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A model calculation is presented to study turbulence at moderate Reynolds number, Re. In
conformity with recent measurements, it is proposed that in the energy cascade the fractional
volume occupied by eddies of various sizes depends on Re. By introducing a Re-dependent
parameter in the random beta model, it is shown that the scaling behavior of the small-velocity
fluctuations at moderate Re can be characterized by a single Re-dependent scaling exponent
a,. The calculated Re dependence of ¢ is consistent with the experimental data. Corrections
to this scaling are calculated using the multifractal concept. The Reynolds number dependence
of other multifractal properties in turbulent flows is also calculated.

1. INTRODUCTION

In theories of turbulence one is interested in the small-
scale statistics of the velocity difference, V(R,t), between a
pair of points, separated by a distance R, in the field of turbu-
lent flow. Here V(R,t) is defined as
V(R,t) = |v(r,t) — v(r + R,t)|, where v(r,?) is the local ve-
locity of the fluid. The statistical property of V(R,t) can be
described by its probability distribution function P(V,R). In
general, P(V,R) could be a complicated function, depending
upon the Reynolds number, the boundary conditions, and
other relevant system parameters. To characterize P(V,R)
one therefore needs a very large number of independent pa-
rameters, say, the successive velocity moments ( V(R,t)?).

In the classical picture of the eddy cascade, which ori-
ginated with Kolmogorov' (hereafter K41), turbulence is
viewed as a cascade of turbulent kinetic energy from large
scales to small scales. Energy is fed into the turbulence at
large-scale L,, which is determined by the boundaries. The
kinetic energy is continuously transferred from eddies of size
R < L, to eddies of smaller size, until it dissipates when the
size of eddies becomes comparable to the Kolmogorov dissi-
pation length' L. In this theory L, = (v*/€)"/*, where € is
the energy dissipation rate, and v is the kinematic viscosity of
fluid. When R is in the inertial range L, € R € L, the energy
cascade proceeds without dissipation, and V(R,t) is expect-
ed to be self-similar, i.e., the statistical properties of V(R,¢)
over varying length scales become identical under an appro-
priate scaling of velocities.”

According to the K41 theory, only two parameters, R
and ¢, are relevant to turbulence at scales in the inertial
range. By a simple dimensional argument, one can show that
only one scaling velocity is needed to characterize fully de-
veloped turbulence, namely, the characteristic velocity
u(R) = (€R)""?, associated with eddies of size R. Therefore
the moments of V(R,t) obey a scaling law

(V(R,1)?) ~u(R)’~R*, (1)

where £, = p/3. Itis easy to show that the scaling in Eq. (1)
follows if the distribution function P(¥,R) is a homoge-
neous function Q (¥ /u(R))/u(R).> The self-similarity, or
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scaling, is generally thought to hold only at extremely large
Reynolds numbers, where many important turbulence ex-
periments have been carried out.

In recent years attention has been focused on the study
of hydrodynamic systems in the opposite limit, where the
control parameter slightly exceeds some critical value.*?
Two examples are Bénard convection and Couette flow in
the vicinity of critical Rayleigh and Reynolds numbers, re-
spectively. In spite of the relatively low level of excitation of
these dynamic systems, they share certain attributes of high-
1y turbulent fluids, including self-similarity and multifractal
scaling of certain variables.%” These variables are the proba-
bility that the system will visit regions in phase space in the
case of a dynamic system, and the volume fraction occupied
by the eddies of various sizes in fully developed turbulence.
Highly turbulent systems differ from the dynamic systems in
that very many degrees of freedom are excited in turbulence
whereas only a few are needed to account for the chaotic
behavior in the latter case. A question of obvious interest is
the transition from chaos to fully developed turbulence. The
experiments reported in the preceding paper® (referred to as
1), suggest that scaling ideas can still be applied to the turbu-
lence in the transition region, provided that one allows £, to
become dependent on Re in this transition region. The pur-
pose of this paper is to present a model calculation that can
explain the results we have observed.

