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Colloidal dynamics over a tilted periodic potential: Forward and reverse transition probabilities
and entropy production in a nonequilibrium steady state
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We report a systematic study of the forward and reverse transition probability density functions (TPDFs)
and entropy production in a nonequilibrium steady state (NESS). The NESS is realized in a two-layer colloidal
system, in which the bottom-layer colloidal crystal provides a two-dimensional periodic potential U0(x,y) for the
top-layer diffusing particles. By tilting the sample at an angle with respect to gravity, a tangential component of
the gravitational force F is applied to the diffusing particles, which breaks the detailed balance (DB) condition
and generates a steady particle flux along the [1,0] crystalline orientation. While both the measured forward and
reverse TPDFs reveal interesting space-time dependence, their ratio is found to be independent of time and obeys
a DB-like relation. The experimental results are in good agreement with the theoretical predictions. This study
thus provides a better understanding on how entropy is generated and heat is dissipated to the reservoir during a
NESS transition process. It also demonstrates the applications of the two-layer colloidal system in the study of
NESS transition dynamics.
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I. INTRODUCTION

Detailed balance (DB) is an important principle in equi-
librium statistical physics that has been used to describe the
kinetics of various physical, chemical, and biological systems
at thermal equilibrium. DB states that each kinetic process
at equilibrium shall be equilibrated by its reverse process.
Consider the probability �(x1,x2,τ ) of a forward transition
from x1 to x2 over a time interval τ and its reversal tran-
sition probability �(x2,x1,τ ), the detailed balance condition
reads [1]

P (x1)�(x1,x2,τ ) = P (x2)�(x2,x1,τ ), (1)

where P (x1) and P (x2) are, respectively, the stationary prob-
ability densities at each position. Systems satisfying Eq. (1)
are called microscopically reversible. The DB condition holds
at equilibrium, which assures that each elementary forward
process is balanced by its reverse counterpart, for any two
positions x1 and x2 and for any transition time τ , and thus the
transition probability ratio follows the Boltzmann distribution,

�(x1,x2,τ )

�(x2,x1,τ )
= PB(x2)

PB(x1)
= e−[U0(x2)−U0(x1)]/kBT , (2)

where U0(x) is the potential energy of the system.
Nonequilibrium states, on the other hand, differ signifi-

cantly from the equilibrium ones in that they often involve a net
flux of mass, momentum, or heat, so that DB is broken. Experi-
mentally, a nonequilibrium state can be generated by applying
a “generalized force,” such as a gradient of concentration,
temperature, velocity, or (chemical) potential, to the system.
When the generalized force is a constant independent of time,
the system can be driven into a nonequilibrium steady state
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(NESS), which is perhaps the simplest class of nonequilibrium
states [2,3]. In the NESS, entropy is produced at a positive rate
on average, which is a measure of irreversibility.

While much is known about fluctuations at equilibrium,
our current understanding of fluctuations in nonequilibrium
states is rather limited [4]. For a NESS system consisting of a
large number of particles, there are considerable fluctuations of
entropy production among different particle trajectories [3,5].
These fluctuations may vary spatially in different positions
owing to the complex potential landscape that the particles
experience or due to strong interactions between the particles,
which prevents one from treating the system as a quasiequi-
librium one by simply transforming the system into a moving
frame with the particle’s mean velocity [6,7]. Fluctuations
in entropy production may also vary in amplitude both in
the positive and negative directions. While the fluctuation
theorem [8,9] predicts a universal form for the probability
density function (PDF) ratio P (σ )/P (−σ ) of having a positive
value of the time-averaged entropy production rate σ to that
of having a negative value −σ , it does not give the functional
form of the PDF P (σ ) itself [10,11]. More insights about
fluctuations in the NESS can be obtained by examining the
entropy production and irreversibility at the trajectory level
[3,12].

To gain a better understanding of the NESS fluctuations
in entropy production, several experimental studies have
been carried out in a number of systems, including single
Brownian particles in a trap moving at constant speed [13–15]
or driven by a constant force across a periodic potential
[3], power fluctuations in a vertically agitated granular gas
[16], in liquid-crystal electroconvection [17], temperature and
heat flux fluctuations in turbulent convection [18,19], and
fluctuations of entropy production in driven RC-circuits [20–
22]. These experiments provided new insights into the nature
of nonequilibrium fluctuations. It is important to conduct
the experiment in different physical systems, as one wants
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to understand which aspects of the observed nonequilibrium
fluctuations are universal and which are system specific. Such
an understanding is needed for a large number of practical
problems involving various complex NESS systems in material
science, ecology, and biology.

Among the NESS systems that have been explored so far,
colloidal monolayers suspended near a liquid-solid interface
offer some unique advantages, because the dynamics of the
particles are slower and can be tracked at the single-particle
level with video microscopy [23]. They have served as model
systems to study a range of interesting problems of phase
transition kinetics and dynamics in two-dimensional (2D) soft
matter systems [24,25].

