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We report simultaneous measurements of the mean temperature profile θ (z) and
temperature variance profile η(z) near the lower conducting plate of a specially designed
quasi-two-dimensional cell for turbulent Rayleigh-Bénard convection. The measured θ (z)
is found to have a universal scaling form θ (z/δ) with varying thermal boundary layer (BL)
thickness δ, and its functional form agrees well with the recently derived BL equation by
Shishkina et al. [Phys. Rev. Lett. 114, 114302 (2015)]. The measured η(z), on the other
hand, is found to have a scaling form η(z/δ) only in the near-wall region with z/δ � 2.
Based on the experimental findings, we derive a BL equation for η(z/δ), which is in good
agreement with the experimental results. These BL equations thus provide a common
framework for understanding the effect of BL fluctuations.
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I. INTRODUCTION

Turbulent Rayleigh-Bénard convection (RBC) is a classical model used to study turbulent thermal
convection, which can be found in many natural processes and industrial applications [1–6]. In the
laboratory RBC is realized in a confined fluid layer, which is heated from below and cooled from
the top with a vertical temperature gradient parallel to gravity. As a wall-bounded flow, RBC has
the temperature and velocity boundary layers (BLs) adjacent to the upper and lower conducting
plates. The structure and dynamics of the temperature BL are of great importance, as they determine
the global heat transport of the system. When the Rayleigh number Ra (dimensionless buoyancy)
is moderate, the normalized mean temperature profile θ (z) was assumed to be laminar [7] and to
have the Prandtl-Blasius-Pohlhausen (PBP) form [8,9]. Here z is the vertical distance away from the
conducting plate. As Ra becomes sufficiently large, the BLs are expected to transit into a turbulent
state due to the shear instability caused by the bulk flow [10]. In this regime, θ (z) was predicted to
follow a logarithmic profile [11–13].

In fact, there is a large class of BL flows remaining in the transition regime between the laminar
and fully turbulent states. The thermal BL in turbulent Rayleigh-Bénard convection with Ra � 1014

(above which the BL becomes turbulent) is an example of such flows, in which the BL is not
fully turbulent yet but there are significant BL fluctuations resulting from intermittent eruption
of thermal plumes from the BL. Recent studies in the system with convection cells of different
shape, ranging from rectangular and cubic to cylindrical, showed [14–28] that the measured (and
numerically calculated) θ (z) has a universal form θ (ξ ) independent of Ra in a wide dynamic range
of 108 � Ra � 1012, where ξ ≡ z/δ is the vertical distance from the conducting plate normalized by
the thermal BL thickness δ. The measured θ (ξ ) was found to have the PBP form only when ξ is in
the region ξ � 0.6 [16,17,20]. Deviations of θ (ξ ) from the PBP form were found when 0.6 � ξ � 4
[16,19,23–25]. The deviations were attributed to BL fluctuations and they still exist after a dynamical
rescaling method was applied to the measured θ (z) [18,29]. When ξ � 8, a logarithmic layer was
found, where θ (z) changes logarithmically with z [30–32].

An important issue that has not been resolved in the earlier studies is what exactly causes the
deviations and how to mathematically describe these deviations. More recently, Shishkina et al. [33]
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considered the effect of BL fluctuations and included the velocity-temperature correlation function
〈v′T ′〉 in the two-dimensional BL equation for θ (z), where T ′ and v′ are, respectively, the local
temperature and vertical velocity fluctuations and 〈· · · 〉 denotes an average over time t . Under the
assumptions that the thermal BL is nested underneath the velocity BL and that 〈v′T ′〉 = −κt∂z〈T 〉
with the turbulent thermal diffusivity κt � a3ξ 3κ , where κ is the thermal diffusivity of the convecting
fluid and a is a numerical constant, Shishkina et al. obtained an analytical form of the mean
temperature profile [33]

θ (ξ ; c) ≡ Tb − 〈T (ξ )〉
�b

=
∫ ξ

0
(1 + a3η3)−cdη, (1)

where �b ≡ Tb − T0 is the temperature difference across the BL with Tb and T0 being, respectively,
the temperature of the bottom plate and at the cell center. In the above, c � 1 is a parameter that
satisfies the condition a = 	(1/3)	(c − 1/3)/3	(c). When c → ∞, θ (ξ ; ∞) approaches the PBP
form for laminar BLs without BL fluctuations.

