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Colloidal dynamics over a tilted periodic potential: Nonequilibrium steady-state distributions
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We report a systematic study of the effects of the external force F on the nonequilibrium steady-state (NESS)
dynamics of the diffusing particles over a tilted periodic potential, in which detailed balance is broken due to the
presence of a steady particle flux. A tilted two-layer colloidal system is constructed for this study. The periodic
potential is provided by the bottom-layer colloidal spheres forming a fixed crystalline pattern on a glass substrate.
The corrugated surface of the bottom colloidal crystal provides a gravitational potential field for the top-layer
diffusing particles. By tilting the sample at an angle θ with respect to the vertical (gravity) direction, a tangential
component of the gravitational force F is applied to the diffusing particles. The measured NESS probability
density function Pss(x,y) of the particles is found to deviate from the equilibrium distribution P (x,y) to a
different extent, depending on the driving or distance from equilibrium. The experimental results are compared
with the exact solution of the one-dimensional (1D) Smoluchowski equation and the numerical results of the
2D Smoluchowski equation. From the obtained exact solution of the 1D Smoluchowski equation, we develop an
analytical method to accurately extract the 1D potential U0(x) from the measured Pss(x). This work demonstrates
that the tilted periodic potential provides a useful platform for the study of forced barrier-crossing dynamics
beyond the Arrhenius-Kramers equation.
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I. INTRODUCTION

Colloidal monolayers suspended at a liquid-liquid (or
liquid-air) interface or near a liquid-solid interface have
served as model systems to study a range of interesting
problems of phase transition kinetics and dynamics in two-
dimensional (2D) soft matter systems [1,2]. Examples include
2D crystallization [3,4] and grain-boundary fluctuations [5],
crystal sublimation [6] and colloidal glasses [7,8], interactions
between similarly charged particles [9–12], and Brownian
dynamics at liquid interfaces [13–17]. They offer many
advantages over atomic or molecular fluids, because the
dynamics of the particles are slower and can be tracked at
the single-particle level with video microscopy [18].

In a recent experiment [19], we developed a two-layer col-
loidal system and used it to study the diffusive barrier-crossing
dynamics over a periodic potential. The periodic potential is
provided by the bottom layer of colloidal spheres forming a
crystalline pattern on a glass substrate. The corrugated surface
of the colloidal crystal provides a gravitational potential
U0(x,y) for the diffusing particles on the top layer. The
value of U0(x,y) is determined by the size of the particles
in both layers. Using the techniques of optical microscopy and
multiparticle tracking, we measured the population statistics
of the diffusing particles and constructed the potential U0(x,y)
via the Boltzmann distribution [20],

P (x,y) ∼ e−U0(x,y)/kBT , (1)
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where kBT is the thermal energy of the diffusing particles.
The dynamical properties of the diffusing particle, such as
its escape time and diffusion coefficient, were simultaneously
measured from the particle’s trajectories. With the simultane-
ously obtained energetics and dynamics information, we tested
the theory and demonstrated the applications of the colloidal
potential.

With the capability of simultaneously tracking the particle’s
motion at the single-particle level and measuring the external
potential, the two-layer colloidal system provides a useful plat-
form for the study of a range of interesting problems associated
with the diffusive and force-assisted barrier-crossing dynamics
over complex energy landscapes. Here an external potential
field is used to mimic the effect of an energy landscape, which
is usually imposed by the surrounding molecules to a test
particle. Similar attempts have also been made in the study of
colloidal transport and diffusion in a 1D optical trap (optical
tweezers) with either a periodic or random variation of the
laser light intensity [21–24]. Understanding the effect of the
external force on thermally activated kinetics is a concern
of a common class of transport problem, such as particle
separation by electrophoresis [25,26], electromigration of
atoms on the surface of metals [27] and semiconductors [28],
motion of a three-phase contact line under the influence of
an unbalanced capillary force [29], control of crystal growth
[30], and design of nanoscale machineries [31,32]. In biology
and biophysics, force-assisted thermal activation is employed
in various single-molecule stretching experiments to study the
binding and folding energy landscape of biomolecules, such
as DNA [33], RNA [34], nucleic acids [35], receptors and
ligands [36], and proteins [37], and the adhesion between
biomembranes of vesicles, capsules, and living cells [38,39].

More recently, we carried out a systematic study of the
effects of an external force F on the barrier crossing dynamics
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of the diffusing particles over a periodic potential [40]. By
tilting the entire two-layer system at an angle θ with respect to
the vertical (gravity) direction, a tangential component of the
gravitational force F is applied to the top-layer particles. In
the experiment, we measured the particle’s mean drift velocity
v(F,Eb) and diffusion coefficient D(F,Eb) as a function of F

(by varying the tilt angle θ ) and the energy barrier height Eb

(by using different colloidal samples). The measured v(F,Eb)
and D(F,Eb) agree well with the exact results of the 1D
drift velocity [41] and diffusion coefficient [42,43]. Based
on these exact results, we showed analytically and verified
experimentally that there exists a scaling region, in which
v(F,Eb) and D(F,Eb) both have an Arrhenius-Kramers-
like form, ν ′(F ) exp[−E∗

b (F )/kBT ], where the Arrhenius
prefactor ν ′(F ) and the effective energy barrier height E∗

b (F )
are both modified by the external force F .

In this paper, we report a systematic study of the effects
of the external force F on the nonequilibrium steady-state
(NESS) dynamics of the top-layer particles over the tilted
periodic potential, in which detailed balance is broken due to
the presence of a steady particle flux. As a result, the measured
NESS probability density function (NESS-PDF) Pss(x,y) of
the particles deviates from the equilibrium distribution P (x,y)
as shown in Eq. (1) to a different extent, depending on
the driving or distance from equilibrium. The experimental
results are compared with the exact solution of the 1D
Smoluchowski equation and the numerical results of the 2D
Smoluchowski equation. From the obtained exact solution
of the 1D Smoluchowski equation, we develop an analytical
method to accurately extract the 1D potential U0(x) from the
measured Pss(x).

The remainder of the paper is organized as follows. We
first present, in Sec. II, the exact solution of Pss(x) obtained
from the 1D Smoluchowski equation and the numerical
results of Pss(x,y) from the 2D Smoluchowski equation. The
experimental procedures and image processing methods are
presented in Sec. III. The experimental results and discussion
are given in Sec. IV. Finally, the work is summarized in Sec. V.

