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Direct imaging of settling, non-Brownian, hard sphere, particles allows measurement of particle occu-
pancy statistics as a function of time and sampling volume dimension. Initially random relative particle
number fluctuations, (N> — (N)?)/{N) = 1, become suppressed, anisotropic, and (N) dependent. Fitting
to a simple Gaussian pair correlation model suggests a minute long ranged correlation leads to strong
if not complete suppression of number fluctuations. Calflisch and Luke predict a divergence in velocity
fluctuations with increasing sample volume size based on random (Poisson) statistics. Our results suggest

this is not a valid assumption for settling particles.
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A collection of uniformly sized hard spheres settling
in a Newtonian fluid is a simple but vexing nonequilib-
rium problem in statistical physics. Because of the long
ranged hydrodynamic interactions, the sedimentation rate
decreases from the single particle or Stokes value U
with increasing particle volume fraction [1]. The leading
order correction first calculated by Batchelor [2—4] ex-
plicitly assumes [5]: (i) a low particle Reynolds number
or the neglect of inertia, (ii) consideration of only two
body hydrodynamic interactions, (iii) a random particle
distribution in space, and (iv) the system size infinite in the
direction transverse to the settling. This result describes,
with reasonable accuracy, settling in monodisperse hard
sphere suspensions dominated by Brownian motion
[1]. However, Calflisch and Luke found a divergence
with system size for the particle velocity fluctuations
calculated within the same assumptions [6]. Segre et al.
[7] provide intuition with a simple scaling argument
similar in spirit to Hinch [8]. The average number of
particles in a region of suspension of linear dimension / is
given by (N) = I*¢/v,,, where ¢ is the particle volume
fraction and v, = ‘3—‘77613 is the particle volume. Random
Poisson statistics implies relative number fluctuation
O Endom/(NY = (N2 — (N)?)/(N) = 1 and a correspond-
ing fluctuation of W Apgv, in the mass of the region,
where Ap is the difference between particle and fluid
densities and g is the acceleration of gravity. This must be
balanced by Stokes drag 67 nlAU implying AU /U, =
VINYa/l = \[3¢p1/4ma, where AU is the typical veloc-
ity fluctuation of settling particles. Naively, if o2/(N) =
(N)~V« for large (N), then for @ = 3 the velocity fluctua-
tions do not diverge with sample size. But the particle
number occupancy statistics are radically modified.

The predicted velocity fluctuation divergence received
both theoretical and experimental scrutiny without con-
sensus [5,9-16]. Computer simulations support the con-
clusion, finding an increase in the amplitude of velocity
fluctuations with system size [9,10]. These simulations re-
lax assumptions (ii) and (iii), since they approximate many
particle hydrodynamics and the system may evolve via hy-
drodynamic interactions away from initially randomized
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configurations. On the other hand, experiments find no
dependence on system size, either experiments measuring
the diffusion of a test particle [11—-13] or direct measure-
ments of the velocity fluctuations [7]. Koch and Shaqfeh
[14] gave the first explanation for the absence of divergent
velocity fluctuations in terms of a violation of assumption
(iii), where every particle has a net deficit of one particle
surrounding it within a correlation range ¢. This condition
drives the number fluctuations to zero beyond the corre-
lation length, but the predicted correlation length scaling
as & ~ a/¢ does not agree with experiments. Theories
based on a coarse grained two fluid description of the sus-
pension [15,16] produce the experimentally observed cor-
relation length dependencies but may [16] or may not [15]
address assumption (iii) directly through calculation of the
static structure factor S(k), which for systems in thermo-
dynamic equilibrium relate directly to number fluctuations
[17]. Finally, Brenner [5] considers the effect of walls,
thus relaxing assumption (iv) while maintaining assump-
tion (iii), to produce the experimentally observed correla-
tion length dependence. He argues that the experiments
thus far are dominated by wall effects and that cell size ef-
fects become apparent in larger sample cells. Eventually,
however, increased velocity fluctuations increase particle
mixing and suppress number fluctuations, quenching the
velocity fluctuations themselves.

Direct experimental tests of assumption (iii) have not
been reported, either by measurement of number fluctua-
tions in a test volume, by measuring the pair correlation
function g(r), or by scattering experiments to measure the
static structure factor S(k). Furthermore, the calculations
of Koch and Shaqfeh [14] indicate that the long range be-
havior of g(r) is inversely proportional to distance, such
that the dominant contribution to number fluctuations may
be difficult to observe directly in g(r), yet can produce pro-
found effects on number fluctuations on large length scales.
Given these difficulties we attempt and report the results
of experiments measuring particle number fluctuations di-
rectly as a function of the measurement test volume size.