Equation (1) was tested only with the direct numerical simulation (DNS) data [33]. While there
exit a number of experimental studies of the mean temperature profile θ (z) in turbulent convection
[14–17,19,20], most of the experiments were conducted under conditions different from those
specified for Eq. (1). Some of the experiments [14,15,19] were conducted in air (or in a gas) with the
Prandtl number Pr = ν/κ � 0.7, where ν is the kinematic viscosity of the convecting fluid. In this
case, the thermal BL is no longer nested underneath the velocity BL. For those experiments with
Pr > 1 [16,17,20], many of them were conducted in upright cylindrical cells, in which the large-scale
flow is not two dimensional and has several three-dimensional (3D) flow modes, such as torsional
and sloshing oscillations [34–36]. There are also corner flows in the closed cylinder [37], which may
destabilize the large-scale flow [38,39]. The strong coupling between the BL dynamics and complex
3D large-scale flow in a closed cylinder, which has been studied in recent numerical simulations
[18,21–27], makes a quantitative comparison between the theory and experiment difficult.

In this Rapid Communication we report direct measurements of the mean temperature profile
θ (z) and temperature variance profile η(z) ≡ 〈[T (z,t) − 〈T (z)〉]2〉 near the lower conducting plate
of a specially designed quasi-two-dimensional cell for turbulent Rayleigh-Bénard convection. The
measured θ (z) is found to have a universal scaling form θ (z/δ), which is well described by Eq. (1)
and the value of the fitting parameter c is found to change sensitively with Pr. The measured η(z),
on the other hand, is found to have a scaling form η(ξ ) only in the near-wall region with ξ � 2.
For ξ > 2, the measured η(z) for different values of Ra scales with z/D, where D is the diameter
of the cell. This result suggests that a different characteristic length takes over the dynamics in this
region. Based on the experimental findings, we derive a BL equation for η(ξ ) with Pr > 1 and obtain
a numerical solution of η(ξ ), which is in excellent agreement with the experimental data.

II. EXPERIMENT

The convection experiment is conducted in a vertical thin disk with its circular cross section
aligned parallel to gravity. As shown in Fig. 1(a), the cell has a diameter D = 188 mm and thickness
W = 20 mm and thus the corresponding aspect ratio 	 ≡ W/D = 0.11. The top and bottom thirds
of the circular sidewall are made of copper of 8 mm in thickness. The surface of the copper plates
in contact with the convecting fluid is electroplated with a thin layer of nickel. The remaining third
of the sidewall on both sides is made of transparent Plexiglas 18 mm in thickness. The two flat
end walls of the cell are also made of the same type of Plexiglas. Two silicon rubber film heaters
connected in parallel are sandwiched on the back side of the bottom conducting plate to provide
constant and uniform heating. The top copper plate is in contact with a cooling chamber consisting
of two water channels. The temperature of the top plate is maintained by a temperature-controlled
circulator (NESLAB, RTE740), which circulates the cooling water with a temperature stability of
10 mK. The temperature of the top and bottom plates is measured at a rate of 2 Hz by the calibrated
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FIG. 1. (a) End view of the actual convection cell used in the experiment. The temperature T0 at the cell
center and the temperature profile T (z) along the vertical axis of the cell are measured using two movable
thermistors. (b) Sketch of the experiment setup for the measurement of the local temperature profiles near
the lower conducting plate. The black arrows indicate the direction of the large-scale flow of speed U0 in the
circular cross section of the cell. The red arrows indicate the velocity components and spatial coordinates used
in the experiment.

thermistors with an accuracy of 5 mK. They are embedded in each plate at 1 mm away from the
surface of the conducting plate. This cell was used in an early convection experiment [40].