II. THEORY

A. One-dimensional analytical results

We consider the 1D motion of a Brownian particle of mass
m over an external potential U (x), which can be described by
the Langevin equation [20,44]

m
d2x

dt2
+ ξ

dx

dt
= fB(t) − dU (x)

dx
, (2)

where x(t) is the particle’s position at time t , ξdx/dt is
the drag force experienced by the particle with ξ being the
friction coefficient, and fB(t) is the random Brownian force
due to thermal fluctuations of the surrounding fluid. The last
term, −dU (x)/dx, is the conservative force experienced by
the particle resulting from the potential U (x). If the motion
is over-damped, which is the case for colloidal particles in
an aqueous solution, the first term in the left-hand side of
Eq. (2) can be omitted. When there is a constant force F

acting on the particle and the potential U0(x) without forcing is
periodic, one can find exact results for the mean drift velocity
[41] and diffusion coefficient [42,43]. In this case, one has

U (x) = U0(x) − Fx, where U0(x) = U0(x + λ) with λ being
the period. The introduction of the external force F breaks
the detailed balance and generates a net particle flux along the
direction of F .

We now consider the probability distribution function
(PDF) P (x,t ; x0,t0) [≡P (x,t) for short] of finding a particle at
position x and time t , whose initial space-time position is x0

and t0. The 1D Smoluchowski equation for P (x,t) reads [45]

∂P (x,t)

∂t
= D0

∂2P (x,t)

∂x2
+ 1

ξ

∂

∂x

[
P (x,t)

dU (x)

dx

]
, (3)

where D0 = kBT /ξ is the particle’s free diffusion coefficient
without the influence of U (x) and kBT is the thermal energy
of the particle. The two terms on the right side of Eq. (3)
are, respectively, the diffusive and convective flux densities of
the particle. In the steady state, ∂P (x,t)/∂t = 0 and Eq. (3)
becomes

kBT
d2Pss(x)

dx2
+ d

dx

[
Pss(x)

dU (x)

dx

]
= 0. (4)

The steady-state solution Pss(x) can be obtained analytically
for the periodic potential U0(x) = U0(x + λ). We find Eq. (4)
admits the following steady-state solution (see Appendix for
detailed derivations):

Pss(x) = I−(x)
1
λ

∫ λ

0 dxI−(x)
, (5)

where

I±(x) = 1

λ

∫ λ

0
dye±[U (x)−U (x∓y)]/kBT . (6)

With this solution, the flux J̃ss along the direction of the
external force F has the form

J̃ss = vT

1 − e−Fλ/kBT

1
λ

∫ λ

0 dxI−(x)
, (7)

where vT = D0/λ is the thermal velocity. In the above, J̃ss =
v has the dimension of velocity. Equation (7) was obtained
previously in Ref. [41]. We now define a dimensionless flux,
Jss = J̃ss/vT = v/vT .

The non-Boltzmann character in Eq. (5) is a result of the
NESS with a nonzero flux. Therefore, extra caution must be
taken when one attempts to extract the potential U (x) from the
measured Pss(x). Simply taking the logarithm of Pss(x) can
correctly give U (x) only when there is no external force (i.e.,
zero flux). Instead, the 1D potential U (x) can be reconstructed
from the measured Pss(x) and Jss(x) via the equation

U (x) − U (0)

kBT
= − ln

Pss(x)

Pss(0)
− Jss

λ

∫ x

0

dy

Pss(y)
, (8)

where U (0) is the potential at the reference state with x = 0.
The last term on the right-hand side of Eq. (8) measures
deviations of the NESS-PDF Pss(x) from the Boltzmann distri-
bution, which is given by the first term on the right-hand side of
Eq. (8). Equation (8) provides a nonlocal (integral) relationship
between U (x) and Pss(x). A similar relationship was obtained
recently for a driven colloidal particle in a toroidal trap [21]
and a 2D rotational fluid under nonconservative forcing [46].
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For small values of Jss or for those values of x in which
Pss(x) reaches its peak value [i.e., when 1/Pss(x) is small], the
second term on the right-hand side of Eq. (8) is a small quantity
and the resulting Pss(x) becomes close to the equilibrium
distribution function PB (x). The difference between Pss(x) and
PB(x) can be obtained systematically by iterative expansion
using Jss as an expansion parameter. After some algebra, one
obtains

Pss(x) = PB(x)
[
1 − μ(x)Jss + ν(x)J 2

ss + O
(
J 3

ss

)]
, (9)

where

μ(x) = q0(x) − 〈q0〉E (10)

and

ν(x) = 1
2

[
q2

0 (x) − 〈
q2

0 (x)
〉
E

] − [q1(x) − 〈q1(x)〉E] . (11)

In the above,

q0(x) =
∫ x

0

dy

PB(y)
, (12)

q1(x) =
∫ x

0
dy

q0(y)

PB(y)
, (13)

and 〈f 〉E = ∫
dxf (x)PB(x) stands for the equilibrium aver-

age. It is easy to verify that 〈μ〉E = 0, 〈ν〉E = 0, and Pss(x) in
Eq. (9) is normalized.

Our exact steady-state solution in Eq. (5) further allows us to
derive an exact expression for the effective friction coefficient
ξeff . By putting x = λ in Eq. (8), one has Fλ2/kBT =
Jss

∫ λ

0
dx

Pss (x) . Since F = ξeffv, we have

ξeff(F ) = ξ

λ2

∫ λ

0

∫ λ

0

I−(y)

I−(x)
dxdy, (14)

where ξ is the friction coefficient for a flat surface [U0(x) = 0].

B. Two-dimensional numerical results

In the experiment to be described below, we need to
consider 2D motion of the particles, in which no analytical
solution for Pss(x,y) is available at the moment. In this case,
we numerically solve the 2D Smoluchowski equation for the
time-dependent PDF P (x,y; t) and obtain the NESS solution
Pss(x,y) ≡ P (x,y; t → ∞) when the time t becomes so long
that P (x,y; t) does not change with t anymore. To do that,
we first construct a 2D potential using the following trial
function

U0(x,y) = A

[
cos(x) + cos

(√
3y

2
− x

2

)

+ cos

(
−

√
3y

2
− x

2

)]
, (15)

where A is a tunable amplitude of the potential in units of
thermal energy kBT . This potential field has periodic peaks of
3A in amplitude and potential wells of −1.5A, with an energy
span of 4.5A between the two extremes. The smallest energy
barrier between the two neighboring wells is 0.5A.

