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Using the techniques of optical microscopy and particle tracking, we measure the correlated diffusion

in a monolayer of uniform silica spheres dispersed at a water-air interface. It is found that the correlated

motion of the interfacial particles can be well described by two universal response functions, the

normalized longitudinal and transverse diffusion coefficients ~Dkðr=r0Þ and ~D?ðr=r0Þ, where r is the

interparticle distance and r0 ¼ að�S=aÞ3=2 is a new scaling length, which depends on both the Saffman

length �S and particle radius a. The obtained response functions characterize the crossover behavior of the

colloidal monolayers from the subphase-dominated three-dimensional hydrodynamics at low surface

coverage to the monolayer-dominated 2D hydrodynamics at high concentrations. The surface viscosity

�ð2Þ
s of the colloidal monolayer obtained by two-particle rheology compares well with the one-particle

measurements.
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Colloidal monolayers suspended at a liquid-liquid (or
liquid-air) interface or near a liquid-solid interface have
attracted much attention in recent years; they have served
as model systems to study a range of interesting problems
of structures and dynamics in two-dimensional soft matter
systems [1]. Examples include 2D crystallization [2,3],
crystal sublimiation [4], and colloidal glasses [5,6], inter-
actions between similarly charged particles [7–10], and
Brownian dynamics at liquid interfaces [11,12]. The
colloid-decorated interfaces also have immense practical
applications ranging from being used as emulsion stabil-
izers [13] to colloidosomes [14] and bijels [15]. In addi-
tion, colloidal particles have also been used as tracer
particles to probe the rheological properties of liquid inter-
faces coated with a monolayer of surfactant, proteins, or
lipids [16–18].

The mobility of the colloidal particles confined to a
molecular monolayer at a liquid-air interface is an impor-
tant quantity that is used to characterize the surface vis-
cosity �s of the monolayers made of polymers, surfactants,
and various biomolecules, such as proteins and lipids
[11,16–19]. In two-particle rheology [20,21], one follows
the trajectory siðtÞ of individual particles i as a function
of time t and computes the correlated motion between
a particle pair i and j via the ensemble averaged
tensor product of the particle displacements, �si�ðt; �Þ ¼
si�ðtþ �Þ � si�ðtÞ,

C��ðr; �Þ ¼ h�si�ðt; �Þ�sj�ðt; �Þ�½r� Ri;jðtÞ�ii�j; (1)

where � and � represent different coordinates, Ri;j (and
thus r) is the center-to-center distance between the particle
pair, � is the lag time, and the average is taken over distinct
particle pairs i � j and over time t. In particular, Crr

indicates the correlated motion along the line joining the
center of the two particles, and C�� is perpendicular to this
line; both are a function of r and �.
The correlated motion between the particle pairs is

affected by the hydrodynamic interactions (HIs) with
both the liquid subphase of viscosity �b and the molecular
monolayer having a surface viscosity �s and thickness h
[19,22]. When the Saffman length [23,24] �S ¼ �s=�b �
h (large �s regime), the effect of the liquid subphase is
negligibly small and the HIs are essentially 2D [25,26]. In
this case, Crr is expected to depend logarithmically on r
[23,27]. With deceasing �S (or �s), the effect of the liquid
subphase becomes increasingly important and ultimately
for small enough �S (’ h), Crr � r�1 and C�� � r�2, as
expected for quasi-3D hydrodynamics [18,28,29]. The
transition from the subphase-dominated 3D behavior to
the membrane-dominated 2D behavior is described by
two universal response functions, the normalized longitu-
dinal and transverse diffusion coefficients ~Dkðr=�SÞ and
~D?ðr=�SÞ, where �S serves as a scaling length and
describes at what extent the system can be determined by
the 2D hydrodynamics [17,22,30].
Can the continuum hydrodynamic theory for molecular

membranes be applied to concentrated colloidal mono-
layers at the liquid interface, in which the 3D many-body
HIs between the particles are involved, but one does not
have a theory at the moment to estimate how important
they are? Unlike lipid membranes and protein coated liquid
interfaces, whose thickness h (1–5 nm) is typically 2–3
orders of magnitude smaller than �S (1–10 �m) and
they can be treated as a continuum, the colloidal mono-
layers are not a continuum, the individual spheres feeling a
local surface viscosity different from its macroscopic
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counterpart [31,32], and their film thickness, as measured
by the particle radius a, is of the same order as �S.