Recently, we developed a two-layer colloidal system to
study colloidal diffusion over a periodic potential [26]. The
periodic potential is provided by the bottom colloidal spheres
forming a crystalline pattern on a glass substrate. The corru-
gated surface of the colloidal crystal provides a gravitational
potential field U0(x,y) for the diffusing particles on the top
layer. Using optical microscopy, we measured the occupation
statistics of the diffusing particles and constructed the poten-
tial U0(x,y) via the Boltzmann distribution. The dynamical
properties of the diffusing particle, such as its escape time and
diffusion coefficient, were simultaneously measured from the
particle’s trajectories. With the capability of simultaneously
tracking the particle’s motion at the single-particle level
and measuring the external potential, the two-layer colloidal
system provides a useful platform for the study of a range of
interesting problems in nonequilibrium statistical physics.

For example, when the entire sample is tilted at an angle θ

with respect to the vertical (gravity) direction, a tangential
component of the gravitational force F is applied to the
top-layer particles. In this case, DB is broken due to the
presence of a steady particle flux, and the system is driven
into a NESS. In a recent experiment [27], we measured the
particle’s mean drift velocity v(F,Eb) and diffusion coefficient
D(F,Eb) as a function of F (by varying the tilt angle θ )
and the energy barrier height Eb (by using different colloidal
samples). The measured v(F,Eb) and D(F,Eb) agree well
with the exact results of the 1D drift velocity [28] and
diffusion coefficient [6,29]. Furthermore, for a tilted periodic
potential, we measured the NESS probability density function
(NESS-PDF) Pss(x,y), which deviates from the equilibrium
distribution PB(x,y) to a different extent, depending on the
driving or distance from equilibrium [30].

In this paper, we report a systematic study of the forward
and reverse transition probability density functions (TPDFs)
and entropy production in the NESS of the two-layer colloidal
system. In the experiment, we measure the forward TPDF
�(0,x,τ ) for a particle to move forward from its initial position
0 to its final position x over a lag time τ at various external
forces F and the corresponding reverse TPDF �(x,0,τ ). While
both the measured �(0,x,τ ) and �(x,0,τ ) show interest-
ing space-time dependence, their ratio �(0,x,τ )/�(x,0,τ )
is found to be independent of τ . In fact, the measured
ln[�(0,x,τ )/�(x,0,τ )] is found to be proportional to the tilted
quasi-1D potential U (x) = U0(x) − Fx, which is in excellent
agreement with the theoretical prediction. This work thus
provides a better understanding on how entropy is generated
and heat is dissipated to the reservoir during a NESS transition

process. A major objective of this study is to delineate the
experimental conditions for a precise measurement of the
forward and reverse TPDFs and understand their effects in
the NESS transition dynamics.

The paper is organized as follows. We first present, in
Sec. II, the theory of 1D Brownian dynamics of individual
particles in a tilted periodic potential. The experimental
procedures and image processing methods are described in
Sec. III. The experimental results and theoretical analysis are
given in Sec. IV. Finally, the work is summarized in Sec. V.

II. THEORY

We study one-dimensional (1D) motion of a Brownian
particle over a periodic potential U0(x) = U0(x + λ), where
λ is the period. When a constant force F is applied to the
particle, the overall potential becomes U (x) = U0(x) − Fx.
The introduction of the external force F breaks the detailed
balance condition and generates a net particle flux along the
direction of F . We now consider the probability distribution
function (PDF), P (x,t), of finding a particle at position x and
time t , whose initial space-time position is x0 and t0. The 1D
Smoluchowski equation for P (x,t) reads [31]

∂P (x,t)

∂t
= D0

∂2P (x,t)

∂x2
+ 1

ξ

∂

∂x

(
P (x,t)

dU (x)

dx

)
, (3)

P (x,t0) = δ(x − x0), (4)

where D0 = kBT /ξ is the particle’s free diffusion coefficient
with ξ being the friction coefficient and kBT the thermal
energy. The first term on the right side of Eq. (3) is the
diffusive flux density of the particle, and the second term is
the convective flux density resulting from the conservative
force −dU (x)/dx acting on the particle. While an analytical
time-dependent solution of the Smoluchowski equation is not
available, one can numerically solve Eq. (3) under the initial
condition Eq. (4). In this case, the solution P (x2,τ ) (with
τ ≡ t − t0) becomes the transition probability density function
(TPDF) �(x1,x2,τ ) (with x1 ≡ x0).

When the applied force F = 0, the system is at equilibrium
without a net particle flux and the steady-state solution of
Eq. (3) reduces to the Boltzmann distribution,

PB(x) ∼ e−U0(x)/kBT . (5)

In equilibrium, the transitions between any two positions are
reversible because of the DB condition, which requires that
the ratio of the forward TPDF to reverse TPDF follows the
Boltzmann distribution as given by Eq. (2). It should be noted
that the nonequilibrium nature of the TPDF �(x1,x2,τ ) [and
�(x2,x1,τ )] is manifested in its explicit time dependence. In
fact, in many cases, �(x1,x2,τ ) is a complicated function
of delay time τ . The DB condition in Eq. (2) is nontrivial
in that such complicated τ -dependence in �(x1,x2,τ ) [and
�(x2,x1,τ )] cancels out exactly in the ratio of the forward
TPDF to reverse TPDF and becomes an equilibrium Boltz-
mann factor. Equation (2) at equilibrium can be shown by
the explicit calculations of �(x1,x2,τ ) using eigenfunction
expansion of the Smoluchowski equation [32,33] or Onsager
and Machlup (path integral) theory [34] and was verified
experimentally in simple optical traps [33].
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When a constant force F �= 0 is applied to the Brownian
particle, the system is driven into a NESS with a finite particle
flux. In this case, the DB condition is expected to be broken;
i.e., Pss(x1)�(x1,x2,τ ) �= Pss(x2)�(x2,x1,τ ). It was shown in
a previous study [30] that the steady-state distribution Pss(x)
in the periodic potential U0(x) has a non-Boltzmann form,