As Landau first pointed out,’ the K41 theory did not
take the fluctuations of the local energy dissipation rate €
into account. Experiments'®!! have provided strong evi-
dence that the small-scale structures of fully developed tur-
bulence become less and less space filling as R decreases, an
effect that is called intermittency.'?"'® One simple model
that includes the intermittency effect has become well
known as the beta model.”> The beta model assumes that the
turbulent energy is transferred to only a fixed fraction B of
the eddies of smaller size. The turbulent “active region,”
where the vorticity is highly localized, forms a homogeneous
fractal with dimension D, embedded in the Euclidean space
of dimension d. Here the volume contraction ratio S is as-
sumed to be a constant in the range 0<8< 1. With this mod-
el, turbulence possesses global scaling character, and the

© 1988 American Institute of Physics 3253

Downloaded 30 May 2002 to 139.78.124.138. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



moments of V' (R,t) have the same form as that in Eq. (1)
with

&, =[4—(d~Dy)/3)p+d— D, (2)

Thesecond term, — (d — D,)p/3,in £, arises because of the
increasing concentration of energy into smaller regions,
which reduces the rate of variation of (¥ (R,t)?) with R. The
third term, d — D, comes from spatially averaging relative
velocity over the turbulent active region, because the proba-
bility for being in the active region is proportional to R ¢~ .
When D, = d the above equation reduces to that of the K41
theory. Note that both the beta model and the K41 theory
predict that £, is a linear function of p.

The recent experiment by Anselmet e al.'” indicates
that the exponent £, has a weaker than linear dependence on
p when p 8. To explain this nonlinear p dependence of £,
within the frame of the scaling theories discussed above,
Frisch and Parisi introduced the multifractal model.® In this
model the relative velocity, in a domain of size R, possesses a
local scaling V(R) ~R 9, i.e., a varies from point to point in
the flow. Using multifractal ideas, Benzi et al.'® presented an
interesting probabilistic extension of the beta model to simu-
late multifractal sets. The model is called the random beta
model. This model assumes that the volume contraction ra-
tio Bin the original beta model is a random variable. Toget a
simple physical picture, it is assumed in this model that the
probability distribution of S is a bimodal function with a
relative probability amplitude being an adjustable param-
eter. We will show in this paper that the random beta model
fits our measured velocity fluctuations in the intermediate
range of Reynolds number, provided that one introduces a
Re dependence for the probability amplitude x in the model.

The experiment described in I gives evidence that the
scaling picture can even be applied to velocity fluctuations in
flows at relatively low turbulence levels. We found that when
Re exceeds a transition Reynolds number Re, (Re, ~300-
400 for grid flow, and Re, ~ 3000-4000 for pipe flow), the
distribution function P(V,R) has a scaling form Q(V/
u(R))/u(R), and the scaling velocity #(R) has the form
u(R) ~ R ¢. In contrast to fully developed turbulence, where
¢ is a constant (close to {), the measured exponent { for
turbulence at moderate Re shows a nontrivial Re depen-
dence. Here we refer to turbulence in the range
Re, SRe %30 Re, as “moderate” in contrast to fully devel-
oped turbulence in the limit Re— . Just above Re,, { has
the approximate form ¢~ [(Re—Re,)/Re.]?% where
¢ ~0.5. Near the maximum attainable values of Re, { has
climbed to, and saturated at, a value close to {, the Kolmo-
gorov value. This crossover behavior was found both in pipe
flow and in grid flow.

In conformity with our experiments mentioned above,
we conjecture that the crossover behavior or the correction
to scaling for turbulence at moderate Reynolds number may
have a universal character. By introducing a Re-dependent
probability amplitude x in the random beta model, we show
that when Re is in the intermediate region, P(V,R) deviates
from scaling and &, in Eq. (1) no longer is proportional to p.
Using multifractal ideas we also show that for turbulence at
moderate Re, £, becomes a function of x, where x itself is a
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function of the reduced Reynolds number o
= (Re — Re,)/Re,.. Specifically, it will be shown that

§,(x) =d — Dy(x) + ag(x)p + [a(x)/2]p* + -+~ .