Figure 1 shows a 3D plot of the potential U0(x,y) generated
by Eq. (15) with A = 3 (i.e., the energy barrier between

FIG. 1. (Color online) 3D plot of the potential U0(x,y) generated
by Eq. (15) with A = 3.

the two neighboring wells is 1.5 kBT ). Each potential well
has three symmetrically placed exits connecting to three
identical neighboring wells. The direct connections between
the neighboring potential wells make up a honeycomb lattice
with the potential wells being the lattice grids. The period of
the honeycomb lattice is λ = 2π/

√
3. We now define the force

unit associated with the thermal energy kBT as FT ≡ kBT /λ.
Then the tilted potential in Eq. (3) can be written as

U (x)

kBT
= U0(x)

kBT
− Fx

FT λ
. (16)

It will be shown below that the 2D potential U0(x,y) shown
in Fig. 1 has the basic structure and symmetry very similar to
those of experimentally obtained potential.

Without an external force (i.e., F = 0), the system is at
equilibrium and one can use the Boltzmann distribution in
Eq. (1) to calculate the equilibrium PDF P (x,y) for a given
potential U0(x,y). Figure 2(a) shows a 2D contour plot of
the resulting P (x,y)/P0 calculated using U0(x,y) as shown in
Fig. 1. Here P (x,y)/P0 is normalized with P0 being the peak
value of P (x,y) located at the potential well. The threefold
symmetry of the bright triangular areas with P (x,y)/P0 > 0.5
is a consequence of the structure of the underlying potential
wells in Fig. 1; each peak in P (x,y) has three identical exits to
the three nearest-neighboring peaks. The areas with relatively
small probability, i.e., P (x,y)/P0 < 0.1, are marked as dark
blue, which correspond to the “mountain” regions in Fig. 1.
Note that the value of A in Eq. (15) does not change the
qualitative observations described here.

When an external force F is applied to the system,
the Boltzmann distribution is no longer valid. The solution
P (x,y,t) of the 2D Smoluchowski equation will change with
t until it gradually relaxes to the NESS solution Pss(x,y) after
a certain period τ , which depends on the amplitude of F . The
relaxation time τ is shortened if a larger external force F is
used. This is because with increasing F , the effective energy
barrier is reduced and so does the mean first passage time
[40,47]. We numerically solve the 2D version of Eq. (3) for
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FIG. 2. (Color online) (a) 2D contour plot of equilibrium PDF
P (x,y)/P0 for the potential U0(x,y) shown in Fig. 1. [(b) and (c)]
Evolution of the NESS-PDF Pss(x,y)/P0 with increasing values of F

along the [1,0] direction with (b) F/FT = 1.5 and (c) F/FT = 5.0.
[(d) and (e)] Evolution of Pss(x,y)/P0 with increasing values of F

along the [1,1] direction with (d) F/FT = 1.5 and (e) F/FT = 5.0.
The arrows indicate the [1,0] and [1,1] crystalline directions.

P (x,y,t) with the following initial and boundary conditions:

P (x,y,0) = e−U0(x,y)/kBT ,

P (0,y,t) = P (2mπ,y,t),

P (x,0,t) = P (x,2mπ/
√

3,t),

(17)

with m = ±1,±2, . . . . In the calculation, we set the values of
D0 and ξ in the 2D Smoluchowski equation equal to unity for
convenience. The NESS-PDF Pss(x,y) is effectively obtained
by solving P (x,y,t) at t = 10, which is much longer than the
relaxation time τ needed for all the forces in use. For example,
we find τ � 2 when the external force F/FT is unity.

In Figs. 2(b)–2(e) we indicate the two orthogonal directions
of forcing labeled as [1,0] and [1,1] with an arrow, which
coincide with the two primary directions of the bottom
crystalline pattern. Figures 2(b) and 2(c) show the evolution of
the numerically calculated Pss(x,y)/P0 with increasing values
of F along the [1,0] direction. The PDFs around the potential
wells can be categorized into two characteristic shapes, the
downward triangles (“∇” regions) and upright triangles (“	”
regions). At equilibrium, they are equivalent with each other
under reflection about the midheight plane shown in Fig. 2(a).
The threefold symmetry observed for the equilibrium PDF is
broken even at a very small force F/FT = 1.5, as shown in
Fig. 2(b). Under larger forces, e.g., F/FT = 5 in Fig. 2(c), the
NESS-PDF is transformed into parallel zigzag bands, and the
probability distribution across the lateral direction (relative
to the forcing direction) between different bands is greatly

suppressed. Another feature found in Fig. 2(c) is that the peak
positions of the NESS-PDF Pss(x,y) are shifted laterally in the
direction of the external force, deviating from the center of the
original potential wells. Figures 2(b) and 2(c) thus suggest that
particles in the tilted potential tend to occupy more frequently
the longitudinal zigzag bands compared with the equilibrium
distribution. The suppression of the probability in the lateral
direction between the bands indicates that the particle hopping
between the neighboring potential wells from different bands
are reduced by the external force along the [1,0] direction.

Figures 2(d) and 2(e) show the evolution of the calculated
Pss(x,y)/P0 with increasing values of F along the [1,1]
direction. In this case, the external force also breaks the
threefold symmetry of the NESS-PDF around the potential
wells in a way that differs substantially from that under the
forcing along the [1,0] direction. The probability distribution
in the ∇-shaped regions is shrunk, whereas in the 	-shaped
regions the probability distribution is expanded. In other
words, unlike the [1,0] forcing which maintains the symmetry
of reflection between the ∇ and 	 regions, the [1,1] forcing
breaks this symmetry and changes the geometric shape of the
two characteristic regions. As the force is further increased to
F/FT = 5, the peaks of the resulting NESS-PDF Pss(x,y)
in the ∇-shaped regions gradually disappear or merge to
the 	-shaped regions. In this case, one cannot tell if there
is any energy barrier located near the enlarged ∇ regions.
Another unique feature associated with the [1,1] forcing is
that because the “sea level” of the NESS-PDF keeps rising, the
high-energy “islands” (low-probability regions marked in dark
blue) are gradually submerged and their size keeps shrinking
with increasing F . In other words, the [1,1] forcing makes it
easier for particles to occupy the high-energy regions that are
otherwise difficult to reach.

The numerical results shown in Fig. 2 thus reveal that the
external force F can significantly change the actual potential
explored by the particles by either reducing or increasing the
probability of visiting particular regions depending on both
the force amplitude and direction. In the experiment to be
described below, we measure the NESS-PDF Pss(x,y) as a
function of F with different amplitudes and directions. The
experimental results will be compared with the qualitative
observations discussed above. We will also examine the
validity of the analytical solutions shown in Eqs. (5) and (8)
with the measured quasi-1D potential U0(x) and Pss(x).