Pss(x) = I−(x)
1
λ

∫ λ

0 dxI−(x)
, (6)

where

I−(x) = 1

λ

∫ λ

0
dye−[U (x)−U (x+y)]/kBT . (7)

Because of the spatial periodicity of the potential U0(x), the
spatial coordinate of Pss(x) in Eq. (7) is defined in the domain
[0,λ) [30]. If one is interested in a spatial domain of several
periods, say mλ (where m is an integer � 1), the steady-state
distribution is simply given by (1/m)Pss(x).

Under the NESS condition, the energy input by the external
force F acting on the Brownian particle is converted to the
dissipated heat Q into the environment, giving rise to an
increase in the total entropy:

S(x1,x2)

kB

= ln

[
Pss(x1)�(x1,x2,τ )

Pss(x2)�(x2,x1,τ )

]
,

= ln

[
Pss(x1)

Pss(x2)

]
+ ln

[
�(x1,x2,τ )

�(x2,x1,τ )

]
. (8)

The total entropy production is thus decomposed into entropy
productions in the system Ssys and environment (reservoir) Sres

with

Ssys = kB ln

[
Pss(x1)

Pss(x2)

]
= −kB[ln Pss(x2) − ln Pss(x1)] (9)

being the entropy change of the particle (system) in going from
x1 → x2 and

Sres = kB ln

[
�(x1,x2,τ )

�(x2,x1,τ )

]
. (10)

If the transition covers a distance greater than one period, i.e.,
|x2 − x1| lies in the range (m − 1,m] for some integer m � 1,
one should consider the spatial domain covering the m periods
with Pss → Pss/m. In this case, Ssys defined in Eq. (9) remains
unchanged.

For NESS, although DB is broken, the “DB-like” relation
in Eq. (2) still holds, i.e.,

�(x1,x2,τ )

�(x2,x1,τ )
= e−[U (x2)−U (x1)]/kBT , (11)

where U (x) = U0(x) − Fx. Equation (11) can be proved using
eigenfunction expansion of Eq. (3), as shown in the Appendix
A. Note that Eq. (11) for the NESS case should not be
confused with the DB condition at equilibrium, in which case
the probability distribution is Boltzmann. Instead, Eq. (11)
should be understood in terms of heat transfer under the NESS
condition. With Eq. (11) and Eq. (10), we find

Q ≡ T Sres = −
U0 + F
x, (12)

where 
U0 = U0(x2) − U0(x1) and 
x = x2 − x1. Equation
(11) thus can be understood in terms of the first law of

thermodynamics (conservation of energy), i.e., the work done
by F to maintain the NESS is converted to the potential energy
change 
U0 and heat Q dissipated into the reservoir.

With Eqs. (11) and (6), we obtain an analytic expression of
the total entropy production

S(x1,x2)

kB

= F
x

kBT
+ ln

(∫ λ

0 dye[U0(x1+y)−Fy]/kBT∫ λ

0 dye[U0(x2+y)−Fy]/kBT

)
, (13)

where F
x is the work done by the force F acting on a particle
over a flat surface without a periodic potential. The second term
on the right-hand side of Eq. (13) gives rise to oscillations about
F
x/kBT due to the spatially periodic potential U0(x). The
entropy production of the particle itself (system) moving from
x1 to x2 is given by

Ssys(x1,x2)

kB

= 
U0

kBT
+ ln

(∫ λ

0 dye[U0(x1+y)−Fy]/kBT∫ λ

0 dye[U0(x2+y)−Fy]/kBT

)
. (14)

In the following sections, we will measure the forward
and reverse transition probability density functions with the
two-layer colloidal system and present the experimental
verification of Eq. (11) and Eq. (13) for a tilted periodic
potential.

III. EXPERIMENT

A. Apparatus and sample preparation

The experimental method and sample preparation used in
this experiment are similar to those described in Refs. [27,30],
and here we mention only some key points. Figure 1 shows the
schematic of the sample cell, which is tilted at an angle θ with
respect to the vertical (gravity) direction. The (dilute) colloidal
particles on the top layer (blue) diffuse over the bottom
colloidal crystal (red), which adheres to the glass substrate
(GC). Polystyrene latex (PS) spheres (Thermo Scientific)
of diameter dB = 5.2 μm are used for the bottom colloidal
crystal. The procedures for cleaning the latex spheres and
generating the bottom colloidal crystal have been described
in Ref. [26]. After the formation of the colloidal crystal, the
sample cell is filled with a 0.1 mM aqueous solution of NaCl
followed by addition of a drop of colloidal suspension of silica

FIG. 1. Schematic diagram of the sample cell (side view): SC,
stainless steel cell; GC, glass cover slip; GA, vertical (gravity) axis;
OA, optical axis; θ , tilt angle of the sample cell; red particles, large
polystyrene latex spheres forming a monolayer crystal on the bottom
glass substrate; blue particles, smaller diffusing particles on top of
the colloidal crystal; arrow, direction of the force F acting on the
diffusing particles.