A vertical rectangular cell having dimension 1 X 1 X
4 cm? contains the samples and is placed in a large stirred
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water bath controlled at 23 = 0.1 °C to eliminate convec-
tion produced by temperature gradients. Without such
stirring the suspension-supernatant interface becomes un-
settled. A bright, incoherent, 0.35 mm thick sheet of
light illuminates a vertical cross section of the sample
near cell center. A normal to the sheet is also normal
to one of the faces of the sample container and paral-
lel to the line of sight of the imaging system. Typically
a 45 mm X 3.4 mm patch of this cross section is im-
aged through a Leica MZ8 telemicroscope onto a charge-
coupled device (CCD), where images are captured and
stored for further processing.

Figure 1 shows particle configurations for samples con-
taining monodisperse polystyrene spheres having diameter
d = 41.88 = 0.82 um (Bangs Labs, Inc.) and suspended
with ¢ = 0.004 in polyalkylene glycol (PAG). PAG is
an organic Newtonian fluid with density p = 0.95 g/cm?
and viscosity 7 = 0.092 Pa S at 23 °C. Thus the sample
cell viscous damping time is order 1 sec. The Stokes ve-
locity is Uy = %azAp/’r] = (.85 um/s, giving total set-
tling time of order 10 h and a horizontal mixing time based
on estimates of AU from 2.5 to 5 h. The Peclet number
given by Pe = Upa/Dy > 10°, where Dy is the Stokes
Einstein diffusion constant [1], implies negligible Brown-
ian motion. The Reynolds numbers based on particle
radius Re = 2aUyp/m =~ 1077 and on maximum cell di-
mension Re = 2LUyp/n =~ 107* imply negligible iner-
tial effects. Nevertheless, immediately after mixing and
extending for several hours, this slow settling process ex-
hibits a turbulent looking velocity field as seen in Fig. 1(b).
Figure 1(a) shows a single image from this early stage of
settling. Figure 1(d) shows another time lapse image taken

FIG. 1.

Images taken during particle sedimentation: (a) A par-
ticle configuration taken 35 min after mixing, (b) a superposi-
tion of five sequential images taken at 30 sec intervals beginning
30 min after mixing, (c) a particle configuration taken 5 h after
mixing, and (d) a superposition of five sequential images taken
at 30 sec intervals beginning 5 h after mixing. The display area
is approximately 4.5 mm X 3.4 mm.

during the later stages of settling, and Fig. 1(c) shows a
single image from this sequence. While the single images
I(a) and 1(c) show similar looking random configurations
of particles, the corresponding velocity fluctuations in 1(d)
are less violent than those in 1(b). Evidently there are sub-
tle configuration differences between the two times.

In order to study these particle configurations quantita-
tively, we determine the particle occupancy distribution by
counting the number of particles within a circle of fixed
area. A distribution results from randomly positioning
the circle 100 to 200 times in each of 50 independent im-
ages, obtained by viewing different regions of the light
sheet in the lower third of the sample and by changing the
depth of the light sheet within the sample. The time du-
ration spanned by the 50 images is 2 min. Measurements
of the particle concentration remained constant within ex-
perimental error (number fluctuations) in both space and
time. For experimental illumination reasons, we limited
our viewing volume to the central third of the cell, away
from the walls. Therefore the particles in the observed
region should be interacting with “strong” hydrodynamic
interactions according to Brenner’s reasoning [5] and not
be influenced by wall effects.

Figure 2 shows the occupancy distributions generated
for two different sampling areas, corresponding to (N) =
6 and 58. The solid lines show the Poisson distribution
for these average occupancy values. This distribution de-
scribes the earliest measurements after mixing but not at
the later times, when the experimental distribution narrows
relative to the Poisson distribution. Poisson statistics prop-
erly apply to point particles and ignore any particle interac-
tion effects, such as the excluded volume for hard spheres.
Particle interactions enhance or suppress number fluctua-
tions for systems in thermodynamic equilibrium [17] ac-
cording t0 Themo/(N) = S(0), the right hand side being
a constant independent of (N) provided the sampling vol-
ume exceeds the correlation range of interactions. For hard
spheres with ¢ = 0.004, solution of the Percus-Yevich
equation [18] gives a'tzhermo = 0.97arzand0m, indicating neg-
ligible excluded volume effects when comparing the early
time distribution with the Poisson distribution. Evidently,
the hard sphere volume fraction must be increased by more
than an order of magnitude to produce a suppression of
number fluctuations equivalent to that observed in the late
stages of settling. But such comparisons implicitly as-
sume o2/(N) is constant and contrary to the o2/(N) data
shown in Fig. 3. While the early time data correspond with
O random (™ Tthermo), the later time data show a strong sup-
pression of number fluctuations with increasing test vol-
ume dimension. Evidently, from Fig. 3, the relaxation time
for the decay of the initial random fluctuations is a large
fraction of the total settling time and is of the order of the
previously estimated horizontal mixing time. This time
corresponds with our observations and serves as a caution
for those taking density or velocity fluctuation measure-
ments assumed to be at steady state.
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FIG. 2. Particle occupancy distributions: (a) for (N) = 6, 2 min after mixing (filled circles) and 8 h after mixing (open circles);
and (b) for (N) = 58, 2 min after mixing (filled squares) and 8 h after mixing (open squares). The solid curves represent the Poisson