(3)
In the above, Dy(x) and a,(x) can be thought as an “aver-
age” fractal dimension and “average” scaling exponent, re-
spectively, both of them depending on Re. It will be shown in
Sec. IV that if one keeps the linear term in Eq. (3) for small-
velocity fluctuations (small p), the corresponding distribu-
tion function P(V,R) is a homogeneous function of the form
P(V,R) ~R*~PXQ(V /u(R))/u(R). The scaling veloc-
ity #(R) has the form #(R) ~R *'®, The calculated Re de-
pendence of the scaling exponent a,(x) is consistent with
the experimental data in I. The measurements in I suggest
that a homogeneous fractal with a Re-dependent fractal di-
mension D,(x) is adequate to characterize the scaling be-
havior of the small-velocity fluctuations at moderate Re.
Corrections to this scaling behavior due to the quadratic
term [a(x)/2]p? in Eq. (3) are examined. The Reynolds
number dependence of other multifractal properties in tur-
bulent flows is also calculated.

The concept of multifractal sets®’ and the random beta
model'® are reviewed in Sec. II. In Sec. III we extend the
random beta model to allow x to depend on the Reynolds
number for turbulence at moderate Re. A comparison
between the experimental results in I and the model calcula-
tion in Sec. III is presented in Sec. IV. Finally, the work is
summarized in Sec. V.

Il. MULTIFRACTAL SETS AND THE RANDOM BETA
MODEL

The notion of multifractal sets can be understood in the
following way. Let us divide the turbulent flow into N small
boxes of size R. Within each box one can measure the veloc-
ity difference V' (R) as a function of R, and a local scaling
law, F(R) ~ R “, may be found for small values of R. Hence
in each box

)lqin})[ V(R)/R°] =const (s£0). 4)

Since both the K41 theory and the beta model ensure that
a<), Eq. (4) indicates that the velocity gradient is a singular
quantity. Thus the relative velocity V(R) is said to have a
singularity of the order @ (@ > 0). In general, & may take on
a range of values, and the distribution of  among the N
boxes is nontrivial. One way to describe the set of N singular
points is to partition them into subsets S(c), where S(a) is
defined as a group of points for which the relative velocity
V(R) has a singularity of the order between a and a + da.
The subset S(a) is a fractal object characterized by its frac-
tal dimension f(a).

With the multifractal sets S(a), the moments of the rel-
ative velocity V(R,t) can be written as an average over all
possible values of a:

™ dap(a,R)R ¥, (5)
where p(a,R) is the probability that ¥'(R,t) has a singularity
of the order of a. The spatial average over the N boxes has
thus been converted to an average over a. Because S(a) is a

(V(R,0)F) ~
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fractal set with fractal dimension f(a) embedded in Euclid-
ean space of dimension d (d = 3), the probability that a sin-
gular point belongs to S(a) is proportional to R ¢~/®, so
we have’

{(V(R,H)") ~ dap'(a)R¥+4=/, (6)
where p’(a)is the proportionality factor in p(a,R). Because
R is very small, the integral in Eq. (6) is dominated by only
one value of @, namely, the one that makes the exponent
ap + d — f(a) smallest, provided that p’' (a) #0. Using the
saddle-point method, the integral in Eq. (6) can be carried
out and the final result is

(V(R,1)?) ~R*, (7
where
§p=ap+d——f(a). (8)

The exponent a must satisfy the condition
4 lap+d—fla)] =0. 9)
da

It is also assumed that

2
4 lap+d—fia)] = —f"(@)>0.
da
Since £, is the Legendre transform'® of d — fla), the
inverse Legendre transformation gives
Aa)=ap—§, +4d,
and

(10)

(11)

d

a(p) & & (12)
The exponent &, in Egs. (7) and (8) characterizes the scal-
ing feature of turbulence. Physically, the pth moment of
V(R,t) picks out a particular kind of singularity in sets
S(a), because £, depends upon a specific value of a(p) for a
given p. Equivalently, the scaling property of V(R,t) may
also be characterized by a continuous spectrum of the local
scaling exponents a (p) and their densities (or fractal dimen-
sions) fla).