In this Letter, we report a systematic study of the corre-
lated motion in a colloidal monolayer made of uniform
silica spheres and dispersed at a water-air interface. It is
found that for small lag time �, the measured Crrðr; �Þ and
C��ðr; �Þ are both linear functions of � and we obtain the
parallel and perpendicular diffusion coefficients, DkðrÞ ¼
Crr=2� and D?ðrÞ ¼ C��=2�, respectively. The two diffu-
sion coefficients are found to have the universal scaling
forms, ~Dkðr=r0Þ and ~D?ðr=r0Þ, for all samples with

different concentrations, where

r0 ¼ a

�
�S

a

�
3=2

(2)

is a new scaling length characterizing the crossover

behavior of the colloidal monolayers. In the above, �S ¼
�ð2Þ
s =�b, with �

ð2Þ
s being the surface viscosity felt by a pair

of particles, as defined in two-particle rheology [17,20].
Three colloidal samples (S1, S2, and S3) of different

sizes are used in the experiment. These samples have been
carefully characterized previously [33] and their properties
are summarized in Table I. The silica spheres are dispersed
at the water-air interface following the same procedures
as described in [9]. Using the estimated contact angle of
60� [34], we find that approximately 3=4 of the silica
particle (by diameter) is immersed in water. The silica
spheres are negatively charged and their interaction poten-
tial UðrÞ can be well described by the screened Coulomb
potential [33]. The values of the Debye screening length
�D are given in Table I. The sample cell is viewed under an
inverted microscope, and a particle tracking program is
used to determine the particle trajectories [35].

Figure 1(a) shows the measured diffusion coefficients
Dk andD? as a function of r for sample S1 at different area

fractions n occupied by the interfacial particles. In the plot,
Dk and D? are normalized by the Stokes-Einstein value

D0 ¼ kBT=ð6	�baÞ, where �b is the viscosity of water,
and r is normalized by d. For small values of n, the
measured Dk and D? show some scatter because fewer

particles are available in each image for averaging. To
further improve the statistics, we averaged the measured
Dk and D? over a narrow range of n as indicated by the

legends in Fig. 1. The inset shows an example of 26
unaveraged Dk’s and D?’s in the range n ¼ 0:03� 0:02.

It is seen from Fig. 1 that the magnitude of Dk and D?
increases with n, and they decay with r slower for larger
values of n.
Over a finite range of r, the measuredDk andD? can be

well described by the power laws: Dk / r��k and D? /
r��? (not shown). This is an approximate way to describe
how fastDk (andD?) decays with r. Figure 1(b) shows the
fitted values of �k and �? as a function of n for S1. As

mentioned above, Dk and D? are expected to depend

logarithmically on r for large surface viscosity �s and
become a power-law dependence with �k ¼1 and �?¼
2, respectively, for small enough �s [28,29,36,37]. Thus, a
smaller�k (or�?) reflects a larger�s. In the concentration

range 0:03 & n & 0:35, we find the fitted value of �k
decreases from 0.89 to 0.67 and �? decreases from 1.5
to 1.1, indicating that �s indeed increases with n. This
analysis also suggests that the colloidal monolayer in this

TABLE I. Silica sphere samples used and their properties obtained from the experiment:
particle diameter d, friction coefficients kð0Þ and kð1Þ, Debye screening length �D, maximum area
fraction of random packing nm and intrinsic viscosity [�].

Sample: Manufacturer d (�m) kð0Þ kð1Þ �D (�m) nm [�]

S1: Duke Scientific 1:57� 0:06 16.0 0.6 0:4� 0:1 0.53 2:1� 0:1
S2: Bangs Lab 0:83� 0:05 15.2 0.7 0:4� 0:1 0.38 2:6� 0:1
S3: Duke Scientific 0:73� 0:04 16.0 0.6 0:4� 0:1 0.33 3:1� 0:1

FIG. 1 (color online). (a) Measured Dk=D0 (solid symbols)
and D?=D0 (open symbols) as a function of r=d. The measure-
ments are made for S1 at different values of n, which are color
coded. Inset shows 26 unaveraged Dk=D0’s and D?=D0’s in the

concentration range n ¼ 0:03� 0:02 (see text). (b) Fitted values
of �k (open circles) and �? (open triangles) as a function of area

fraction n for S1. The error bars show the standard deviations of
the fit.
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concentration range is in the crossover regime far from the
two limiting cases as discussed above. Similar trends inDk
and D? were also observed for a protein-coated liquid
interface [17].