The cell has a circular cross section without any corner in order to prevent secondary flows.
The large-scale flow in the circular cross section of the cell has a flywheel-like structure with a
mean rotating speed U0 along a fixed orientation (counterclockwise). The velocity components and
spacial coordinates used in the experiment are indicated in Fig. 1(b). Because the flow is confined
in a thin circular disk, no other flow modes can be excited in this quasi-2D system. Compared
with the large-scale flow in a conventional upright cylinder, this quasi-2D flow has a better geometry
satisfying the assumption of the boundary layer theory for a 2D flow over an infinite horizontal plane.
These simplifications allow us to have a stringent test of the theory. In this system, the Rayleigh
number is defined as Ra ≡ ψg�T D3/νκ , where g is the gravitational acceleration, �T is the
temperature difference between the two copper surfaces, and ψ is the thermal expansion coefficient
of the working fluid. In the experiment, Ra is varied in the range 1.5 × 109 � Ra � 1.3 × 1010 and
the Prandtl number Pr is fixed. Two working fluids are used: One is distilled water (with Pr = 4.4)
and the other is a 20 wt.% aqueous solution of glycerin (Pr = 7.6).

The local fluid temperature is measured using two glass-encapsulated thermistors with a diameter
of 0.17 mm and a time constant of 10 ms (AB6E3- B05KA202R, Thermometrics). One thermistor
is movable along the central vertical axis of the cell to measure T (z), and the other thermistor is
placed at the cell center to measure T0. Details about the temperature calibration and measurements
have been reported elsewhere [41]. To guide the two thermistors into the convection cell, we install
horizontal and vertical stainless steel tubes on the sidewall, as shown in Fig. 1. The stainless steel
tube (type 304 SS hypodermic tubing, 19 Ga, McMASTER-CARR) has an outer diameter of 1.1
mm and wall thickness of 0.19 mm. Thin wires of each thermistor thread through a tube from the
inside and the small thermistor bead is kept outside of the tube end in the cell. In the experiment,
the horizontal tube is fixed to measure the temperature T0 at the cell center. The vertical tube is used
to measure the vertical temperature profile T (z) along the central axis of the cell and is mounted on
a translational stage, which is controlled by a stepping motor with a position resolution of 50 μm.
The measurements of T0 and T (z) are made, respectively, at rates of 2 and 15 Hz. The accuracy of
the temperature measurement is 5 mK.
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FIG. 2. Measured mean temperature profile 〈T (z)〉 as a function of distance z away from the bottom
conducting plate for water (Pr = 4.4) at Ra = 4.23 × 109. The vertical red line indicates the thermal BL
thickness δ, which is determined from the intersection position between the two black lines.

Recent studies [40,42] have revealed that this system possesses the key features of turbulent
convection, which have been observed in the upright cylinders. In particular, we find that the
measured Nusselt number Nu (dimensionless heat flux), as a function of Ra for water (Pr = 4.4), is
well described by the power law Nu = 0.278 Ra0.275, which is consistent with the results obtained
in the 	 = 1 upright cylinders with a fully developed 3D bulk flow in the studied Ra range [5].

III. EXPERIMENTAL RESULTS

A. Measurements of the mean temperature profile θ (z)

Even in this confined space, we observe a well-developed thermal BL. Figure 2 shows the
measured mean temperature profile 〈T (z)〉 as a function of distance z away from the bottom
conducting plate for water (Pr = 4.4) at Ra = 4.23 × 109. The vertical red line indicates the
thermal BL thickness δ, which is determined by the distance at which the tangent of the
mean-temperature profile 〈T (z)〉 near the conducting plate intersects the bulk fluid temperature
[5]. With the measured temperature of the bottom plate Tb and that at the cell center T0, we obtain
the temperature difference across the BL, �b = Tb − T0, and the normalized mean temperature
profile θ (z) = [Tb − 〈T (z)〉]/�b.

Figure 3(a) shows the measured θ (z) as a function of z/δ for different values of Ra and at fixed
Pr = 4.4 (water). All of the measured θ (z) curves collapse onto a single master curve once z is
normalized by the BL thickness δ. The measured θ (z/δ) thus has a universal form independent of
Ra. The universal behavior of the measured θ (z/δ) has been reported in previous experiments and
DNS studies with Ra in the range 108 � Ra � 1012 [14–28]. The different finding here is that the
functional form of the measured θ (z/δ) is well described by the calculated θ (ξ ; c) using Eq. (1) with
c = 1.8 (solid line). Similarly, Fig. 3(b) shows the measured θ (z) as a function of z/δ for different
values of Ra and at fixed Pr = 7.6 (20 wt.% aqueous solution of glycerin). The functional form of
the measured θ (z/δ) is also found to be well described by Eq. (1) with c = 2.1 (solid line), which
deviates from the PBP form (dashed line) in the region 0.6 � ξ � 2.

