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Analogies between colloidal sedimentation and turbulent convection at high Prandtl numbers
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A set of coarse-grained equations of motion is proposed to describe concentration and velocity fluctuations
in a dilute sedimenting suspension of non-Brownian particles. With these equations, colloidal sedimentation is
found to be analogous to turbulent convection at high Prandtl numbers. Using Kraichnan’s mixing-length

theory, scaling relations are obtained for the diffusive dissipation lengthdd , the velocity variancedũ, and the

concentration variancedf̃. The obtained scaling laws over varying particle radiusa and volume fractionf0

are in excellent agreement with the recent experiment by Segre` et al. @Phys. Rev. Lett.79, 2574~1997!#.
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PACS number~s!: 82.70.Dd, 47.27.Te, 05.40.1j, 83.10.Pp
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The study of the motions of small particles suspended
fluid has always been an interesting subject in physics.
dynamics of the particles is determined by the statist
properties of the random forces resulting from interactio
between the particle and the surrounding fluid. Brownian d
fusion of small particles in a fluid at thermal equilibrium
one of the classical and best understood examples. The
tion of particles in a nonequilibrium fluid, on the other han
represents an anomalous diffusion process in which hy
dynamic dispersion coefficients might diverge@1#. Sedimen-
tation of heavy colloidal particles under gravity through
quiescent fluid is an example of such a process. The m
issue in colloidal sedimentation is to understand how hyd
dynamic interactions created by the motion of many s
rounding particles in the fluid affect a test particle’s me

sedimentation velocityv̄ and its varianced ṽ at different par-
ticle concentrations@2#. Because the disturbance flow pr
duced by a particle decays as 1/l , where l is the radial
distance from the particle, simple theoretical calculations@3#
as well as computer simulations@4# have indicated that the

velocity varianced ṽ might diverge with increasing sampl

sizeL. Experiments, however, find no dependence ofd ṽ on
L @5#. Several theoretical models@1,6# have been propose
recently, aimed at resolving the divergence problem.

In a recent experiment, Segre` et al. @7# used the particle
imaging velocimetry technique to measure the spatial co
lation function, C(l )5^dv(r )dv(r 1l )&, of the velocity
fluctuationdv in a sedimenting suspension of non-Browni
particles over a wide range of particle concentrations
sample sizes. They found that the measuredC(l );exp
(2l /j), where the velocity correlation lengthj depends on
the particle radiusa and volume fractionf0 in a nontrivial
power-law formj.af0

21/3. In this Rapid Communication
we propose a set of coarse-grained equations of motio
describe concentration and velocity fluctuations in colloi
sedimentation. With these equations we find that colloi
sedimentation is analogous to high Rayleigh number, h
Prandtl number turbulent convection@8,9#. Our model ex-
plains the experimental results by Segre` et al., and also pro-
vides a coherent framework for the study of sedimentat
dynamics in different colloidal systems.
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To understand the basic principles governing the colloi
sedimentation, we consider a simple case of a dilute s
menting suspension of hard spheres in a long tube of ra
L. To separate the velocity fluctuationdu from the mean
settling velocityv̄, we choose a uniform suspension withv̄
50 as our reference system. This can be achieved by usi
fluidized bed, in which the mean settling velocity is oppos
and canceled by a solvent velocity. It has been sugge
@7,10# that velocity fluctuations in a sedimenting suspens
may arise from fluctuations of the local particle concent
tion. Therefore, we model the colloidal sedimentation with
coarse-grained Navier-Stokes equation. The fluid velocitydu
and pressuredp at a pointx satisfy the creeping flow equa
tion @3,6#

“dp~x!2h“2du~x!5fdn~x!, ~1!

where h is the viscosity of the fluid anddn @5n(x)2n̄#
represents the fluctuation of the particle number densityn(x)
about its meann̄. In the above,f5(4p/3)a3Drg is the
buoyancy force acting on a particle of radiusa, whereg is
the gravitational acceleration andDr5rp2rs is the density
difference between the particle and the solvent. In writi
Eq. ~1! we have assumed that the fluid volume elementdV is
a coarse-grained volume, which is large enough to con
many particles but is small enough such that the part
distribution insidedV is uniform. In this case, we hav
fdn(x)5Drg@f(x)2f0#, wheref~x! is the particle volume
fraction andf0 is its mean value. Note thatdu in Eq. ~1!
represents the velocity fluctuation of the solution, which
cludes both the particles and the solvent. In the coa
grained sense, velocity fluctuations of the particles and
solvent are statistically the same asdu. Because local con-
centration fluctuations are collective motions of the particl
Eq. ~1! is different from usual equations of motion for ind
vidual particles.