012601-3



XIAO-GUANG MA, YUN SU, PIK-YIN LAI, AND PENGER TONG PHYSICAL REVIEW E 96, 012601 (2017)

spheres of dT = 2.1 μm in diameter (Bangs laboratory). The
silica spheres settle down on top of the bottom colloidal crystal
and form a new layer of diffusing particles with a packing
fraction n smaller than 0.1. The sample cell is then covered
with a glass cover slip to prevent the solvent from evaporation.

The sample cell is placed on the stage of an inverted
microscope (Leica DM-IRB), which is placed on a homemade
incline with an adjustable tilt angle θ from 0 to 30◦. With
this setup, the external force F acting on the top-layer
diffusing particles is given by F = 
mg sin(θ ), where 
m

is the buoyant mass of the particle and g is the gravitational
acceleration. Because 
m scales with d3

T , F depends strongly
on the particle size. For the silica spheres used in this
experiment, we find F � (0.05 pN) sin(θ ). The largest force
that can be achieved with θ = 30◦ is about 0.025 pN or
18FT (with FT ≡ kBT /λ). Experimentally, F is determined
via the equation F = ξv0, where ξ = kBT /D0 is the friction
coefficient and v0 is the drift velocity; both are measured over
a flat incline [27]. In this way, F is determined without the
need for calibrating θ and 
m.

B. Video microscopy and image analysis

The motion of the silica spheres is viewed with a 63×
oil-immerse objective and a 1.5× relay lens. Movies of the
particle motion are recorded under bright-field microscopy
at a resolution of 1360 × 1024 pixels and at 30 frames per
second using a monochrome CCD camera (Prosilica GC,
Allied Vision). The focal plane of the objective is adjusted
between the two layers of the particles, so that the image of the
silica spheres is shown as bright spots over a honeycomb lattice
of the bottom colloidal crystal. Figure 3 shows an example
of the obtained microscope image. By applying a standard
Gaussian image filter (MATLAB toolbox), we recover the
Gaussian-like intensity profile of the diffusing particles. The
center position of the intensity profile is thus chosen as the
particle position. This method allows a repeatable tracking of
particles with accuracy ∼1 pixel or ∼70 nm. A MATLAB code
based on the standard particle tracking algorithm [23] is used
to find the trajectory of the diffusing particles.

C. Measurement of the transition probability density function
(TPDF) �(x′

1,x′
2,τ )

As shown in Fig. 2, when the tilt force F is applied
along the [1,0] crystalline direction, the particle trajectories
are essentially quasi-1D following a zigzag path as marked by
the red line (which is shifted downward by λ/2 for clarity).
Because of thermal fluctuations, the particle trajectories also
show lateral fluctuations and occasional lateral transitions (in
[1,1] crystalline direction) to the nearby zigzag paths. To
measure the longitudinal transitions parallel to F , we first
filter out the trajectories containing the lateral transitions (in
[1,1] crystalline direction), so that the filtered trajectories all
follow the same quasi-1D zigzag paths without changing lanes
in the middle. The green curve in Fig. 2 shows an example
of the filtered trajectory. To further filter out small lateral
fluctuations along a fixed zigzag path, we project the actual
particle trajectory [x(t),y(t)] to the marked red zigzag line

FIG. 2. Microscope image of top diffusing particles (white spots
with a non-uniform intensity profile) over the bottom colloidal crystal
(honeycomb pattern in the background). The green zigzag curve
shows the measured particle trajectory. This 2D particle trajectory
[x(t),y(t)] is mapped to an equivalent quasi-1D trajectory X(t), which
is marked as the red zigzag line. For clarity, the red zigzag line is
offset downward by λ/2. The integers 0 to 8 indicate the position
of the sequential potential wells in U0(X) along the [1,0] crystalline
direction (white arrow). The scale bar is 5 μm.

with the shortest normal distance to the zigzag line, and the
particle position along the red zigzag line is denoted as X(t).

Hereafter, we use the normalized coordinate x ′ = X/λ to
indicate the particle position. In this new coordinate system,
the particle is at the local minimum of the potential wells in
U0(x ′) when x ′ has an integer value, as shown in Fig. 2. Here
x ′ = 0 is the local minimum position of the starting potential
well. The TPDF is determined by �(x ′

1,x
′
2,τ ) = N/M , where

N is the number of trajectory segments starting at the position
x ′

1 and reaching to the position x ′
2 over the delay time τ , and

M is the total number of the trajectories with the same starting
position x ′

1. To reduce the statistical error of the measured
TPDFs, a bin size of λ/10 is used for averaging.

IV. RESULTS AND DISCUSSIONS

A. Forward transition probability density function (FTPDF)
�(0,x′,τ ′)

We first discuss the measurement of the forward transition
probability density function (FTPDF) �(x ′

1,x
′
2,τ ) when a tilt

force F is applied along the [1,0] crystalline direction. In
this case, the Brownian particles are driven into a NESS
with a mean downward velocity vd . The DB condition is
broken, because Pss(x ′

1)�(x ′
1,x

′
2,τ ) > Pss(x ′

2)�(x ′
2,x

′
1,τ ). As a

result, the forward (downward) transitions are more frequent,
spreading over multiple lattice periods (e.g., x ′

2 − x ′
1 > 10),

and can be measured with good statistics. To simplify the
notation, hereafter we choose the initial upstream position of
the particle at x ′

1 = 0 and its downstream position at x ′
2 ≡ x ′.