Table I gives a summary of the fitted values of c obtained in different convection cells filled with
a fluid of different values of Pr. As c increases (c > 1), a monotonically decreases, leading to a
decreasing turbulent diffusivity κt � a3ξ 3κ inside the BL. Therefore, a larger value of c indicates a
smaller effect from BL fluctuations and the corresponding θ (z) becomes closer to the PBP form. As
shown in Table I, the thermal BL in the thin disk with a larger value of Pr has a larger value of c,

082301-4



RAPID COMMUNICATIONS

BOUNDARY LAYER FLUCTUATIONS AND THEIR EFFECTS . . .

FIG. 3. (a) Normalized mean temperature profile θ (z) as a function of z/δ for different values of Ra and
at fixed Pr = 4.4 (water). The measurements are made along the central axis of the cell near its bottom plate.
The error bars indicate the size of the thermistor bead used. The solid and dotted lines are, respectively, the
calculated θ (ξ ; c) using Eq. (1) with c = 1.8 and c = 1. The dashed line shows the PBP profile for Pr = 4.4.
(b) Measured θ (z) as a function of z/δ for different values of Ra and at fixed Pr = 7.6 (20 wt.% aqueous solution
of glycerin). The solid and dotted lines are, respectively the calculated θ (ξ ; c) using Eq. (1) with c = 2.1 and
c = 1. The dashed line shows the PBP profile for Pr = 7.6.

because it is more stable and has fewer BL fluctuations. Table I also reveals an interesting effect of
cell geometry. Compared to the quasi-2D flow in the thin disk, the large-scale flow in the cylinder
has more fluctuations and a stronger effect on θ (ξ ), making it deviate more from the PBP form (see
dotted lines in Fig. 3).

B. Measurements of the temperature variance profile η(z)

While the deviations of the measured θ (z) from the PBP form are clearly visible, they are
nonetheless small and are only shown in the region 0.6 � ξ � 2. The temperature variance profile
η(z), on the other hand, is a direct measure of BL fluctuations and is absent in laminar BLs without
fluctuations. Figure 4(a) shows the measured η(z) as a function of distance z for different values of
Ra and at fixed Pr = 7.6. In the plot, η(z) is normalized by its maximal value η0 and z is normalized
by δ. In the region ξ = z/δ � 2, all the measured η(z)/η0 curves collapse onto a single master curve,
which has a single peak at ξ0 � 0.78 ± 0.05. A similar single-peaked η(z) was also found in the
upright cylinders [14,15,17] and rectangular cells [20]. Beyond ξ � 2, the measured η(z)/η0 does not
scale with z/δ anymore. Instead, it scales with z/D as shown in Fig. 4(b). It can be seen that all the
measured η(z)/η0 curves superimpose with each other in the region 0.008 � z/D � 0.15. Figure 4
thus reveals that the self-similar behavior of the thermal BLs remains only up to ξ <∼ ξc = zc/δ � 2
along the cell axis and there is a sharp transition to a new scaling regime (mixing zone) at ξc � 2 (or
equivalently zc/D � 0.008), beyond which a different theoretical model is needed [43,44].

TABLE I. Fitted values of c in Eq. (1), which
are obtained in this experiment (disk) and from
recent DNSs (cylinder) [33].

Sample Pr c

disk 4.4 1.8
disk 7.6 2.1
cylinder 4.38 1
cylinder 2547.9 2
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FIG. 4. Normalized temperature variance profile η(z)/η0 as a function of the normalized distance (a) z/δ

and (b) z/D. The measurements are made near the lower conducting plate for different values of Ra and at
fixed Pr = 7.6. The vertical lines in (a) and (b) indicate the transition distance ξc = (z/δ)c � 2 or equivalently
z/D � 0.008.