Nondimensionalizing Eq.~1! with respect to the lengthL,
the timeL2/D, and the concentrationf0 , we have

2
1

s
“dp~x!1“

2du~x!5Ra f~x!ẑ, ~2!
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where the unit vectorẑ is directed upward opposite to th
direction of g, and dp has included a term,2Drgf0z, to
absorb contributions from the constant forcing te
2Drgf0 . In Eq. ~2! the Rayleigh number is defined as

Ra5Drgf0L3/~hD !, ~3!

whereD is an effective diffusion constant of the particle
The Schmidt numbers is given bys5n/D with n being the
kinematic viscosity of the fluid. For a dilute suspension
small colloidal particles,D is approximately equal to the
particle self-diffusion constantDs5kBT/(6pha), where
kBT is the thermal energy. For large non-Brownian particl
however, the effect of thermal agitations is negligible a
their diffusionlike motion is produced by the hydrodynam
interactions between the particles@1#. Nicolai et al. have
shown @5# that the hydrodynamic diffusivity has the form
Dh.5aU0 , whereU052a2Drg/(9h) is the Stokes veloc-
ity.

With the hydrodynamic diffusivityDh , Eq. ~3! becomes

Ra50.9f0S L

aD 3

. ~4!

It should be mentioned that while it is canceled out in R
Drg is needed so thatDh can be used to describe the hydr
dynamic diffusion of the settling particles at small leng
scales. Equation~2!, together with the continuity equatio
for an incompressible fluid

“•du50 ~5!

and the advective mass diffusion equation

] tf1~du•“ !f5“

2f, ~6!

complete the description of concentration and velocity fl
tuations in colloidal sedimentation. Under the Boussine
approximation@11#, small density changes of the fluid due
concentration fluctuations have been neglected in Eq.~5!.
We notice that similar equations of motion have been u
previously to describe several special problems in sedim
tation @12,13#.

It is evident that Eqs.~2!–~6! are the same as those fo
buoyancy-driven convection@9,11#. Velocity and concentra-
tion fluctuations in colloidal sedimentation are therefo
analogous to those in buoyancy-driven convection, and t
are completely controlled by the two dimensionless para
eters Ra ands, once the boundary conditions are specifie
In a typical convection experiment, a constant tempera
~or concentration! difference is usually maintained across
fluid layer of thicknessL. It is this large-scale temperatur
gradient that drives the convective flow. A finite critic
value Rac (.2000) is required for the onset of the conve
tion instability with a vertical temperature gradient, but Rc
.0 for thermal convection in a vertical slot heated from t
side@11#. In the latter case, the fluid is absolutely unstable
temperature or concentration perturbations.

In most sedimentation experiments, however, no lar
scale concentration gradient is imposed upon the sample
stead, a constant flux of particles~or solvent! is maintained
throughout the bulk region. While no stability analysis
f
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available at the moment for colloidal sedimentation, we b
lieve that velocity and concentration fluctuations can be
duced by an instability due to the mean settling flow. R
gions having more particles become heavier than
average, and they can immediately induce velocity fluct
tions in the direction parallel to gravity. Furthermore, Cro
ley @14# has shown that such a flow is unstable against c
centration fluctuations at least for a special case of a o
dimensional array of falling spheres. Batcheloret al. @13#
have studied~transient! ‘‘homogeneous buoyancy-generate
turbulence’’ for colloidal suspensions with finite partic
sizes. While Batchelor’s theory describes the decay of fl
tuations to states with average mean-square fluctuation
zero amplitude, the mean-square density fluctuations are
zero even in equilibrium and can serve as a source for c
tinued homogeneous buoyancy-generated turbulence.
real mechanism for the generation of density fluctuations
sedimentation is not well understood, but is generally
lieved to be the spontaneous number fluctuations in the
loid suspension. An issue that remains to be resolved is
the convection instability usually takes place first at the la
est scale of the system, whereas the spontaneous nu
fluctuations occur at all length scales.