Figure 2(a) shows that all the measured Dk and D? at

different n can be superposed onto a single master curve,
once Dk (and D?) is scaled by a single-particle self-

diffusion coefficient D0
sðnÞ and r is scaled by an adjustable

parameter r0, whose physical meaning will be discussed
below. Here D0

sðnÞ is a directly measured quantity [38] and

is linked to the single-particle surface viscosity �ð1Þ
s ðnÞ via

D0
sðnÞ ¼ kBT=½kð1Þ�ð1Þ

s ðnÞ�, as defined in one-particle
rheology [17,20]. Using this equation, one then obtains

�ð1Þ
s ðnÞ. In the above, kð1Þ is a known coefficient which

only depends on the relative position z=d of the particle at
the interface and is independent of n [19]. The values of

kð1Þ are given in Table I.
Once D0

sðnÞ is determined, r0 is the only adjustable
parameter used to collapse the data for each value of n.
In the scaling plots, the measuredDk andD? at large n fall

on the left-hand side of the master curves. This is expected
because the large-n sample has a higher surface viscosity,
which gives rise to a stronger correlation and a weaker r
dependence [17,22,30]. It is also found that the obtained
master curve for different particle samples can be

superposed onto a single curve, once the vertical variable

is further normalized by kð1Þ, as shown in Fig. 2(b). In this
way, the particle size effect is eliminated [38].
The inset of Fig. 2(b) shows the n dependence of the

obtained r0 for the three colloidal samples. It is found that
the scaling length r0 varies with both n and d. It should be
noted that r0 is determined from the scaling plot only up to
a common multiplicative factor �. An extra condition is
needed to determine the absolute value of � (and hence r0).
As shown in Eq. (2), r0 is directly linked to the two-particle

surface viscosity �ð2Þ
s ðnÞ. We therefore impose a physical

constraint on �ð2Þ
s ðnÞ, namely, �ð2Þ

s ðnÞ ¼ 0 when n ! 0.
This condition allows one to have a unique set of r0 for
different values of n, once a relationship between r0 and

�ð2Þ
s is determined.
For protein-coated liquid interfaces, the Saffman

length �S ¼ �ð2Þ
s =�b was used to scale the measured

Dkðr=�SÞ=D0
sðnÞ and D?ðr=�SÞ=D0

sðnÞ [17,22,30]. This

method of extracting �ð2Þ
s ðnÞ from the obtained �SðnÞ,

however, does not work for the colloidal monolayers. As

shown in Fig. 1 in [38], the obtained �ð2Þ
s is not even a

linear function of �ð1Þ
s ; instead, it approximately follows

the power law, �ð2Þ
s � ð�ð1Þ

s Þ3=2. Furthermore, Fig. 2(a)
revealed that the obtained Dk=D0

sðnÞ and D?=D0
sðnÞ for

the colloidal monolayers decay with r slower than the
theoretical predictions [17,30].
These observations prompt us to consider a new scaling

relation as shown in Eq. (2). Here we have explicitly
introduced a particle size dependence in r0. Figure 3 shows

a comparison between �ð2Þ
s obtained by using Eq. (2) and

�ð1Þ
s for the three colloidal samples. In the low concentra-

tion regime, we find �ð2Þ
s ’ �ð1Þ

s . Only at the high-n end

(n ¼ 0:3), the obtained �ð2Þ
s becomes slightly larger than

�ð1Þ
s . In this case, the colloidal monolayer begins to show

the heterogeneity (crowding) effect and two-particle
rheology gives results different from those obtained by
one-particle rheology [17,20]. As expected, Fig. 3 reveals

that �ð2Þ
s ¼ �ð1Þ

s ¼ 0 at the n ¼ 0 limit.