The delay time τ is normalized as τ ′ = τ/(λ/vd ).
Figure 3 shows a 3D plot of the measured FTPDF

�(0,x ′,τ ′) under a tilt force F/FT = 7.4 along the [1,0]
crystalline direction. The lower-right region represents tran-
sitions over a large distance with a short delay time, whereas
the upper-left region represents transitions over a very short
distance (e.g., <λ) with a long delay time. These transitions
are rare events and therefore the measured �(0,x ′,τ ′) in these
regions are close to zero (blank regions). The local peaks of
the measured �(0,x ′,τ ′) are the most probable transitions in
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FIG. 3. 3D plot of the measured FTPDF �(0,x ′,τ ′) under a tilt
force F/FT = 7.4 along the [1,0] crystalline direction. Here the
normalized distance x ′ = X/λ and delay time τ ′ = τ/(λ/vd ) are used
in the plot (see text for details about their definitions). The values of
�(0,x ′,τ ′) are color-coded in log scale for better visualization. The
black dashed line indicates x ′ = τ ′.

the x ′-τ ′ plane. The black dashed line indicates the relation
x ′ = τ ′, which passes through all the local peak positions of
the measured �(0,x ′,τ ′). This result suggests that the most
probable values of �(0,x ′,τ ′) describe a mean particle flow,
which is determined by the equation X = vdτ .

Figure 4(a) shows the measured �(0,x ′,τ ′) as a function
of x ′ at four different values of delay time τ ′. The FTPDF
curves show repeated peaks at the locations where x ′ has
integer values. The peak values of the measured �(0,x ′,τ ′)
at a fixed value of τ ′ can be described by a Gaussian-like

FIG. 4. (a) Measured FTPDF �(0,x ′,τ ′) as a function of x ′ at
four different values of the normalized delay time: τ ′ = 1 (red),
τ ′ = 3 (blue), τ ′ = 5 (green), and τ ′ = 7 (black). The arrows point
to the global maximal position in each curve with the same color
code. (b) Replot of the peak values of the measured �(0,x ′,τ ′)
in (a) as a function of the normalized transition distance, x∗ =
(X − vdτ )/(2Dτ )1/2. The color code used for the data points is the
same as that in (a). The solid line shows the fitting of Eq. (15) to the
data points with vd = 0.14 μm/s and D = 0.17 μm2/s.

FIG. 5. Measured FTPDF �(0,x ′,τ ′) as a function of τ ′ at four
different values of transition distance: x ′ = 1 (black), x ′ = 3 (blue),
x ′ = 5 (red), x ′ = 7 (green). These are the locations of the local
minimum of the potential wells in U0(x ′).

envelop function �peak(x ′,τ ′), which has a global maximum
at the location x ′

max. The value of x ′
max, which is pointed by

an arrow for each value of τ ′, is found to increase with τ ′.
To show this envelop function more clearly, we replot of
the peak values of �(0,x ′,τ ′), in Fig. 4(b), as a function of
the normalized transition distance, x∗ = (X − vdτ )/(2Dτ )1/2.
Here vd and D are, respectively, the mean downward velocity
and diffusion coefficient of the particles under the tilt force F .
Using the same procedures as described in Ref. [27], we find
vd = 0.14 ± 0.02 μm/s and D = 0.15 ± 0.05 μm2/s from the
obtained particle trajectories. It is seen that all the data points
collapse onto a master curve, once the normalized transition
distance x∗ is used. The master curve is well described by a
Gaussian function,

�peak(X,τ ) = �0√
2Dτ

e
− 1

2 ( X−vd τ√
2Dτ

)2

, (15)

where �0 is a normalization constant. The solid line in
Fig. 4(b) shows the fitting of Eq. (15) to the data points with
vd = 0.14 μm/s and D = 0.17 μm2/s. The fitted values of vd

and D agree well with the experimental results, as mentioned
above.

Figure 5 shows the measured �(0,x ′,τ ′) as a function of
τ ′ at four different values of x ′. These FTPDF curves have
a single peak with the peak position satisfying the condition
τ ′ = x ′, as mentioned above. The peak amplitude is found to
decrease monotonically with x ′. These features are consistent
with the prediction of Eq. (15). Figures 3–5 thus reveal that the
forward transitions of the particles contain a combined motion
of a mean drift together with some random diffusion.

Based on the above findings, we speculate that the FTPDF
�(0,x ′,τ ′) may have the following approximate form:

�(0,x ′,τ ′) � g(x ′)�peak(x ′,τ ′), (16)

where the large-scale gross feature of the FTPDF is described
by the envelop function �peak(x ′,τ ′) given in Eq. (15), and the
local fine details are modulated by some rapid varying function
g(x ′) describing the spatial variations. For a flat incline with
U (x) = −Fx, Eq. (16) gives the exact solution with g(x ′) = 1.
Although there is no analytic closed form solution available
for the time-dependent Smolouchowski equation [Eq. (3)],
Eq. (16) serves as a convenient approximation. In particular,
by fitting the measured �(0,x ′,τ ′) in Fig. 3 to Eq. (16), we
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FIG. 6. (a) 3D plot of the measured reverse TPDF �(x ′,0,τ ′)
as a function of x ′ and τ ′ under a tilt force F/FT = 3.7 along the
[1,0] crystalline direction. (b) 3D plot of the measured forward TPDF
�(0,x ′,τ ′) under the same condition as that in (a).

find that g(x ′) has a form very close to the measured Pss(x ′)
as shown in Fig. 8 below. The approximation in Eq. (16) is
further justified in Appendix B.