Nonuniform particle concentrations can also result fro
shear-induced particle migration. Because of the hydro
namic interactions between three or more particles, n
Brownian particles do not move along streamlines but
stead exhibit diffusionlike motions as they tumble arou
each other. As a result, the particles in the high-shear reg
will migrate to low-shear regions, because they have a hig
frequency of encounters with the surrounding high-shear p
ticles @1#. Koh et al. @15# have shown that in a channel flow
the particle concentration becomes higher in the central
gion of the channel and reaches a steady profile, so tha
particle’s hydrodynamic diffusion toward the center, due
the gradient of the shear rate, is balanced by the hydro
namic diffusion away from the center, due to the gradien
particle concentration. For particles settling in a quiesc
fluid, the downward volume flux of particles must be ba
anced by an upward volume flux of the solvent. In a lo
cylindrical tube, this back flow of the solvent must have
parabolic velocity profile when the particle density and
sulting force density on the solvent is~initially ! uniform.
Thus, shear-induced particle migration is possible. Incre
ing particle densities in the tube center will favor downwa
convection in that region, so it is not at all clear how t
system resolves these opposite tendencies. A detailed st
ity analysis of Eqs.~2!–~6!, including hydrodynamic diffu-
sion @in Eq. ~6!#, should be done. Experimentally, th
sediment-supernatant interface is observed to be flat. If
sedimentation instability is induced by an unstable conc
tration profilef(r ), it becomes natural that Ra scales wi
f0 becausef(r ) is proportional tof0 . Clearly, this insta-
bility is fed by the potential energy of the settling particle
To verify the mechanism for the sedimentation instabili
one needs to measure the concentration profile of a set
suspension of non-Brownian particles at low Ra.

In the discussion below, we will assume that such an
stability exists in colloidal sedimentation at low Ra, and f
cus our attention on velocity and concentration fluctuatio
at high Ra far beyond Rac . Recent studies of Rayleigh
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Bénard convection have demonstrated@9# that high-Ra tur-
bulent convection does not depend on details of the insta
ity at low Ra. As will be shown below, turbulent convectio
is characterized by the emergence of new length scales in
velocity and concentration fields. We now estimate typi
values of Ra ands in colloidal sedimentation. In the exper
ment by Segre` et al. @7#, the particle’s radiusa.8 mm,
Stokes velocityU0.6.5 mm/s, volume fractionf0.0.05,
and the characteristic sample sizeL.1 cm. With these ex-
perimental values we findDh.2.631026 cm2/s, Ra.8.8
3107, ands.3800. The Schmidt numbers is equivalent to
the Prandtl number in thermal convection. Colloidal se
mentation is therefore associated with high Rayleigh nu
ber, high Prandtl number turbulent convection.

To understand the sedimentation dynamics, it is helpfu
distinguish two characteristic length scales in convection:
viscous dissipation lengthdv and the diffusive dissipation
lengthdd . The values ofdv anddd are determined, respec
tively, by the transition Reynolds number Rec5dũdv /n and
the transition Pe´clet number Pec5dũdd /Dh . Heredũ is the
rms value of the velocity fluctuationdu averaged over a vol
ume of dv

3 ~or dd
3!. It is the ratios of these lengths to eac

other and to the sample sizeL that determine the flow stat
of the system@8#. For high-Ra, high-s turbulent convection,
one anticipates that the flow consists of three different
gions:~i! a,l ,dd , ~ii ! dd,l ,dv , and~iii ! dd,l ,L. In
region~i!, molecular viscosity and hydrodynamic diffusivit
determine the momentum and mass transport processe
spectively, and hence the particle distribution remains u
form without any large fluctuations. In region~ii !, turbulent
~or eddy! diffusivity and molecular viscosity are dominan
and thus large fluctuations in particle concentration are
pected but the velocity field remains relatively smooth.
nally, in region~iii !, turbulent diffusivity and viscosity both
dominate over the corresponding hydrodynamic and mole
lar processes. In this case, one expects to see large flu
tions both in particle concentration and in velocity at diffe
ent length scales. For most colloidal suspensions, howe
their sedimentation velocity is so small that region~iii ! may
not exist ~i.e., dd>L!. In this case, the bulk region of th
fluid is dominated by the molecular viscosity and the lo
Reynolds number Re(l )5dũl /n is smaller than Rec every-
where. Note that Re(l ),Rec does not imply the absence o
turbulence. When Ra is large, strong concentration fluc
tions ~and hence large buoyancy forces! can still drive the
system into a state of chaotic motion.