FIG. 2 (color online). (a) Log-log plot of Dk=D0
s (solid sym-

bols) and D?=D0
s (open symbols) as a function of r=r0 for S1

with different values of n. The data and symbols used are the
same as those shown in Fig. 1(a). (b) Log-log plots of
Dk=ðkð1ÞD0

sÞ (solid symbols) and D?=ðkð1ÞD0
sÞ (open symbols)

as a function of r=r0 for S1 (black symbols), S2 (red symbols),
and S3 (green symbols). Inset shows the n dependence of the
obtained r0 for the three samples. Lines are drawn to guide
the eye.

FIG. 3 (color online). Comparison between the obtained �ð2Þ
s

using Eq. (2) and �ð1Þ
s for S1 (black squares), S2 (red circles),

and S3 (green triangles). The solid line indicates �ð2Þ
s ¼ �ð1Þ

s .
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Figure 4 shows the obtained �ð2Þ
s from Eq. (2) as a

function of n for the three colloidal samples. All the
data points with different particle sizes superpose onto
a single curve. The solid line shows a fit using the
Krieger-Dougherty equation [39],

�ð2Þ
s ðnÞ ¼ �ð0Þ

s

��
1� n

nm

��½��nm � 1

�
; (3)

where �ð0Þ
s ¼ �bak

ð0Þ=kð1Þ is the equivalent surface viscos-
ity experienced by a single particle at the dilute limit, and

kð0Þ is a known coefficient [38]. In the above, nm ¼
0:84ðd=d�Þ2 is the maximum area fraction of random pack-
ing, where d� ¼ dþ �D [33] with �D being the Debye
screening length. For a hard sphere system, d� ¼ d and one
has nm ’ 0:84 [40,41]. The exponent [�] (also called in-
trinsic viscosity) is the only fitting parameter. The data are
well described by Eq. (3) (solid line) and the fitted values
of [�] are given in Table I.

Many analytical and numerical studies have been carried
out to calculate [�]. The intrinsic viscosity for the hard
disks (or spheres) in a 2D (or 3D) suspension is 2 (or 5=2)
at the dilute limit [42,43], and is 5=3 for hard spheres half
immersed at a liquid-liquid interface [44]. For 3D suspen-
sions in the high concentration regime, a phenomenologi-
cal model gives a value around 3.1 (or 2.7) under a low (or
high) shear rate [45]. Table I reveals that the values of [�]
obtained in this experiment fall into the range of the
calculated values of [�]. In addition, the obtained [�] is
found to depend on d [38].

The experiment clearly demonstrates that the correlated
motion in the colloidal monolayers is well described by
the normalized longitudinal and transverse diffusion

coefficients, ~Dkðr=r0Þ¼Dk=ðkð1ÞD0
sÞ and ~D?ðr=r0Þ¼

D?=ðkð1ÞD0
sÞ, where r0 is a new scaling length character-

izing the universal behavior of the correlated diffusion.
These two universal functions are invariant with the parti-
cle size once the particle radius a is included in the
definition of r0 as shown in Eq. (2) [46]. The new scaling
length r0 can be understood in part by considering the
squeeze force, fr ¼ 
kðrÞUr, produced by an approaching

sphere of radius a with velocity Ur toward another sphere
at separation r. The two-particle friction coefficient 
kðrÞ
is directly linked to the longitudinal diffusion coefficient
via DkðrÞ ’ kBT=
kðrÞ [25]. With the lubrication approxi-

mation for small r, one has 
kð�3DÞ ¼ ð3=2Þ	�baða=�3DÞ,
where �3D is the gap distance between the two spheres in
the 3D flow [47]. Similarly, the squeeze force between two
approaching circular disks of radius a in a thin film of
thickness a and surface viscosity �s ’ �ba has the same

expression with 
kð�2DÞ ¼ ð3=2Þ	�baða=�2DÞ3=2, where
�2D is the gap distance between the two disks in the quasi-
2D flow [48]. By equating the two squeeze forces [i.e., let


kð�3DÞ ¼ 
kð�2DÞ], we find �3D ¼ að�2D=aÞ3=2, which is

the same equation as shown in Eq. (2).
This mapping of two-particle hydrodynamics in 3D to a