B. Reverse to forward TPDF ratio �(x′,0,τ ′)/�(0,x′,τ ′)

For a tilt potential, the reverse (upward) transitions are much
less frequent than the downward transitions. To accurately
measure the reverse TPDF �(x ′,0,τ ′), we use a small tilt
force F so that one can have enough statistics for the upward
transitions. Figures 6(a) and 6(b) show, respectively, the 3D
plot of the measured reverse TPDF �(x ′,0,τ ′) and forward
TPDF �(0,x ′,τ ′) under the same condition with F/FT = 3.7.
With this small force, upward transitions over two periods (i.e.,
x ′ = 2) can be observed but their occurrence is rare. No particle
is observed to have an upward transition for more than three
periods. Therefore, the measured �(x ′,0,τ ′) is presented only
in the ranges of −1 � x ′ � 1 and −1 � τ ′ � 1 with adequate
statistics. Because of the finite size (λ/10) of the binning in x ′,
the peak value �(0,0,0) (�0.46) is smoothed out to about
its half expected value. Nevertheless, this systematic error
becomes negligibly small at large values of x ′ and is canceled
out mostly in the measured TPDF ratio �(0,x ′,τ ′)/�(x ′,0,τ ′).

Figure 7(a) shows a 3D plot of the measured log ratio,
ln[�(x ′,0,τ ′)/�(0,x ′,τ ′)], of the reverse TPDF �(x ′,0,τ ′)
to the forward TPDF �(0,x ′,τ ′) as a function of x ′ and τ ′.
Along the τ ′ axis, the data surface shows little variation,
despite that both the measured �(x ′,0,τ ′) and �(0,x ′,τ ′) have
a strong τ -dependence, as shown in Figs. 3 and 5. Along the
x ′ axis, the measured ln[�(x ′,0,τ ′)/�(0,x ′,τ ′)] changes very
much like a tilted periodic potential. To further verify these
features, we show, in Fig. 7(b), the 1D-plot of the measured
ln[�(x ′,0,τ ′)/�(0,x ′,τ ′)] as a function of x ′ for 5 different

FIG. 7. (a) 3D plot of the measured log ratio ln(�−/�+) of
the reverse TPDF �− ≡ �(x ′,0,τ ′) to the forward TPDF �+ ≡
�(0,x ′,τ ′) under a tilt force F/FT = 3.7 along the [1,0] crystalline
direction. (b) 1D plot of the measured ln(�−/�+) as a function of x ′ at
5 different values of delay time: τ ′ = 0.18 (black squares), τ ′ = 0.36
(red circles), τ ′ = 0.55 (blue up triangles), τ ′ = 0.73 (green down
triangles), and τ ′ = 0.91 (pink left triangles). The black line is a plot
of Eq. (11) with the measured tilted potential U (x ′).

values of delay time τ ′. It is seen that all the data points
with different values of τ ′ collapse onto the same master
curve, suggesting that the measured �(x ′,0,τ ′)/�(0,x ′,τ ′) is
indeed independent of the delay time τ ′. Furthermore, the
data set is found to be well described by the measured tilted
potential U (x ′) = U0(x ′) − Fx ′ (solid line), where U0(x ′) is
the untilted potential shown in Figure 8 below. Figure 7 thus
verifies Eq. (11) for the NESS, which provides a new way
to reconstruct the potential U (x) [and hence U0(x ′)] from the
measured �(x ′,0,τ ′)/�(0,x ′,τ ′).

C. Total entropy production S(0,x′)

To calculate the total entropy production S(0,x ′) in Eq. (8),
one needs to measure the NESS PDF Pss(x ′) in addition to
the transition probabilities. The method of measuring Pss(x ′)
has been described in Ref. [30], and here we only present
the final results. Figure 8(a) shows the measured quasi-1D
equilibrium PDF PB(x ′) for a leveled sample with F = 0. The
measured PB (x ′) is normalized so that the sum of PB (x ′) within
one period is equal to unity. The inset shows the equilibrium
potential U0(x ′)/kBT = − ln[PB(x ′)] obtained using Eq. (5).
The energy barrier between the two neighboring potential
wells is Eb � 4.0kBT . We numerically fit the measured U0(x ′)
with a smooth solid line and use it to calculate other quantities
to be discussed below.