III. EXPERIMENT

Details about the apparatus and the experimental method
have been described elsewhere [19,40], and here we mention
only some key points.

A. Apparatus and sample preparation

Figure 3 shows the sample cell used in the experiment,
which is tilted at an angle θ with respect to the vertical (gravity)
direction. The entire sample cell has two fluid chambers; the
central hole is used to hold the colloidal sample and the outer
surrounding chamber contains additional solvent (water with
the same salt concentration) to prevent sample evaporation.
It is placed on the stage of an inverted microscope (Leica
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FIG. 3. (Color online) Schematic diagram of the sample cell
(side view): SC, stainless steel cell; GC, glass cover slip; GA, gravity
axis; OA, optical axis; θ , tilt angle of the sample cell; red particles,
large silica spheres forming a monolayer crystal on the bottom glass
substrate; blue particles, smaller diffusing particles on top of the
colloidal crystal; arrow, direction of the force F acting on the diffusing
particles.

DM-IRB), and the motion of the particles is viewed from below
using bright-field microscopy. Movies of particle motion are
recorded using a monochrome CCD camera (CoolSNAP,
Media Cybernetics) and streamed to the hard drive of a host
computer. They are taken at 7 frames per second. A commercial
image acquisition software (ImagePro, Media Cybernetics)
is used to control the camera. The recorded images have
a spatial resolution of 1392 × 1040 pixels and 256 gray
scales.

Plain silica spheres of different sizes are used in the
experiment and they are purchased from Bangs Laboratories.
All the purchased samples are thoroughly washed using
deionized water by repeated centrifugation. Typically, we
repeat the centrifugation procedures for 8–10 times to make
sure that all the impurities in the solution are removed. The final
solution is found to contain only monodisperse silica spheres.
To prepare a close-packed monolayer of colloidal spheres near
the bottom glass substrate, we add the colloidal solution into
the sample cell one drop (∼200 μL) at a time until the area
fraction n occupied by the silica spheres in the bottom layer
reaches n � 0.7. Then a 1-mL syringe is used to continue the
process with a smaller drop (10–20 μL) of the particle solution
added at a time until n approaches the packing limit nc � 0.8.
The sample is then left open for complete evaporation of water
in the solution and the remaining particles are attached to the
glass substrate by van de Waals forces.

During evaporation, the silica spheres self-assemble into
a monolayer of close-packed crystal patches. Then we fill
the sample cell with a 0.1 mM aqueous solution of NaCl
followed by the addition of a drop of silica suspension into
the salt solution using a 1-mL syringe. After several minutes,
the silica spheres settle down on top of the bottom colloidal
crystal layer, and the particle number in the view area is
counted using ImagePro. This procedure is repeated until a
desired area fraction n for the second layer particles is reached.
The sample cell is then covered with a glass cover slip to
prevent solvent evaporation. Two colloidal samples, S1 and
S2, with two different pairs of top and bottom particles, are
used in the experiment and their properties are given in Table
I. These two samples were also used in a recent study of the

TABLE I. Two colloidal samples used in the experiment
with different pairs of top and bottom particles and the ob-
tained external potential parameters, including lattice constant λ,
energy barrier height Eb/kBT , critical force Fc/FT , and R ≡
〈exp[U0(x)/kBT ]〉λ〈exp[−U0(x)/kBT ]〉λ [40].

Samples Top/bottom (μm) λ(μm) Eb/kBT Fc/FT R

S1 2.1/2.9 1.7 1.5 5.9 ± 2 1.3
S2 3.6/3.6 2.1 6.7 22.8 ± 2 40.0

dynamics of individual particles in the tilted periodic potential
[40].

B. Video microscopy and image analysis

Figure 4 shows the silica spheres of diameter d = 3.6 μm
(bright spots with a nonuniform intensity profile) diffusing
over the bottom colloidal crystal layer (honeycomb lattice)
made of the same silica spheres (sample S2). The image is
taken with the focal plane located between the two layers of
silica spheres so the out-of-focus image of the bottom colloidal
crystal becomes a honeycomb lattice and the top diffusing
particles appear as bright spots. The nonuniform intensity
profile of the diffusing particles is caused by the interference
with the bottom-layer particles. The white arrows indicate the
[1,0] and [1,1] crystalline directions of the bottom crystal layer.

The microscope is placed on a homemade incline with an
adjustable tilt angle θ up to 35◦ with respect to the horizontal
base. With this setup the external force F acting on the top-
layer diffusing particles is provided by gravity,

F = 	mg sin(θ ), (18)

where 	m is the buoyant mass of the diffusing particles and
g is the gravitational acceleration. Because 	m scales with
d3, the force F is strongly dependent on the particle size. For
sample S1, we find F � (0.04pN ) sin(θ ), and the largest force
that can be achieved for θ = 30◦ is about 0.02 pN or 8.2FT .
For sample S2, we have F � (0.2pN ) sin(θ ), so a larger force

FIG. 4. Microscope image of sample S2. The uniform honey-
comb pattern in the background is the optical pattern resulting from
the bottom layer colloidal crystal. The bright dots with a nonuniform
intensity profile are the diffusing particles in the top layer. The
arrows indicate the [1,0] and [1,1] crystalline directions. The scale bar
is 10 μm.
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FIG. 5. (Color online) Three-dimensional plot of the measured
potential U0(x,y) for sample S1 at equilibrium. The plotted area of
U0(x,y) is 7.3 × 7.5 μm2.

up to ∼0.1 pN or 41FT can be achieved. Experimentally, F

is determined via the equation F = ξv0, where the values of
the friction coefficient ξ = kBT /D0 and drift velocity v0 are
obtained from the simultaneous measurements of the particle’s
diffusion coefficient D0 and drift velocity v0 over a flat incline
at various tilt angles θ . In this way, F is uniquely determined
without any adjustable parameter. A detailed description of the
experimental procedure can be found in Ref. [40].

By applying a standard Gaussian image filter from the
MATLAB image processing toolbox, we can recover the uniform
Gaussian-like intensity profile for each diffusing particle. The
central position of the intensity profile is thus chosen as the
center of the diffusing particle. With this method we are able
to obtain a repeatable tracking accuracy of ∼1 pixel, which is
74 nm. A homemade MATLAB program based on the standard
tracking algorithm [18] is used to track the trajectory of the
diffusing particles from consecutive images.

