid line shows a power-law fit of Eq. (5) with a = 2.853 and α = 0.363 to the data points for ε/σε > 0.043.

In a recent work [36], we found that the measured mean temperature boundary-layer profile
agrees well with the direct numerical simulation results, suggesting that the small thermistor has a
negligible effect on the measurement. We believe that the main effect of the thermistor size is to
introduce a (spatial) running average over the measured profile, which only averages out small-scale
fluctuations (comparable to the thermistor size) but does not affect the functional form of the smooth
mean temperature profile. As for the temporal response of the thermistor used in the experiment, its
time constant is smaller than 15 ms, which is fast enough to resolve the entire temperature power
spectrum [33].

δT/σ0

P
(δ

T
)

FIG. 4. Measured unconditional PDF P (δT ) of temperature fluctuations δT in the boundary-layer region
with z/δ = 0.14 (black squares) and z/δ = 0.46 (red circles). The measurements were made in the � = 1
upright cylinder with fixed values of Ra = 6.8 × 109 and Pr = 4.4 (water). In the plot, δT is normalized by its
rms value σ0. The solid line shows a plot of the standard Gaussian function.
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FIG. 5. Measured PDF f (ε) of the local thermal dissipation rate ε at the cell center for three different
values of Ra: 1.3 × 109 (green squares), 3.8 × 109 (blue triangles), and 8.3 × 109 (red circles). In the plot, ε is
normalized by its rms value σε , and the error bars show the standard deviation of the circles. The solid line is a
plot of Eq. (6) with a = 2.853 and α = 0.363.

As the thermal plumes at the cell center are detached from the temperature BLs, their statistics is
expected to be similar to that inside the temperature BLs. However, because of the random advection
of thermal plumes across the measuring position, the unconditional PDF P (δT ) samples temperature
fluctuations with a variety of temperature variance σ 2

T (z) [or σ 2
T (ε)]. The conditional PDF G(δT |ε), on

the other hand, filters out the dynamic heterogeneity and only samples those temperature fluctuations
with a fixed value of ε [or σ 2

T (ε)], so that it has the same Gaussian form as that measured at a fixed
position z inside the temperature BL. Because of strong turbulent mixing at the cell center, the
distribution of σ 2

T (ε) is expected to be broad.
Figure 5 shows the measured PDF f (ε) at the cell center for three different values of Ra. The

PDFs obtained at different Ra can all be brought into coincidence, once ε is normalized by its rms
value σε . Plots of f (ε) vs ε/σε remain unchanged in the Ra range studied and only σε changes
with Ra. With the measured f (ε) and calculated dε/dσ 2

T from the fitting result shown in Eq. (5),
we numerically obtain F (σ 2

T ) by using Eq. (3), which is shown in Fig. 6. The obtained F (σ 2
T ) (red

circles) indeed has a broad distribution and can be well described by a simple exponential function
given in Eq. (3) (solid line).

Figures 2–6 thus confirm Eqs. (1)–(3), which lead to the final exponential form of the unconditional
PDF P (δT ), as shown in Eq. (4). The solid line in Fig. 1 shows a plot of Eq. (4) without any
additional fitting parameter, which describes the data very well. The above results thus demonstrate
that the proposed decomposition of non-Gaussian temperature fluctuations into a set of Gaussian-like
dynamic modes conditioned on a constant local thermal dissipation rate ε works.

Furthermore, with the exponential PDF F (σ 2
T ), one can derive the functional form of f (ε) using

Eq. (3) as

f (ε) = aα

σε

(ε/σε)α−1e−a(ε/σε )α , (6)

where a and α are given in Eq. (5). The solid line in Fig. 5 shows a plot of Eq. (6) without any
additional fitting parameter, which describes the data very well. This result further confirms that the
data shown in Figs. 2–6 are consistent with each other, and the consistency remains the same for all
the values of Ra in the range studied. A similar stretched �-function form for f (ε) was derived [37]
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FIG. 6. Numerically obtained PDF F (σ 2
T ) of temperature variance σ 2

T for Ra = 8.3 × 109 at the cell center.
The error bars show the standard deviation of the data points. The solid line is a plot of Eq. (3).

in a previous theoretical study of intermittent dissipation of a passive scalar in turbulence when the
Péclet number Pe → ∞.
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