Figures 8(b) and 8(c) show, respectively, the measured
Pss(x ′) under the tilt force F/FT = 3.7 and F/FT = 7.4. Here
Pss(x ′) is also normalized so that the total probability within
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FIG. 8. (a) Measured quasi-1D equilibrium PDF PB (x ′) as a
function of x ′. The measurement is made for a leveled sample
with the external force F = 0. Inset shows the equilibrium potential
U0(x ′)/kBT = − ln[PB (x ′)] (blue circles) obtained using Eq. (5).
The solid line is a smooth fitting curve of U0(x ′). (b, c) Measured
quasi-1D NESS-PDF Pss(x ′) as a function of x ′ (open squares) under
two different tilt forces along the [1,0] direction: (b) F/FT = 3.7 and
(c) F/FT = 7.4. The solid lines are the numerical results calculated
using Eq. (6) with the measured potential U0(x ′) in (a).

one period equals to unity. In contrast to the equilibrium PDF
PB(x ′), the measured NESS-PDF Pss(x ′) becomes more and
more asymmetric with increasing values of F . More details
about the evolution of the measured Pss(x ′) with increasing F

along the [1,0] direction have been described in Ref. [30]. We
numerically calculate Pss(x ′) using Eq. (6) with the measured
potential U0(x ′) in Fig. 8(a) and the final results are shown as
the solid lines in Figs. 8(b) and 8(c). An excellent agreement
between the experiment and numerical calculation is found,
further confirming that Eq. (6) and the quasi-1D approach
used here are accurate for the experiment.

With the measured Pss(x ′) and transition probabilities, we
calculate the total entropy production S(0,x ′) using Eq. (8).
Figure 9 shows the obtained S(0,x ′) as a function of x ′
under two different values of F . For a flat incline with the
periodic potential U0(x ′) = 0, one expects the work done by
the tilt force F leads to the entropy production of (F/FT )x ′,
which is shown by the dashed lines. For a finite U0(x ′) �= 0,
S(0,x ′) increases monotonically with x ′, but the entropy
production is small if the transition occurs in regions around
the local minimum of U0(x ′). However, the entropy production
over one period is independent of U0(x ′) and is given by
Fλ/T . Because the mean transition time for one period is
τ = λ/vd , the mean entropy production rate is thus given by
(Fλ/T )/τ = (Fvd )/T . Similar patterns of entropy production

FIG. 9. Measured total entropy production S(0,x ′) under two
different tilt forces along the [1,0] direction: F/FT = 3.7 (black
squares) and F/FT = 7.4 (red circles). The solid lines are the
numerical results calculated using Eq. (13). The dashed lines show
the work (F/FT )x ′ done by F over the distance x ′.

were also found in a recent numerical study [5]. One can also
numerically calculate S(0,x ′) using Eq. (13) together with the
measured U0(x ′) and Pss(x ′). The solid lines in Fig. 9 show
the numerically calculated S(0,x ′), which agree well with the
experimental results.

It is seen that the measured S(0,x ′) changes slowly with
respect to x ′ near the potential wells (where x ′ = 0,1,2), and
then its slope rises significantly in the second half period (e.g.,
0.5 < x ′ < 1). The changing slope in S(0,x ′) suggests that the
entropy is not uniformly produced within a single period of
U0(x ′), revealing a fine structure of dissipation in a NESS.
Near the potential wells where the local entropy production
gradient, 
S(0,x ′)/
x ′, almost vanishes, the particles are
almost at thermal equilibrium where most work done by F

is stored in the potential and little is converted to heat. This
statement is consistent with the fact that the fraction of particles
contributing to the mean flux reaches its minimal value near the
potential wells. In contrast, the maximal entropy production
gradient is found where U0(x ′) declines the fastest. In this
region (i.e., on the downward side of the potential barrier), both
the work done by F and potential energy stored in the first half
period of U0(x ′) are converted to heat, which is dissipated into
the environment. Also, the fraction of particles contributing to
the mean flux reaches its maximal value.

V. SUMMARY

We have carried out a systematic study of the forward
and reverse transition probabilities and entropy production
in a NESS. The NESS is realized in a two-layer colloidal
system, in which the bottom-layer colloidal crystal provides
a 2D periodic potential U0(x,y) for the top-layer diffusing
particles. By tilting the sample cell at an angle θ with respect
to gravity, a tangential component of the gravitational force
F is applied to the diffusing particles, and the tilted potential
U (x) = U0(x) − Fx is effectively quasi-1D along the [1,0]
crystalline orientation. The applied force F breaks the detailed
balance (DB) condition and generates a steady particle flux
along the [1,0] direction. This is a well-characterized system,
which has been employed recently to study the diffusive and
force-assisted barrier crossing dynamics of colloidal particles
[26,27,30].
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In this work, we measured the forward transition probability
density function �(0,x,τ ) at various values of F and the
corresponding reverse transition probability density function
�(x,0,τ ). The measured FTPDF �(0,x,τ ) has a complex
functional form with repeated peaks along the x axis. The
values of these peaks are well described by a Gaussian-
like envelop function given in Eq. (15). While both the
measured �(0,x,τ ) and �(x,0,τ ) show interesting space-time
dependence, their ratio �(0,x,τ )/�(x,0,τ ) is found to be
independent of τ and obey a DB-like relation as shown in
Eq. (11). Indeed, the measured ln[�(0,x,τ )/�(x,0,τ )] is
found to be proportional to the tilted potential U (x), which
is in excellent agreement with the theoretical prediction.
Our theoretical analysis assumed that the colloidal motion
is over-damped, which holds for the current experiment. For
under-damped diffusion in which the inertial effect may be
important, one expects that Eq. (11) still holds when the
delay time is much larger than the damping relaxation, i.e.,
when τ >> m/ξ , where m is the mass and ξ is the friction
coefficient of the particles. When the inertial effect becomes
important, one anticipates corrections to Eq. (11), which can
be investigated in a future study.