Convective turbulence in region~ii ! is different from that
in region ~iii !, which can be realized in many low Prand
number fluids, and has been intensively studied in rec
years@9#. Many temperature@16# and velocity@17# measure-
ments have been carried out in turbulent bulk regions
near viscous and thermal boundary layers. In contrast to
great number of low-s experiments, experimental informa
tion about high-s turbulent convection is limited. Many
years ago, Kraichnan@8# proposed a mixing-length theor
for turbulent convection at arbitrary Prandtl numbers. F
high-s turbulent convection in region~ii !, he obtained scal-
ing relations for the temperature variancedT̃ ~or, equiva-
lently, the concentration variancedf̃!, the velocity variance
dũ, and the diffusive dissipation lengthdd . In the following
il-
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we use Kraichnan’s theory to calculate small-scale proper
of concentration and velocity fluctuations in colloidal sed
mentation.

We first discuss the lengthdd , above which velocities
become large and concentration fluctuations are transpo
by convection. This occurs when the local Pe´clet number
Pe5dũl /Dh becomes larger than Pec . Recent thermal con-
vection experiments have shown@18# that while turbulent
mixing creates, on average, an isothermal fluid in the tur
lent bulk region, large temperature fluctuations still remain
the region and the characteristic length scale associated
these fluctuations is of the order ofdd . Therefore, the veloc-
ity correlation lengthj is determined bydd in region ~ii !.
According to Kraichnan’s theory@8#, we have

dd.~2p2 Pec
2!1/3L Ra21/3, ~7!

where the power law amplitude is expressed in terms of
numerical value of Pec . Priestley first explained whydd
scales with Ra1/3 @19#. He argued that when Ra is larg
enough,dd should be a new length scale independent ofL.
With Eqs. ~7! and ~4!, we immediately havej;dd

.L Ra21/3.af0
21/3. The mapping of colloidal sedimenta

tion to turbulent convection, therefore, explains the expe
mental finding thatj.11af0

21/3 @20#. It also provides a
physical interpretation for the existence of a velocity cut
length, which prevents hydrodynamic dispersion coefficie
from being divergent.

We now discuss the velocity variancedũ in colloidal
sedimentation. According to Kraichnan’s theory@8#,

dũ.
PecDh

dd
.

PecDh

~2p2 Pec
2!1/3L Ra21/3. ~8!

Equation~8! states that at the transition Pe´clet number Pec ,
the mass flux due to hydrodynamic diffusion,Dhdf̃/dd , is
approximately equal to that by convection,dũdf̃. Because
dd.af0

21/3 and Dh.aU0 , we find from Eq. ~8! that

d ṽ;dũ.Dh /dd.U0f0
1/3, which is independent of the

sample sizeL. This result agrees well with the experiment
finding thatd ṽ.2U0f0

1/3 @7#. Another important quantity in

colloidal sedimentation is the concentration variancedf̃.
Kraichnan’s theory@8# predicts that the typical value o
df̃ is of the order off0 . Because the sedimentation veloci
is determined by the particle concentration,df̃.f0 implies
d ṽ. v̄. This explains another important experimental o
servation that velocity fluctuations in colloidal sedime
tation are of the same order as the mean settling velo
@5,21#.

As shown in Eqs.~7! and ~8!, Kraichnan’s theory not
only predicts definite values of the scaling exponents,
also provides a rough estimate for the amplitude of
power laws. These amplitudes are expressed in term
the numerical value of Pec , which is independent of any
dynamic variables in the problem. Indeed, from the defi
tion of Pec and the measured values ofDh , j, andd ṽ, we
find Pec.d ṽj/Dh.4.4, which is a constant independent
f0 anda. Recently, Goldstein and Chiang@22# have carried
out a convection experiment withs.2750. From their trans-
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port data one finds Pec.4.7, which is in good agreemen
with the sedimentation value. Using Eqs.~7! and ~8!, to-
gether with the measured value of Pec.4.4, we obtaindd

.7.5af0
21/3 and dũ.2.9U0f0

1/3. This calculation demon-
strates that our model is even capable of predicting cor
values of the power-law amplitudes. In the above calcu
tion, we used the measured values ofd ṽ, j, andDh in the
direction parallel to gravity. We notice that the measur
hydrodynamic diffusivity,Dh , changes with the direction
relative to gravity@5#, whereas the convective diffusivity
n-

v.

y

ct
-

d

d ṽj, is less sensitive to the direction of sedimentation@7#.
The measuredDh is anisotropic because it couples to th
mean sedimentation velocityU0 . Turbulent convection, on
the other hand, is expected to be isotropic because there
preferred direction in the large scale motion.
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