As mentioned in Sec. I, the random beta model pro-
posed by Benzi ez al.'8 gives a simple realization of multifrac-
tal sets. This model assumes that the volume contraction
ratio S is a random variable with a probability distribution
@ (). Using this model Benzi et al. have shown that the
fractal dimension D, of the turbulent active region is

Dy =d +log,(B), (13)
and that £, in Eq. (7) has the form
&, =p/3—log, (B~ ), (14)

where the angle brackets represent an average over S. It is
clear that complete information about the probability distri-
bution function ®(S) can be obtained from a knowledge of
all the moments of # (or §‘p), and that the fractal dimension
D, only provides “mean value’-like information.

To compare with the measurements of §,, Benzi et al.
proposed a simple form for the distribution function ®(53),

PP =(1-x)6(B-1 +x5(B—-1), (15)
where x is a fitting parameter in the range O<x< 1. The cal-
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culated £, by this distribution fits the experimental data'’
very well when x = 0.875. Of course, it is purely an assump-
tion that ¢ (B) is a bimodal function. Benzi et al. have given
a plausible argument® for this assumption.

Iil. AN EXTENSION OF THE RANDOM BETA MODEL

In accordance with the experimental results in I we con-
jecture that turbulence at moderate Re may possess some
universal properties. Presumably, if the scaling picture is a
good approximation to the turbulence at moderate Re, only
a few control parameters are needed to determine f(a) or §,,.
Clearly, the Reynolds number is a relevant parameter for the
turbulence in this region. A simple way to introduce a Re-
dependent &, or f(a) is to let the probability amplitude x in
Eq. (15) be a function of Re rather than a constant. We
propose that x = x(w), where @ = (Re — Re_)/Re_, and
that x(w) is an increasing function of @. This picture that for
low Reynolds number turbulence “vortex sheets” (8=1)
are the dominant structure, is consistent with the recent
computer simulation of the forced Navier-Stokes equation
by Kerr.?°

From Egs. (14) and (15) we have

&,(x) =p/3 —log,[ (1 — x)2°° ' + x]. (16)

Figure 1 displays plots of £, (x) vs p for different values of x.
It is seen that £, (x) is a linear function of p when x = 1 (the
Kolmogorov case), and the interval in p (p > 0), over which
€, (x) varies linearly with p, decreases as x decreases below
unity. Finally when x = 0, £, (x) becomes a constant.

Using Eqgs. (12) and (16) we obtain the local scaling
exponent a(p,x) as

a(px)=§1-{0=x)/[1+x2'=7°-D1}H. AN

Figure 2 shows how a(p,x) varies with p for three values of
x. It is clearly shown that a(p,x) as a function of p decreases
sharply from } to 0, with the inflection point shifting to in-
creasing p as x is increased.

With Egs. (16), (11), and (17) the function f(a,x) can
be calculated. First, by solving Eq. (17) for p in terms of a,
one can obtain p(a,x), which satisfies Eq. (12). Substituting
this p(a,x) and Eq. (16) into Eq. (11) we have, ford = 3,

le__ 1~ 3a
fax)=3— 1og2[(i"-) (—ii)) ] (18)

x a(l —x)

FIG. 1. The function §,(x) vs p at four values of x [cf. Eq. (16)].
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FIG. 2. The variation of the local scaling exponent a(p,x) with p at three
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Figure 3 shows f(a,x) vs a for various values of x. Two
trivial cases appear, namely, when x = 0, the local scaling
exponent a(p,0) = 0 and the corresponding fractal dimen-
sion f(0,0) = 2. Similarly when x=1, a(p,1) =} and
S(,1) = 3. The position ay(x) = a(0,x), at which f(a,x)
has its maximum value f{@,,x), is seen to increase continu-
ously from O to | as x is increased from O to 1. Similarly the
fractal dimension f{a,,x) increases from 2 to 3.