IV. THEORETICAL ANALYSIS

The scaling behavior of the measured η(z)/η0 is a unique property of the thermal BLs in RBC
and one has not yet found an equation to describe the function form of η(z)/η0. Based on the above
experimental results, we now derive an equation for η(z)/η0. We consider a 2D convective flow over
an infinite horizontal plate, which is governed by the convective heat equation

∂tT + V · ∇T = κ∇2T , (2)

where V = u(x,z,t)ex + v(x,z,t)ez is the velocity field and T (x,z,t) is the temperature field. In
addition, ∇ = ex∂x + ez∂z and ∇2 = ∂2

x + ∂2
z are, respectively, the gradient and Laplacian operators

in two dimensions. With the Reynolds decomposition

V (x,z,t) = 〈V (x,z)〉 + V ′(x,z,t), T (x,z,t) = 〈T (x,z)〉 + T ′(x,z,t) (3)

and taking a time average 〈· · · 〉, we find

〈V 〉 · ∇〈T 〉 + ∇ · 〈V ′T ′〉 = κ∇2〈T 〉. (4)

Subtracting Eq. (4) from Eq. (2), multiplying by T ′, and taking a time average, one obtains [45]

η0〈V 〉 · ∇� + 2〈T ′V ′〉 · ∇〈T 〉 + ∇ · 〈V ′T ′2〉 = κη0∇2� − 2εT , (5)

where η(x,z) ≡ 〈T ′2(x,z)〉, �(x,z) ≡ η(x,z)/η0, and εT (x,z) ≡ κ〈(∇T ′)2〉. To obtain Eq. (5), one
has assumed ∂t 〈T ′2〉 = 0 for a steady-state flow and ∇ · V ′ = 0 for an incompressible fluid. Using
the BL approximations ∂x〈T 〉 � ∂z〈T 〉, ∂x〈u′T ′2〉 � ∂z〈v′T ′2〉, and ∂2

xη � ∂2
z η, Eq. (5) can be

written as

η0(〈u〉∂x� + 〈v〉∂z�) + 2〈T ′v′〉∂z〈T 〉 + ∂z〈v′T ′2〉 = κη0∂
2
z � − 2εT , (6)

where εT (x,z) ≡ κ[〈(∂xT
′)2〉 + 〈(∂zT

′)2〉] is the thermal dissipation rate and the denotations of the
velocity components and spatial coordinates are given in Fig. 1.

The first three terms in Eq. (6) have been solved in Ref. [33] for Pr > 1. Using the scaling variable
ξ = z/δ with δ ∝ (νx/U0)1/2, we have

〈u〉∂x� + 〈v〉∂z� = − κ

δ2
βξ 2 d�(ξ )

dξ
(7)
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and

2〈v′T ′〉∂z〈T 〉 = −2κ
�2

b

δ2

a3ξ 3

(1 + a3ξ 3)2c
, (8)

where β = 3a3(c − 1) is a positive number and U0 is the speed of the large-scale flow near the
thermal BL. Similar to the temperature-velocity correlation function, the fourth term in Eq. (6) can
be written as

〈v′T ′2〉 = −κf ∂zη, (9)

where κf is the turbulent diffusivity for the temperature variance. Similar to κt , we find κf � dξ 3κ

for small ξ , with d being a numerical constant describing the effect of BL fluctuations on �. The
fact that both κt and κf have the same dependence on ξ indicates that BL fluctuations affect θ (ξ )
and �(ξ ) in a similar way.

The thermal dissipation rate εT (ξ ) for small ξ can be derived from the spatial derivatives of the
normalized two-point temperature correlation function along the z direction,

CT (x,r) = 〈T ′(x,z)T ′(x,z + r)〉
〈T ′2(x,z)〉1/2〈T ′2(x,z + r)〉1/2

, (10)

where r is the separation between the two points along the z direction. For small values of r , one
has [46]

CT (x,r) � 1 −
(

r

�z

)2

, (11)

where �z is the Taylor microscale of temperature fluctuations in the z direction. At the limit r → 0,
the values of CT (x,r) and its derivatives are given by

lim
r→0

CT (r) = 1, lim
r→0

∂rCT (r) = 0, lim
r→0

∂2
r CT (r) = − 2

�2
z

. (12)

With the above equations, one has

κ
〈
T ′(z)∂2

z T ′(z)
〉 = κ lim

r→0
∂2
r 〈T ′(z)T ′(z + r)〉 = κ〈T ′2(z)〉1/2 lim

r→0
∂2
r [CT (r)〈T ′2(z + r)〉1/2]. (13)

Substituting Eqs. (12) into Eq. (13), we have

κ
〈
T ′(z)∂2

z T ′(z)
〉 = κ

[
1

2
∂2
z η − 1

4

(∂zη)2

η
− 2η

�2
z

]
. (14)