distribution, P(N) = (N)Ye~™ /N1 for the corresponding (N).

For samples having uniform density and pair correlation
with translational invariance, the (nonequilibrium) num-
ber occupancy fluctuations in a finite test volume are re-
lated to the pair correlation function or structure factor
as [19]

0.2

" 1+ vi;fH(F)[g(?) — 1]dr

=1+

1
@2m)3

where 6(7) equals unity inside the test volume and zero
otherwise, 6(—g) is the Fourier transform, and H(7) =
[6(F)6(F — 7')d’F' is the convolution. For a spheri-
cal test volume, the Percus-Yevick solution for hard
spheres gives o2/(N)=S(0) + [1 — S(0)]¢(AN)"'/3 for
(N)>1/X and A = 0.1 is a volume fraction dependent
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FIG. 3. Reduced number fluctuations, o2/{N) , as a function

of the average number of particles in the test volume, (N), shown
for different times after mixing: 2 min (solid squares), 4 h (up
triangles), 6 h (down triangles), and 8 h (solid circles). The
solid curves from top to bottom represent Gaussian theory for
o = 2and £/a = 200, 33, 68, and 20 and S(0) = 0,0, —8, and
—0.53, respectively. The error bars represent 68% confidence
estimate of the average value.
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parameter. The (N)~'/3 dependence originates in the
spherical test volume geometrical constraint and vanishes
in the limit S(0) — 1; it should not be confused with (and
may indeed obscure) true (N)~ !/ number fluctuations.

Alternatively, we assume a simple model Gaussian pair
correlation function:

g(F) =1—-1[1-58(0)]
X exp[— (2w + y2o?? + 2w )/
X v, /(w2 ), 2
which gives §(0) (nonthermodynamic) number fluctuations
in the large test volume limit, represents a vertical to hori-
zontal anisotropy proportional to w, can be evaluated eas-
ily in spherical (when isotropic) or rectangular coordinates,
and like hard spheres has finite range ¢. For a rectangular

test volume with dimensions [X, Y, Z], the number fluctua-
tions become

2
1—[1 = SO)]f(0'*X/&) f(w'3Y/€)

o _
X flo™232/¢). 3)

(N)
The function f(t) = erf(r) — (1 — e_’z)/(\/? t) and
ranges between zero as t — 0 and unity as ¢t — . If
any one of the test volume dimensions tends to zero
(or a small finite value), the number fluctuations tend to
unity and are not suppressed (or not fully suppressed)
by increasing the other test volume dimensions without
limit. Figure 3 shows data compared to this functional
form using experimental test volume dimensions and
® = 2. Fits at 2 min, 4 h, and 8 h with S(0) = 0 give
&/a = 200, 33, and 13, respectively. Allowing S(0) < 0
means number fluctuations become zero at finite {N) and
give a fit to the data at 6 h with S(0) = —7, £/a = 68 and
at 8 h with S(0) = —0.53, ¢/a = 20. Since g(0) = 0.92
for £/a = 13, increasing to 0.98 for &/a = 20, and
becoming essentially unity for larger values of &/a, the
pair correlation may not prove measurably different from
unity. Note that the theory with S(0) = 0 approaches a
limiting value o-2/(N) — 0.39 (not zero) when increasing
the average particle number by increasing viewing radius



VOLUME 86, NUMBER 15

PHYSICAL REVIEW LETTERS

9 AprIL 2001

1.20

0.80

6 I<N>

0.40

000 040 080
(1-)/(1+f)

FIG. 4. Reduced number fluctuations, o2/{N), as a function of
sample volume anisotropy, (1 — f)/(1 + f) = (Z — X)/(Z +
X) with (N) = 30 at 2 min after mixing (open circles) and 8 h
after mixing (closed circles). The dashed line represents ¢/a =
13, = 1 (isotropic) and the solid line @ = 2. The error bars
represent 68% C.L. of the average value.
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(X = Z = +@R?), because the light sheet thickness
remains fixed and finite.