IV. RESULTS AND DISCUSSIONS

A. Periodic potential of untilted samples

When the sample is leveled, the corrugated surface of
the bottom colloidal crystal layer provides a gravitational
potential field for the diffusing particles on the top layer. In
the experiment, we use the method described in Ref. [19] to
measure the potential U0(x,y) of the two colloidal samples.
The occupation statistics of the diffusing particles on the
top layer is obtained by adding together 105 images, each
containing ∼100 particles, and counting the number of
particles in each pixel. In doing so, we obtain the population
probability histogram (pph) Pl(x,y) of finding a diffusing
particle at location (x,y), which is related to the (gravitational)
potential U0(x,y) via the Boltzmann distribution, as shown in
Eq. (1). All the measurements are made at the area fraction
n � 0.15. At this area fraction, the interaction between the
diffusing particles is negligibly small and Eq. (1) is valid.

Figure 5 shows a 3D plot of the measured potential U0(x,y)
for sample S1. The minimum energy at the bottom of the
potential wells (dark blue) is set to be zero. The threefold
symmetry of the external potential around the potential wells
can be clearly seen. The maximum energy on the top of
the particles (red) is ∼5.2kBT . The smallest energy barrier

FIG. 6. (Color online) [(a) and (b)] Evolution of the measured
NESS-PDF Pss(x,y)/P0 for sample S1 with increasing values of
F along the [1,0] direction with (a) F/FT = 1.4 (θ = 5.5◦) and
(b) F/FT = 5.2 (θ = 20◦). [(c) and (d)] Evolution of the measured
NESS-PDF Pss(x,y)/P0 with increasing values of F along the [1,1]
direction with (c) F/FT = 1.4 and (d) F/FT = 5.2. The value of
P0 is chosen so Pss(x,y)/P0 = 1 at the peak positions. The arrows
indicate the forcing directions. The scale bar is 1 μm.

between the two neighboring potential wells is Eb � 1.5kBT ,
which is very close to that shown in Fig. 1. Because the
bottom layer is periodic, the measured U0(x,y) can be divided
into repetitive cells, each containing two nearby potential
wells together with a connecting barrier. We then sum up the
values of U0(x,y) from different cells with correct symmetry
and generate the single-cell potential with a higher statistical
accuracy. In Ref. [19], we have demonstrated that the 2D pph
Pl(x,y) can be converted into a 1D pph Pls(X), where X is the
coordinate along the line connecting the two peaks of Pl(x,y).
Similarly, the 2D potential U0(x,y) can also be projected into
a 1D plot U0(X), which will be presented below.

B. 2D steady-state distributions Pss(x, y) over
a tilted periodic potential

1. Pss(x, y) for sample S1

Figures 6(a) and 6(b) show the evolution of the measured
NESS-PDF Pss(x,y)/P0 with increasing values of F along the
[1,0] direction. The averaging scheme over the repetitive cells,
as described in the above, is used here. Results obtained at two
tilt angles, θ = 5.5◦ and θ = 20◦, corresponding to F/FT �
1.4 and F/FT � 5.2, respectively, are presented. Compared to
the equilibrium P (x,y)/P0, which has the threefold symmetry
as shown in Fig. 2(a), the shape of the measured Pss(x,y)/P0

in the peak region is stretched to the left and is elongated
along the zigzag path. The probability distribution across the
energy barriers perpendicular to the [1,0] orientation gradually
decreases with increasing F to a small but nonzero value.
This behavior qualitatively agrees with the numerical results
as shown in Fig. 2 for small values of F/FT .

Figures 6(c) and 6(d) show the evolution of the measured
Pss(x,y)/P0 with increasing values of F along the [1,1]
direction. The probability distribution contains two sets of
identical regions; one set of regions are the 	-shaped regions
located near the upper border of the figures and the other set of
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FIG. 7. Measured trajectories (white curves) of a top-layer
particle for sample S2 under the influence of a gravitational pulling
force F along the [1,0] direction toward the left. The amplitude of F

is (a) F/FT = 22.5 (θ = 14◦) and (b) F/FT = 46.8 (θ = 31◦).

regions are the ∇-shaped regions below the 	-shaped regions.
It is seen that the size of the 	-shaped regions increases with
the force F , whereas the size of the ∇-shaped regions shrinks
with increasing F . This behavior qualitatively agrees with the
numerical results as shown in Fig. 2.

2. Pss(x, y) for sample S2

Figure 7 shows the measured trajectories (white curves) of
a top-layer particle for sample S2 under the influence of a
gravitational pulling force F along the [1,0] direction toward
the left. Also shown is the bottom colloidal crystal pattern,
which serves as a visual guide of the underlying potential. It
is seen that the particle actually follows a zigzag path, which
has a lower energy barrier. As a result, only a fraction of
the gravitational pulling force, F = 	mg sin(θ ) cos(π/6), is
applied along the particle’s path. After this correction, the
effective quasi-1D pulling force in Fig. 7(a) is F/FT = 22.5
(for the tilt angle θ = 14◦) and that in Fig. 7(b) is F/FT = 46.8
(for the tilt angle θ = 31◦).

For a given quasi-1D potential U0(X), there exists a critical
force Fc, which is given by the positive root of Fc = U ′

0(Xc),
where Xc is the inflection point of U0(X) given by U ′′

0 (Xc) = 0.
At the critical force Fc, the effective barrier vanishes [48,49].
The values of Fc/FT for the two colloidal samples used are
given in Table I. When F � Fc, the particle flux density
Jss (or drift velocity v) becomes the same as that over an
incline without an energy barrier [40]. It can be shown that the
effective friction coefficient ξeff(F ) in Eq. (14) decays quickly
with F , and ξeff � ξ for F � Fc, as expected.

While the amplitude of F is varied by a factor of 2,
the trajectories shown in Figs. 7(a) and 7(b) retain some
common features as follows. (i) Over a long distance (�λ),
the particle drifts from the right to the left, following the
direction of F . For smaller distances (<λ), however, the
particle spends more time diffusing within a potential well.
The mean drift velocity of the particle is thus caused by
the breakdown of the detailed balance between the forward
barrier hopping and backward barrier hopping. As a result, the
mean velocity v of the particle is physically meaningful only
when the particle’s traveling distance becomes longer than
λ. (ii) Lateral or backward hopping against the gravitational

FIG. 8. Measured trajectories (white curves) of a top-layer
particle for sample S2 under the influence of a gravitational pulling
force F along the [1,1] direction toward the left. The amplitude of F

is (a) F/FT = 22.5 (θ = 14◦) and (b) F/FT = 46.8 (θ = 31◦).

pulling force is rarely observed. (iii) The particle’s trajectory
follows the straight zigzag path guided by the underlying
low-energy path connecting the adjacent potential wells.
(iv) The particle’s trajectories are centered around the quasi-1D
transition paths without much spreading. From the measured
particle trajectories, we calculate the lateral shift of the
particles away from their equilibrium position at the potential
minimum due to the external force and find that this lateral
shift is less than 1 pixel (=70 nm) in our experiment. This
accounts for an error of less than 4% compared with one half
of the lattice constant (λ/2 = 1.8 μm).