2D analogue thus provides an important insight into the
observed universal scaling of correlated diffusion in col-
loidal monolayers. While the hydrodynamic interactions
between the colloidal particles at the liquid interface are
intrinsically 3D, the continuum hydrodynamic theory for
molecular membranes can be extended to the colloidal
monolayers, so long as the relevant scaling length r0 in
3D is used to replace the corresponding 2D scaling length
�S via Eq. (2). In this way, one can obtain the surface

viscosity �ð2Þ
s of the colloidal monolayers from r0, and the

results of two-particle rheology are found to agree well
with those of one-particle rheology.
The discovery of the universal scaling functions

~Dkðr=r0Þ and ~D?ðr=r0Þ reveals the relevant length

involved in the many-body hydrodynamic interactions
between the interfacial particles, which not only exchange
momentum among themselves but also with the subphase
liquid. The experiment provides a set of reliable data
against which further theoretical modeling can be devel-
oped. It is also relevant to a class of problems related to the
mobility and microrheology of interfacial particles in a
monolayer or membrane, such as lipid or protein-
associated domains in cell membranes [24–26].
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Fischer, Jiangwei Zhang, Xiangjun Xing, and Jiang Xiao.
This work was supported by the Hong Kong RGC under
Grant No. HKUST-604310 (P. T.) and by the Bilateral
Project BI-CN/11-13-013 (W.C. and K. B.).

*Corresponding author.
phchenwei@fudan.edu.cn

[1] B. P. Binks and T. Horozov, Colloidal Particles at Liquid
Interfaces (Cambridge University Press, Cambridge,
England, 2006).

[2] P. Pieranski, Phys. Rev. Lett. 45, 569 (1980).
[3] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov,

H. Yoshimura, and K. Nagayama, Nature (London) 361,
26 (1993).

FIG. 4 (color online). Obtained �ð2Þ
s using Eq. (2) as a function

of n for S1 (black squares), S2 (red circles), and S3 (green
triangles). The solid line is a fit of Eq. (3) to the red circles.

PRL 111, 168304 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

18 OCTOBER 2013

168304-4

http://dx.doi.org/10.1103/PhysRevLett.45.569
http://dx.doi.org/10.1038/361026a0
http://dx.doi.org/10.1038/361026a0


[4] J. R. Savage, D.W. Blair, A. J. Levine, R. A. Guyer, and
A.D. Dinsmore, Science 314, 795 (2006).

[5] Z. Zheng, F. Wang, and Y. Han, Phys. Rev. Lett. 107,
065702 (2011).

[6] Z. Zhang, N. Xu, D. T. N. Chen, P. Yunker, A.M. Alsayed,
K. B. Aptowicz, P. Habdas, A. J. Liu, S. R. Nagel, and
A.G. Yodh, Nature (London) 459, 230 (2009).

[7] F. Ghezzi and J. C. Earnshaw, J. Phys. Condens. Matter 9,
L517 (1997).

[8] J. Ruiz-Garcia, R. Gamez-Corrales, and B. I. Ivlev, Phys.
Rev. E 58, 660 (1998).

[9] W. Chen, S. S. Tan, T. K. Ng, W. T. Ford, and P. Tong,
Phys. Rev. Lett. 95, 218301 (2005).

[10] W. Chen, S. S. Tan, Z. S. Huang, T.K. Ng, W. T. Ford, and
P. Tong, Phys. Rev. E 74, 021406 (2006).

[11] Y. Peng, W. Chen, T.M. Fischer, D. A. Weitz, and P. Tong,
J. Fluid Mech. 618, 243 (2009).

[12] C. Y. Wu, Y.M Song, and L. L. Dai, Appl. Phys. Lett. 95,
144104 (2009).

[13] R. Aveyard, B. P. Binks, and J. H. Clint, Adv. Colloid
Interface Sci. 100–102, 503 (2003).

[14] A. D. Dinsmore, M. F. Hsu, M.G. Nikolaides, M.
Marquez, A. R. Bausch, and D.A. Weitz, Science 298,
1006 (2002).

[15] E.M. Herzig, K.A. White, A. B. Schofield, W.C.K. Poon,
and P. S. Clegg, Nat. Mater. 6, 966 (2007).