Note that

κ
〈
T ′(z)∂2

z T ′(z)
〉 = κ

[
1
2∂2

z η − 〈(∂zT
′)2〉]. (15)

Substituting Eq. (15) into Eq. (14), we have

κ〈(∂zT
′)2〉 = κ

[
1

4

(∂zη)2

η
+ 2η

�2
z

]
. (16)

Similarly, from κ〈δT ∂2
x δT 〉 we can derive

κ〈(∂xT
′)2〉 = κ

[
1

4

(∂xη)2

η
+ 2η

�2
x

]
, (17)

where �x is the Taylor microscale of temperature fluctuations in the x direction. Using the BL
approximation |∂xη| � |∂zη| and the scaling variable ξ , we obtain the thermal dissipation rate εT (ξ )
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FIG. 5. (a) Measured temperature variance profile η(z)/η0 as a function of the normalized distance z/δ

for different values of Ra and at fixed Pr = 7.6 (glycerin solution). The data are the same as those shown in
Fig. 4(a) but are plotted on the linear scale for a clearer view of the fitting. The solid curve shows the numerical
solution �(ξ ; 2.1,68,2.2,1) of Eq. (20). (b) Measured η(z)/η0 as a function of z/δ for different values of Ra
and at fixed Pr = 4.4 (water). The solid line shows the numerical solution �(ξ ; 1.8,62,3.35,1.35) of Eq. (20)
with ξ0 = 0.78.

from Eqs. (16) and (17),

εT (ξ ) ≡ κ〈[∇T ′(ξ )]2〉 = κ
η0

δ2

(
1

4

[d�(ξ )/dξ ]2

�(ξ )
+ α�(ξ )

)
, (18)

where

α = 2δ2

(
1

�2
x

+ 1

�2
z

)
. (19)

By substituting Eqs. (7)–(9) and Eq. (18) into Eq. (6), we have

(1 + dξ 3)
d2�(ξ )

dξ 2
+ (β + 3d)ξ 2 d�(ξ )

dξ
+ 2

�2
b

η0

a3ξ 3

(1 + a3ξ 3)2c
− 1

2

[d�(ξ )/dξ ]2

�(ξ )
− 2α�(ξ ) = 0

(20)
and the initial conditions of �(ξ ) are

�(ξ0) = 1,
d�(ξ0)

dξ
= 0. (21)

Here ξ0 (=0.78) is the peak position of �(ξ ), as shown in Fig. 4(a). Equation (20) is an ordinary
differential equation, which can be numerically solved using the Runge-Kutta method under the
initial conditions given in Eq. (21).

The final solution �(ξ ; c,�2
b/η0,d,α) has four parameters. The parameter c has been obtained

separately from the fitting of Eq. (1) to the measured θ (z), as shown in Fig. 3. The parameter
�2

b/η0 is a measurable quantity, which is directly determined from the experiment. There are only
two adjustable parameters remaining, d and α, which are used to best fit the measured η(z)/η0.
Figure 5(a) shows a comparison between the numerical solution �(ξ ; 2.1,68,2.2,1) of Eq. (20)
(solid line) and the measured η(z)/η0 in the range ξ � 3, which is obtained for Pr = 7.6. Excellent
agreement is obtained between the theory and experimental data. An equally good fitting is also
obtained between the numerical solution �(ξ ; 1.8,62,3.35,1.35) and the experimental data with
Pr = 4.4 (water), as shown in Fig. 5(b). When Pr increases, �2

b/η0 also increases (η0 decreases) and
the value of d decreases (κf decreases). Both trends indicate consistently that BL fluctuations are
reduced and thus the BL profile becomes closer to the laminar type.
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V. CONCLUSION

In this investigation we derive a BL equation [Eq. (20)] for the temperature variance profile η(z).
This equation, together with Eq. (1) for the mean temperature profile θ (z) [33], provides a unique
theoretical framework with a common set of parameters to quantitatively describe the effect of BL
fluctuations. The simultaneously measured θ (z) and η(z) in a specially designed quasi-2D convection
cell verify the theoretical predictions. The experimental results demonstrate that the effect of BL
fluctuations can indeed be described by the velocity-temperature correlation functions and our
BL equations capture the essential physics. This work not only is useful for the understanding
of BL fluctuations in turbulent thermal convection, but is also relevant to many practical applications
in wall-bounded turbulent flows.
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