Figure 8 shows the situation for sample S2 when the
direction of F is changed to the [1,1] orientation of the bottom
crystal. In this case, the transition paths on the honeycomb
lattice can be categorized into two groups based on their
orientations relative to the direction of F . One group of
transition paths are parallel to F (‖ path) and the other group
has a ±π/3 incline angle with respect to the direction of F

(π/3 path). It is seen from Fig. 8(a) that at F/FT = 22.5 (tilt
angle θ = 14◦), the particle follows a quasi-1D path with an
alternating ‖ path followed by a ±π/3 path. At each bifurcation
point, the particle has an equal probability to go either along the
+π/3 path or along the −π/3 path. In this way, the particle
explores a quasi-1D potential on the colloidal lattice. At a
larger force F/FT = 46.8 (tilt angle θ = 31◦), however, the
particle can occasionally jump over the top of the bottom-layer
sphere located at the bifurcation point, an event which seldom
occurs for the leveled sample S2. This observation provides
an experimental support to the numerical results discussed in
Sec. II B that increasing F in the [1,1] direction makes the
high-energy region more accessible to the particles. Figure 8
thus demonstrates that the actual regions inside the potential
U0(x,y) being explored by the particle is strongly influenced
by the external force F along the [1,1] direction. This effect is
very weak, if not completely negligible, when F is along the
[1,0] direction.

The above characteristic features of the particle trajectory
are also reflected in the measured NESS-PDF Pss(x,y)/P0.
Figures 9(a) and 9(b) shows the measured Pss(x,y)/P0 at two
different values of the applied force along the [1,0] direction. In
contrast to the equilibrium P (x,y)/P0 as shown in Fig. 2(a), the
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FIG. 9. (Color online) [(a) and (b)] Evolution of the measured
NESS-PDF Pss(x,y)/P0 for sample S2 with increasing values of
F along the [1,0] direction with (a) F/FT = 22.5 (θ = 14◦) and
(b) F/FT = 46.8 (θ = 31◦). [(c) and (d)] Evolution of the measured
Pss(x,y)/P0 with increasing values of F along the [1,1] direction with
(c) F/FT = 22.5 and (d) F/FT = 46.8. The value of P0 is chosen so
that Pss(x,y)/P0 = 1 at the peak positions. The arrows indicate the
forcing directions. The scale bar is 1 μm.

measured Pss(x,y)/P0 does not share the threefold symmetry
that the equilibrium P (x,y)/P0 has. Instead, the shape of
Pss(x,y)/P0 in the peak region is clearly stretched to the
left and is elongated along the zigzag path. The probability
distribution across the energy barriers perpendicular to the
[1,0] orientation quickly vanishes with increasing F . This
effect is consistent with the individual particle’s trajectories
as shown in Fig. 7. Along the quasi-1D zigzag path, the peak
position of the measured Pss(x,y) is no longer located at the
center of the potential wells of U0(x,y). Rather, it is shifted
several pixels to the left. Furthermore, the zigzag paths are
centered on the quasi-1D lattice without much spreading.
For the [1,0]-orientation forcing, the high-energy regions of
U0(x,y) are still not available to the particles, and thus their
motion remains quasi-1D. We will examine the functional form
of the measured Pss(x,y) in the next section.

Figures 9(c) and 9(d) shows the measured Pss(x,y)/P0

at two different values of the applied force F along the
[1,1] direction. As F increases, the size of the 	-shaped
regions (near the upper border of the figures) gradually
grows and extends downward to the high-energy regions.
This finding is also consistent with the observed particle’s
trajectories as shown in Fig. 8. Thus the potential being
explored by the particles in the [1,1]-orientation forcing cannot
be approximated by a quasi-1D lattice anymore. Instead, the
system becomes increasingly 2D as the gravitational pulling
force increases. The probability peaks in the ∇-shaped regions,
on the other hand, seem to vanish with increasing F . From
Fig. 9(d), one can hardly tell if there is a peak in the ∇-shaped
region from its surroundings. The measured Pss(x,y)/P0 along
the ‖ path merges into the 	 regions.

The measured Pss(x,y)/P0 for samples S1 and S2 show
the same qualitative features as the numerical results as
shown in Fig. 2. Our observations reveal that forcing in the
[1,0] crystal orientation can separate Pss(x,y)/P0 into parallel
zigzag bands while keeping the particles to explore an effective

FIG. 10. (Color online) Superposition of the background image
of the bottom colloidal crystal layer (black and white) and 2D plot of
the measured Pss(x,y) (red) with brighter regions indicating higher
values of Pss(x,y). Positions A, B, and C (green dots) indicate the
locations of the potential wells in U0(x,y). Positions A′, B ′, and C ′

(green circles) indicate the peak positions of the measured Pss(x,y).
The arrow indicates the direction of the force F along the [1,0]
orientation.

quasi-1D potential. Forcing in the [1,1] orientation, however,
redistributes Pss(x,y)/P0 into high-energy regions and thus
alters the potential actually being explored by the particles. In
the next section, we focus on the NESS-PDF measurements
with F being aligned along the [1,0] crystal orientation and
compare the experimental results with the 1D theory given in
Sec. II A.