[16] M Sickert, F Rondelez, and H.A Stone, Europhys. Lett.
79, 66 005 (2007).

[17] V. Prasad, S. A. Koehler, and E. R. Weeks, Phys. Rev. Lett.
97, 176001 (2006).

[18] M.H. Lee, S. P. Cardinali, D. H. Reich, K. J. Stebeb, and
R. L. Leheny, Soft Matter 7, 7635 (2011).

[19] Th.M. Fischer, P. Dhar, and P. Heinig, J. Fluid Mech. 558,
451 (2006).

[20] J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D.
Kaplan, A. G. Yodh, and D.A. Weitz, Phys. Rev. Lett. 85,
888 (2000).

[21] A. J. Levine and T. C. Lubensky, Phys. Rev. Lett. 85, 1774
(2000).

[22] A. J. Levine and F. C. MacKintosh, Phys. Rev. E 66,
061606 (2002).

[23] P. G. Saffman, J. Fluid Mech. 73, 593 (1976).
[24] P. G. Saffman and M. Delbruck, Proc. Natl. Acad. Sci.

U.S.A. 72, 3111 (1975).
[25] N. Oppenheimer and H. Diamant, Phys. Rev. E 82, 041912

(2010); Biophys. J. 96, 3041 (2009).
[26] Z. H. Nguyen, M. Atkinson, C. S. Park, J. Maclennan, M.

Glaser, and N. Clark, Phys. Rev. Lett. 105, 268304 (2010).

[27] C. Cheung, Y. H. Hwang, X-l. Wu, and H. J. Choi, Phys.
Rev. Lett. 76, 2531 (1996).

[28] B. Cui, H. Diamant, B. Lin, and S.A. Rice, Phys. Rev.
Lett. 92, 258301 (2004).

[29] E. R. Dufresne, T.M. Squires, M. P. Brenner, and D.G.
Grier, Phys. Rev. Lett. 85, 3317 (2000).

[30] H. A. Stone and A. Ajdari, J. Fluid Mech. 369, 151 (1998).
[31] X. Qiu, X. L. Wu, J. Z. Xue, D. J. Pine, D.A. Weitz, and

P.M. Chaikin, Phys. Rev. Lett. 65, 516 (1990).
[32] P. Tong, X. Ye, and B. J. Ackerson, Phys. Rev. Lett. 79,

2363 (1997).
[33] W. Chen and P. Tong, Europhys. Lett. 84, 28 003

(2008).
[34] G. Tolnai, A. Agod, M. Kabai-Faix, A. L. Kovacs, J. J.

Ramsden, and Z. Horvolgyi, J. Phys. Chem. B 107, 11 109
(2003).

[35] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.111.168304 (Sec. I
Experiment) for details.

[36] S. Ramachandran, S. Komura, and G. Gompper,
Europhys. Lett. 89, 56 001 (2010).

[37] P. P. Lele, J.W. Swan, J. F. Brady, N. J. Wagnera, and E.M.
Furst, Soft Matter 7, 6844 (2011).

[38] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.111.168304 (Sec. II
Data Analysis) for details.

[39] I.M. Krieger and T. J. Dougherty, Trans. Soc. Rheol. 3,
137 (1959).

[40] J. G. Berryman, Phys. Rev. A 27, 1053 (1983).
[41] C. S. OHern, S. A. Langer, A. J. Liu, and S. R. Nagel,

Phys. Rev. Lett. 88, 075507 (2002).
[42] J. F. Brady, Int. J. Multiphase Flow 10, 113 (1983).
[43] A. Einstein, Ann. Phys. (Berlin) 324, 289 (1906).
[44] S. V. Lishchuk and I. Halliday, Phys. Rev. E 80, 016306

(2009).
[45] A. J. Richard, Soft Condensed Matter (Oxford University

Press, Oxford, England, 2002).
[46] We expect that this scaling is valid for interfacial particles

with size in the range of 0:1–10 �m. See Supplemental
Material at http://link.aps.org/supplemental/10.1103/
PhysRevLett.111.168304 (Sec. II Data Analysis) for
more details.

[47] W.B. Russel, D. A. Saville, and W.R. Schowalter,
Colloidal Dispersions (Cambridge University Press,
Cambridge, England, 1992).