The generalized dimension D,, introduced by Hent-
schel et al.,>'?? is related to £,(x) by the following equa-
tion?324; )

&) =@/3— 1D, +1—d) +1. (19)

Eliminating £, (x) from Egs. (19) and (16), and solving for
D, gives

D, (x)= —(g— 17" logy[1 +x(2' "~ 1] +d — 1,
(20)

where g = p/3. Note that D,_,(x), which is the same as
that in Eq. (13), equals f{a,,x) in Eq. (18). Plots of D, (x)
vs g for three values of x are displayed in Fig. 4.
Comparing the generalized dimension D, in Fig. 4 with
those obtained in some other models, such as the two-scale
Cantor set, circle maps, etc.,” we find that the general func-
tional form of D, for different systems is similar, namely, D,
changes its value dramatically only in a small range of g.
Below and above this range, D, as a function of g is roughly a

2.8 + T T T
2.4 4 T
2 g
A
= 2.0F d :

»

Gl 502 &£ : 1
-~ o A 0% :h
— 1.6p @ . o]
r A o x=0.2 % q

a o 0.3 00
1.214 a 0.5 o
ﬁ []
9

A ] L | U
0.80 (o8| 0.2 0.3

a

FIG. 3. The function f(a,x) vs & at indicated values of x [cf. Eq. (18)].
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-40 -20 o 20 40

FIG. 4. The generalized dimension D (x) vs g at indicated values of x [cf.
Eq. 20)].

constant, characterized by its two asymptotic values, D _
and D_, respectively. Hereafter we will call this small range
of g, over which D, changes rapidly, as the transition range
of D,. Well inside the transition range D, can be approxi-
mated by a linear function of ¢, which is the lognormal ap-
proximation®* (see Sec. IV). This character of D, [or a(p)]
is general for all the multifractal models with two competing
factors, though the values of the parameters D _ _ and D,
are system dependent. Therefore we conclude that the es-
sence of the multifractal model is to introduce a “cutoff ”* for
D, [ora(p)] frombeing D _ , to D, . In other words, two
different scaling behaviors can be seen when g is below and
above the transition region, which are characterized by
D _ _ and D_, respectively. The crossover between the two
scalings can be approximately described by a lognormal dis-
tribution. A nonfractal model by Nakano and Nelkin®52¢
gives a similar argument. The new feature of our model is
that the transition range of D, (x) depends on the Reynolds
number.

Tt will be shown in Sec. IV that the measured correlation
function, g(z), of the light intensity scattered by small parti-
cles suspended in the turbulent fluid only senses the charac-
teristic velocity, #(R), of the velocity fluctuations, i.e., it
only picks up singularities with small p. To make contact
with the experimental results in I, we concentrate on the
small p (p~1) behavior of £,(x). Using Egs. (16), (17),
and (20), we get the Taylor expansion of §,(x) around
p = 0 up to the second order:

&, (x) = [a(x)/2]1p* + ag(x)p + d — Do(x),

where

(21)

Dy(x) = flagx) =2 + log,(1 + x),
ao(x) =a(0x) = ZX/[3(1 +x)]r
a(x) = —2x(1 —x)In 2/[9(1 + x)?].

Note that a(x)<0, and the maximum value of |a(x)] is
about 0.019 at x = §.

It should be pointed out that Eq. (21) is similar to that
in the Kolmogorov lognormal model'? except that here the
three coefficients are Re dependent. In the limit
ay(x)> |a(x)|/2, the quadratic term in §,(x) can be ne-
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glected for small p. Thus £, (x) becomes a linear function of
p

&, (x) = ap(x)p +d — Dy(x). (22)
This result is similar to the beta model result, as shown in Eq.

(2), but again the coefficients a,(x) and D,(x) are Re de-
pendent.