Finally Fig. 4 shows o?/(N) for a rectangular rather
than circular test area with a horizontal to vertical length
ratio, f = X/Z. Holding the product XZ and the light
sheet thickness Y constant fixes the sample volume for a
test of spatial anisotropy. If the number fluctuations are
isotropic, the data will be symmetric when plotted against
the variable (1 — f)/(1 + f). The dashed curve gives the
prediction for the isotropic (w = 1) Gaussian pair corre-
lation function and the solid curve for @ = 2. The data
are not symmetric, and the @ = 2 curve gives a slightly
better fit than the isotropic curve.

In summary, number occupancy statistics, measured for
non-Brownian particles settling in suspension, show sig-
nificant suppression compared to purely random (Poisson)
statistics. A previous study [20] failed to observe this sup-
pression, because test volumes corresponding to (N) ~ 1
were not sufficiently large. The initial random number
fluctuations produce strong convection, which evidently
reduces the number fluctuations in time. As these fluctua-
tions reduce in magnitude, the velocity fluctuations dimin-
ish. The suppression develops over a long period of time
and evidences anisotropy with a correlation length approxi-
mately 2X larger in the vertical direction. This should
be compared with the dynamical anisotropy observed for
velocity fluctuations [7,13] and anticipated in simulations
[21] and theoretically [16,22]. Comparison with a model

correlation function suggests that the number fluctuations
go to zero on sufficiently large length scales, thus prevent-
ing the divergence of velocity fluctuations with increasing
sample size. The correlation range is many times the par-
ticle radius. But the effect on the pair correlation function
(and structure factor) is small and similar in magnitude
to the correlation range £/a = 10¢~/3 ~ 63 observed
for velocity fluctuation [7], while the number fluctuations
decrease monotonically in time, the Gaussian model am-
plitude and correlation range values fluctuate less system-
atically. Future work will explore the approach to steady
state or asymptotic limit.
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No. NAG3-1852.

[1] W.B. Russel, D.A. Saville, and W.R. Schowalter,
Colloidal Dispersions (Cambridge University Press,
Cambridge, 1989), Chap. 12.

[2] J.M. Burgers, Proc. K. Ned. Akad. Wet. 44, 1045 (1942).

[3] G.K. Batchelor, J. Fluid Mech. 52, 245 (1972).

[4] E.J. Hinch, J. Fluid Mech. 83, 695 (1977).

[5] M.P. Brenner, Phys. Fluids 11, 754 (1999).

[6] R.E. Caflisch and J.H.C. Luke, Phys. Fluids 28, 259
(1985).

[7] P.N. Segre, E. Herbolzheimer, and P.M. Chaikin, Phys.
Rev. Lett. 79, 2574 (1997).

[8] E.J. Hinch, in Disorder and Mixing, edited by E. Guyon
et al. (Kluwer Academic, Dordrecht, 1988), p. 153.

[9] A.J.C. Ladd, Phys. Rev. Lett. 76, 1392 (1996).

[10] A.J.C. Ladd, Phys. Fluids 9, 491 (1997).

[11] J.M. Ham and G.M. Homsy, Int. J. Multiphase Flow 14,
533 (1988).

[12] H. Nicolai and E. Guazzelli, Phys. Fluids 7, 3 (1995).

[13] H. Nicolai, B. Herzhaft, E.J. Hinch, L. Oger, and
E. Guazzeli, Phys. Fluids 7, 12 (1995).

[14] D.L. Koch and E.S. G. Shaqfeh, J. Fluid Mech. 224, 275
(1991).

[15] P. Tong and B.J. Ackerson, Phys. Rev. E 58, 6931 (1998).

[16] A.Levine, S. Ramaswamy, E. Frey, and R. Bruinsma, Phys.
Rev. Lett. 81, 5944 (1998).

[17] J.P. Hansen and 1. R. McDonald, Theory of Simple Liquids
(Academic, London, 1986).

[18] M. Wertheim, Phys. Rev. Lett. 8, 321 (1963); E. Thiele,
J. Chem. Phys. 38, 1959 (1963).

[19] B.J. Berne, Dynamics of Charged Macromolecules in Solu-
tion, in Photon Correlation Spectroscopy and Velocimetry
(Plenum Press, New York, 1976); P.N. Pusey, J. Phys. A
8, 1433 (1975).

[20] T.N. Smith, J. Fluid Mech. 32, 203 (1968).

[21] A.J.C. Ladd, Phys. Fluids 5, 299 (1993).

[22] D.L. Koch, Phys. Fluids 5, 1141 (1993).

3303