C. Reconstruction of the potential U0(X)
from the measured Pss(X)

We now discuss how to obtain the quasi-1D potential U0(X)
from the measured Pss(x,y) for the tilted samples with F

being aligned along the [1,0] crystal orientation. As shown in
Figs. 9(a) and 9(b), the measured Pss(x,y) in this case has a
zigzag shape lying over a quasi-1D lattice. Figure 10 shows a
superposition image of the background optical pattern of the
bottom colloidal crystal layer and 2D plot of the measured
Pss(x,y) with brighter regions indicating higher values of
Pss(x,y). The background image of the bottom colloidal
crystal layer shows the positions A, B, and C (green dots)
of the potential wells in U0(x,y). They are also the peak
positions of the measured equilibrium PDF Pls(x,y) from
the untilted samples. Positions A′, B ′, and C ′ (green circles)
indicate the peak positions of the measured Pss(x,y). They are
shifted forward along the zigzag path by the external force
F aligned in the [1,0] orientation. Note that positions A′
and B ′ in Fig. 10 sit right on the lines AC and BA, which
connect the potential wells of U0(x,y), indicating that the
particle trajectories under the [1,0]-orientation forcing follow
the zigzag path without noticeable deviations. Therefore, the
effective potential explored by the particles is essentially quasi-
1D [19]. Presumably, the new peak positions are determined
by a balance between the side push from the force F in the [1,0]
direction and the restoring force resulting from the equilibrium
potential U0(x,y).

In Fig. 11 we show how to determine the position A of
the potential well in U0(x,y). First, two red lines are drawn
through the peak positions A′ and B ′. The two lines have a tilted
angle of 5π/6 and π/6, respectively, with respect to the [1,0]
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FIG. 11. (Color online) 2D plot of the averaged Pss(x,y) over
the repeated unit cells with brighter regions indicating higher values
of Pss(x,y). Positions A′ and B ′ indicate the peak positions of the
measured Pss(x,y). The red line AB ′ has a tilt angle of π/6 with
respect to the [1,0] crystal orientation, as illustrated by the lower
triangle. The red line AA′ has a tilt angle of 5π/6 with respect to the
[1,0] orientation, as illustrated by the upper triangle. The intersection
point A indicates the position of the potential well in U0(x,y).

crystal orientation. These two tilt angles ensure that positions
A′ and B ′ are on the quasi-1D transition paths between the
potential wells. As shown in Fig. 10, the intersection point
A thus indicates the center of the hidden potential well. The
position A is then taken as the origin of the axis X along the
transition path AB ′, from which we obtain the 1D NESS-PDF
Pss(X) from the measured values of Pss(x,y). Similarly, the
position B of the other potential well (see Fig. 10) is obtained
by making the length AB to be the same as λ. Due to the
symmetry, the obtained Pss(X) along the path AB is the same
as that along the path AC.

Figure 12(a) shows the measured 1D equilibrium PDF
Pls(X) as a function of the normalized transition path X/λ

(red squares), where λ is the distance between two neighboring
potential wells. The data are obtained in the untilted sample
S2 (F = 0). The values of Pls(X) are normalized so the
summation of Pls(X)dX over one period is equal to unity.
The black solid line is a smooth-fitting curve representing
the measured Pls(X), from which one obtains the quasi-1D
potential U0(X)/kBT = − ln[Pls(X)].

Figures 12(b)–12(d) show the evolution of the measured
one-dimensional NESS-PDF Pss(X) (solid symbols) for the
tilted sample S2 with increasing values of F along the [1,0]
direction from F/FT = 22.5 to F/FT = 46.8. The same
normalization procedure as described in the above is also
applied to the measured Pss(X) here. The solid lines in
Figs. 12(b)–12(d) are the numerically calculated Pss(X) using
Eq. (5) together with the measured U0(X) from Fig. 12(a). An
excellent agreement between the experiment and numerical
calculation is found, further confirming that Eq. (5) and
the quasi-1D approach described above are accurate for the
experiment.

To obtain the total potential U (X) via Eq. (8), one needs
to measure both the flux density Jss (or drift velocity v) and
Pss(X). For an N -step particle trajectory (x1,x2, . . . ,xN ), the
drift velocity along the x axis can be obtained by the equation

vx = xN − x1

(N − 1)	t
, (19)

FIG. 12. (Color online) (a) Measured one-dimensional equilib-
rium PDF Pls(X) as a function of the normalized transition path X/λ

(red squares). The solid line is a smooth-fitting curve representing
the measured Pls(X). [(b)–(d)] Evolution of the measured one-
dimensional NESS-PDF Pss(X) (solid symbols) with increasing
values of F along the [1,0] direction with (b) F/FT = 22.5,
(c) F/FT = 37.0, and (d) F/FT = 46.8. The solid lines are the
numerical results obtained using Eq. (5) together with the measured
quasi-1D potential U0(X)/kBT = − ln[Pls(X)] from (a).

where 	t is the lag time between consecutive frames. For the
particles moving along the quasi-1D zigzag paths, the actual
drift velocity along the 1D potential is v = vx/ cos(π/6).
The normalized flux density at the three values of F in
Figs. 12(b)–12(d) is found to be Jss = 11 ± 3, 28 ± 4, and
43 ± 5, respectively. With the measured Pss(X) and Jss ,
one can numerically calculate U (X) using Eq. (8) and then
reconstruct the intrinsic potential, U0(X) = U (X) + FX, by
removing the contribution of the external force F from U (X).

Figure 13 shows the reconstructed 1D potential U0(X)
from the measured Pss(X) and Jss with increasing values
of F along the [1,0] direction. Because U0(X) involves
the normal component of the gravity, Fn = 	mg cos(θ ), it
changes slightly with the tilt angle θ . All of the data points in
Fig. 13 are divided by a common factor cos(θ ) to compensate
the reduced gravity effect. Once this correction is applied,
all of the data points collapse onto a common master curve.
The black solid line is the directly measured U0(X)/kBT =
− ln[Pls(X)] from Fig. 12(a). It is seen that the reconstructed
data from the measured Pss(X) and Jss agree well with the
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FIG. 13. (Color online) Reconstructed 1D potential U0(X) from
the measured Pss(X) and Jss using Eq. (8). The symbols are obtained
with increasing values of F along the [1,0] direction for F/FT = 22.5
(black squares), 37.0 (blue circles), and 46.8 (red triangles). The black
solid line is the directly measured U0(X)/kBT = − ln[Pls(X)] from
Fig. 12(a).

directly measured U0(X)/kBT from the equilibrium PDF
Pls(X). Figure 13 thus verifies the validity of Eq. (8).