[48] B. J. Hamrock, B. O. Jacobson, and S. R. Schmid,
Fundamentals of Fluid Film Lubrication (Marcel
Dekker, New York, 2004), 2nd ed.

PRL 111, 168304 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

18 OCTOBER 2013

168304-5

http://dx.doi.org/10.1126/science.1128649
http://dx.doi.org/10.1103/PhysRevLett.107.065702
http://dx.doi.org/10.1103/PhysRevLett.107.065702
http://dx.doi.org/10.1038/nature07998
http://dx.doi.org/10.1088/0953-8984/9/37/004
http://dx.doi.org/10.1088/0953-8984/9/37/004
http://dx.doi.org/10.1103/PhysRevE.58.660
http://dx.doi.org/10.1103/PhysRevE.58.660
http://dx.doi.org/10.1103/PhysRevLett.95.218301
http://dx.doi.org/10.1103/PhysRevE.74.021406
http://dx.doi.org/10.1017/S0022112008004114
http://dx.doi.org/10.1063/1.3243334
http://dx.doi.org/10.1063/1.3243334
http://dx.doi.org/10.1016/S0001-8686(02)00069-6
http://dx.doi.org/10.1016/S0001-8686(02)00069-6
http://dx.doi.org/10.1126/science.1074868
http://dx.doi.org/10.1126/science.1074868
http://dx.doi.org/10.1038/nmat2055
http://dx.doi.org/10.1209/0295-5075/79/66005
http://dx.doi.org/10.1209/0295-5075/79/66005
http://dx.doi.org/10.1103/PhysRevLett.97.176001
http://dx.doi.org/10.1103/PhysRevLett.97.176001
http://dx.doi.org/10.1039/c1sm05235g
http://dx.doi.org/10.1017/S002211200600022X
http://dx.doi.org/10.1017/S002211200600022X
http://dx.doi.org/10.1103/PhysRevLett.85.888
http://dx.doi.org/10.1103/PhysRevLett.85.888
http://dx.doi.org/10.1103/PhysRevLett.85.1774
http://dx.doi.org/10.1103/PhysRevLett.85.1774
http://dx.doi.org/10.1103/PhysRevE.66.061606
http://dx.doi.org/10.1103/PhysRevE.66.061606
http://dx.doi.org/10.1017/S0022112076001511
http://dx.doi.org/10.1073/pnas.72.8.3111
http://dx.doi.org/10.1073/pnas.72.8.3111
http://dx.doi.org/10.1103/PhysRevE.82.041912
http://dx.doi.org/10.1103/PhysRevE.82.041912
http://dx.doi.org/10.1016/j.bpj.2009.01.020
http://dx.doi.org/10.1103/PhysRevLett.105.268304
http://dx.doi.org/10.1103/PhysRevLett.76.2531
http://dx.doi.org/10.1103/PhysRevLett.76.2531
http://dx.doi.org/10.1103/PhysRevLett.92.258301
http://dx.doi.org/10.1103/PhysRevLett.92.258301
http://dx.doi.org/10.1103/PhysRevLett.85.3317
http://dx.doi.org/10.1103/PhysRevLett.65.516
http://dx.doi.org/10.1103/PhysRevLett.79.2363
http://dx.doi.org/10.1103/PhysRevLett.79.2363
http://dx.doi.org/10.1209/0295-5075/84/28003
http://dx.doi.org/10.1209/0295-5075/84/28003
http://dx.doi.org/10.1021/jp0344949
http://dx.doi.org/10.1021/jp0344949
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.168304
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.168304
http://dx.doi.org/10.1209/0295-5075/89/56001
http://dx.doi.org/10.1039/c0sm01466d
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.168304
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.168304
http://dx.doi.org/10.1122/1.548848
http://dx.doi.org/10.1122/1.548848
http://dx.doi.org/10.1103/PhysRevA.27.1053
http://dx.doi.org/10.1103/PhysRevLett.88.075507
http://dx.doi.org/10.1016/0301-9322(83)90064-2
http://dx.doi.org/10.1002/andp.19063240204
http://dx.doi.org/10.1103/PhysRevE.80.016306
http://dx.doi.org/10.1103/PhysRevE.80.016306
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.168304
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.168304