Furthermore, we measured the probability density function
(NESS-PDF) Pss(x) and total entropy production S(0,x) in
the NESS. The measured S(0,x) is found to increase linearly
with the traveling distance x and is superimposed with a
periodic modulation by the potential U0(x). Our theoretical
calculations reveal that the DB-like relation in Eq. (11) is
inherently linked to the heat transfer between the diffusing
particles and environment under the NESS condition, namely,
the work done by the external fore F to maintain the NESS
is converted to the potential energy change U0(x) and heat
Q dissipated into the reservoir. This work thus provides a
better understanding on how entropy is generated and heat is
dissipated to the reservoir during a NESS transition process. It
also demonstrates the applications of the two-layer colloidal
system in the study of NESS transition dynamics. With a fine
control of the functional form of the external force F , one
can also use the well-characterized colloidal system to study
a range of interesting problems in non-equilibrium statistical
physics beyond NESS.
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APPENDIX A: DERIVATION OF EQ. (11) FOR NESS

For convenience, here we use dimensionless units. Since
there is no explicit time dependence in the right hand side of the
Smoluchowski equation [Eq. (3)], one can use the separation
ansatz P (x,t) = ϕ(x)e−λt and obtain the eigenvalue problem

LSϕn ≡ ∂x(∂x + U ′(x))ϕn = −λnϕn, (A1)

where the eigenvalues and eigenfunctions depend on the
boundary conditions, and the Smoluchowski operator LS is
non-Hermitian. However, the Smoluchowski equation can be

transformed to the Schrödinger equation with a potential V (x),
which has the same eigenvalues (under the same boundary
conditions) via [35]

ψ(x) ≡ e
U (x)

2 ϕ(x),

V (x) ≡ [U ′(x)]2

4
− U ′′(x)

2
,

Lψn ≡ (
∂2
x − V (x)

)
ψn = −λnψn. (A2)

Here the Schrödinger operator L is Hermitian and so
all eigenvalues λn are real. The Schrödinger eigenfunc-
tions satisfy the usual orthonormality and completeness
conditions, ∫

dxψn(x)ψm(x) = δmn,∑
n

ψn(x)ψn(x ′) = δ(x − x ′). (A3)

The PDF P (x,t) can then be expanded by the eigenfunc-
tions as

P (x,t) =
∑

n

cne
−λntϕn(x) = e− U (x)

2

∑
n

cne
−λntψn(x).

(A4)

Suppose the initial position of the particle located sharply at
x = a, i.e., P (x,0) = δ(x − a), then from the completeness
and orthonormal conditions, one gets cn = eU (a)/2ψn(a) and
hence the eigenfunction expansion solution is

P (x,t) = �(a → x,t) = e
U (a)−U (x)

2

∑
n

e−λntψn(x)ψn(a).

(A5)

Similarly, if the particle is initially at x, the probability for it
to transit to a in time t is given by

�(x → a,t) = e
U (x)−U (a)

2

∑
n

e−λntψn(x)ψn(a). (A6)

Taking the ratio of the forward and reverse transition
probabilities in the above two equations gives Eq. (11).
It can also be shown that Eq. (11) holds for NESS
using the Langevin equation and Onsager-Machlup
approach [7,33].

APPENDIX B: DERIVATION OF THE APPROXIMATE
EQ. (16)

Again for convenience, we use dimensionless units here.
Starting from the 1D Smoluchowski equation for P (x,t)
given by

∂tP = ∂x

(
∂xP + P (x,t)

dU (x)

dx

)
, (B1)

our goal is to show or justify that P (x,t) ≈ P0(x,t) × Pss(x),
where we shall show that P0(x,t) can be approximately
described by the forced diffusion equation (under the force
f ≡ Fλ/kBT ) whose solution is a drifted Gaussian in analogy
to �peak in Eq. (15).

Assuming the ansatz P (x,t) = P0(x,t)Pss(x) and substitut-
ing it into Eq. (B1), and using the steady-state (constant) flux
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v = −P ′
ss − PssU

′, one gets

Pss∂tP0(x,t) = ∂x(Pss∂xP0 + P0P
′
ss + P0PssU

′)

= Pss∂
2
xP0 + (P ′

ss − v)∂xP0, (B2)

⇒ ∂tP0(x,t) = ∂2
xP0 + P ′

ss − v

Pss
∂xP0. (B3)

Now we make the approximation for the coefficient of ∂xP0 in
Eq. (B3) by its average over one period. This is justified since
P0 describes the large-scale behavior of P (x,t) and should not
be very sensitive to the local variations within one period. In
this case, we have

P ′
ss − v

Pss
�

∫ 1

0

P ′
ss(x) − v

Pss(x)
dx = −v

∫ 1

0

dx

Pss(x)
= −f,

(B4)

where the last equality follows from the potential reconstruc-
tion formula under the NESS condition [30],

U (x) − U (0) = − ln
Pss(x)

Pss(0)
− v

∫ x

0

du

Pss(u)
. (B5)

As a result, Eq. (B3) can be approximated by the forced
diffusion equation

∂tP0(x,t) = ∂2
xP0 − f ∂xP0, (B6)

where the effect of the external potential U0(x) is ignored. The
solution of Eq. (B6) is a drifted Gaussian similar to that shown
in Eq. (15).
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