A similar attempt was also made in a previous study
of NESS dynamics of colloidal particles in a 1D optical
trap (optical tweezers) with a periodic variation of the laser
light intensity [21]. While the laser-generated potential is
a useful system for the study of colloidal dynamics over
different potentials [21–24], the colloidal platform has several
advantages in the experimental implementation. (i) It is a
pure potential field and does not have any nonconservative
component, as the laser beam does [50,51]. In the latter case,
special arrangements need to be made in order to reduce the
effect of the nonconservative forcing. (ii) Being a 2D system,
the colloidal potential U0(x,y) provides a larger sampling
area, better particle statistics, and a longer equilibrium time
for particles to explore different configurations without being
overwhelmingly trapped to some deep minimum locations in
the 1D potential. (iii) By tilting the sample at an angle θ

with respect to the vertical (gravity) direction, the tangential
component of the gravitational force F used in the colloidal
system can be directed to any direction in the 2D plane.
The amplitude of F is well controlled and can be precisely
measured without a need of calibration. The external force F

used in the 1D optical trap, on the other hand, is generated by
rotating the optical tweezers in a circle at a constant speed. In
this case, a delicate calibration procedure is needed in order to
convert the measured velocity of the particles to the force they
experience [21].

V. SUMMARY

We have carried out a systematic study of the effects of
the external force F on the NESS dynamics of the diffusing
particles over a tilted periodic potential, in which detailed
balance is broken due to the presence of a steady particle flux
Jss . An analytical solution of the NESS probability density
function (PDF) Pss(x) is obtained from the 1D Smoluchowski

equation for the overdamped Brownian particles under the
influence of a tilted periodic potential U (x) = U0(x) − Fx.
The solution reveals that the value of Pss(x) at position x

depends not only on the local value of U0(x) but also on
the value of U0(x) at other positions in the period through
the integration in Eq. (5). From the exact solution of the
1D Smoluchowski equation, we also obtain an analytical
expression connecting the measured Pss(x) with U0(x) and Jss .
While no analytical solution of the 2D NESS-PDF Pss(x,y) is
available at the moment, we obtain the numerical results from
the 2D Smoluchowski equation. In contrast to the equilibrium
distribution P (x,y), whose peak value is always located at the
energy minimum, the distribution of Pss(x,y) is determined by
both the energy minimum and the orientation of the external
force. Along the [1,0] crystalline orientation, the force F

only alters the distribution of Pss(x,y) along a quasi-1D
path, whereas in the [1,1] crystalline orientation, the force
F redistributes Pss(x,y) in the entire x-y plane.

To verify the analytical and numerical results, we con-
structed a two-layer colloidal system to study the evolution
of Pss(x,y) with the external force F . By tilting the entire
sample at an angle θ with respect to the vertical (gravity)
direction, a tangential component of the gravitational force
F is applied to the diffusing particles. In the experiment,
we measured Pss(x,y) when F is set in both the [1,0] and
[1,1] crystalline orientations with varying amplitudes. The
measured Pss(x,y) in the [1,1] orientation show a good
agreement with the numerical results. When the force F is
along the [1,0] orientation, the particle’s trajectory follows a
quasi-1D zigzag path X guided by the underlying low-energy
path connecting the adjacent potential wells. The quasi-1D
Pss(X) is then obtained from the measured Pss(x,y). The
particle flux Jss along the zigzag path is also measured from
the particles’ trajectories. With the measured Pss(X) and Jss ,
we numerically calculate the intrinsic potential U0(X) using
Eq. (8). An excellent agreement is obtained between the
reconstructed potential and directly measured U0(X) using
a leveled sample. This result thus verifies our 1D theory for
the NESS-PDF Pss(x).

Our work demonstrates that the tilted two-layer colloidal
system is a useful platform for the study of nonequilibrium
steady-state dynamics of the colloidal particles. When the
external force F is not along either [1,0] or [1,1] crystal
orientations, the particle flux may not follow the direction
of forcing. The deflection angle between the flux and the
direction of F depends on the commensurability between the
particle trajectories and the underlying periodic potential. This
effect has been used for particle sorting [52–54]. Recent studies
also showed that the multidimensional nonequilibrium steady-
state distribution determines the ratio between the transport
coefficients along different primitive crystal directions [55,56].
The simulation and experimental methods used in the present
study have the capability of finding the 2D steady-state
distribution Pss(x,y) in great detail and can certainly be
applied to the further study of nonequilibrium steady-state
distributions under different forcing directions. In addition to
the colloidal template used in the present experiment, one
may also use photolithography to create different templates of
interest on a substrate in order to generate the needed 1D or
2D external potentials.
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APPENDIX: DERIVATION OF THE 1D STEADY-STATE
DISTRIBUTION Pss(x)

For notational convenience, here we define the dimension-
less force f ≡ Fλ/(kBT ) and take x to be in units of λ, time
in units of λ2/Do, and energy in units of kBT , so all relevant
quantities are dimensionless. The flux is given by J (x,t) =
−∂xP (x,t) − P (x,t)U ′(x), and assuming the steady-state flux
Jss is uniform (which is true since this is just the mean
drift velocity v and was also verified in Ref. [43]), one has
P ′

ss + PssU
′ = −Jss . Solving for Pss , one has

Pss(x) = e−U (x)

[
eU (0)Pss(0) − Jss

∫ x

0
dyeU (y)

]
. (A1)

For periodic solution, one has Pss(0) = Pss(1), which leads to

Jss = eU0(0)Pss(0)(1 − e−f )/〈eU 〉, 〈eU 〉 ≡
∫ 1

0
dyeU (y).

(A2)

Substituting the above expression for Jss back to (A1) gives

Pss(x) = eU0(0)Pss(0)e−U (x)

[
1 − 1 − e−f

〈eU 〉
∫ x

0
dyeU (y)

]
.

(A3)
Next we will show that∫ 1

0
dyeU (x+y) + (1 − e−f )

∫ x

0
dyeU (y) = 〈eU 〉. (A4)

With z = x + y, the first integral on the left-hand side of (A4)
becomes

∫ 1+x

x
dzeU (z), and hence the left-hand side of (A4)

=
∫ 1+x

0
dzeU (z) − e−f

∫ x

0
dyeU (y), (A5)

= 〈eU 〉 +
∫ 1+x

1
dzeU (z) − e−f

∫ x

0
dyeU (y), (A6)

= 〈eU 〉. (A7)

The last step follows since with u = z − 1,
∫ 1+x

1 dzeU (z) =
e−f

∫ x

0 dueU (u). Since I−(x) ≡ e−U (x)
∫ 1

0 dyeU (x+y), thus from
(A3) and (A4), one has Pss(x) ∝ I−(x) and hence the steady-
state distribution is

Pss(x) = I−(x)∫ 1
0 I−(x)dx

. (A8)

Finally, from (A2) and (A8), one obtains the steady-state
uniform flux

Jss = 1 − e−f∫ 1
0 I−(x)dx

. (A9)
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