IV. EXPERIMENTAL EVIDENCE

It was shown that the intensity correlation function,
g(2) = (I(0)1(2))/{1(0))?, for light scattered by small par-
ticles suspended in turbulent fluid has the form?”28

g(t) =1+ G(ktL),

where

(23)

L w©
G(kt,L) =f dR h(R)J dV P(V,R)cos(ktV). (24)
0 - o0

Intheabove, /(R) = 2(1 — R /L)/L is the number fraction
of particle pairs separated by a distance R in the scattering
volume, and V'is the component of V(R,?) along the scatter-
ing vector k. The scattering volume viewed by a photodetec-
tor is assumed to be quasi-one-dimensional with length L.
Equations (23) and (24) tell us that the light scattered by
each pair of particles contributes a phase factor cos(kt¥V)
(because of frequency beating) to the intensity correlation
function g(¢), and g(¢) is an incoherent sum of these ensem-
ble averaged (or time averaged) phase factors over all the
particle pairs in the scattering volume.

To compare with the experimental results, the distribu-
tion function P(¥,R) must be obtained first from the knowl-
edge of the velocity moments calculated in Sec. III. As
shown in Eq. (22), in the limit a,(x) > |a(x)|/2, £ (x)isa
linear function of p. It is easy to show that the following form
of P(V,R) can give the result shown in Eq. (22):

P(V,R) = (R/Ly)*~PXQ(V /u(R))/u(R);, (25)

where the scaling velocity u(R) ~R *, and L, is the size
at which the energy is injected into the turbulent flow. Clear-
ly, (R /L,y)¢~ P s the probability that a pair of points in
the flow, separated by a distance R, belongs to the turbulent
active region of dimension D,(x), and the homogeneous
function Q (V' /u(R))/u(R) is the velocity distribution func-
tion in the active region of turbulence. This suggests that a
fractal with a Re-dependent fractal dimension D,(x) is ade-
quate to characterize the scaling behavior of the small-veloc-
ity fluctuations when Re X Re,.

Quite generally, a homogeneous distribution function of
the form of Eq. (25) corresponds to an exponent &, »(x),
which is proportional to p. In the K41 theory the scaling
velocity u(R) in Eq. (25) equals (eR)!/3, which is the case
when x=1 in our model. In the beta model,?
#(R) = (€R)*(R/Ly) ~ P73 and D, is a constant.
With the distribution function, Eq. (25), Eq. (24) becomes

L R d
G(ktL) =J. dR h(R)(———-)
o L

0

— Dy(x)
F(ku(R)t), (26)
where F(ku(R)t) is the Fourier cosine transform of Q (¥ /
u(R)). Clearly, 2(R) (R /Ly)?~ 2 can be thought of as a
joint probability of finding a pair of particles separated by a
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distance R in the active region of turbulent flow.

Measurements of the intensity correlation function g(¢)
in I and in our other experiments®®?’ suggest that for small-
velocity fluctuations, the characteristic function F has expo-
nential form. If we assume F(ku(R)¢?)~exp[ — ku(R)t],
where #(R) ~R **, Eq. (26) becomes

L 3y ©
G(ktL) = 2(7) exp( — K)ngox"

0
( {3+ 9y)/(1 —3y) + 1}
A+3nT{B+99)/(1 =3») + 1 +n}
M{(6+91/(1 -39 +1} )

Q36 +9)/(1—3p) + 1+ '37)

Here ¥ = [d — D,(x)1/3, and T'{z} is the gamma function.
Inthe above, x = ktu(L) ~ ktL ', The measured G(kt,L)
fits Eq. (27) very well.”” From Eq. (27) it is apparent that
G(kt,L) is a homogeneous function G(«), and that for short
times 1, log G(kt,L) is a linear function of ¢ with a slope
proportional to ku(L). The reciprocal of the slope gives the
characteristic decay time of G(kt,L),
T=[ku(L)]"'~L =™ Comparing this result with the
measured decay time, 7~ L ~%, in Fig. 7 of I, we see that
&=ay(x).

If we include the effect of a(x), the exponent & »(x) be-
comes a parabolic function of p as shown in Eq. (21). A
specific distribution function, which can produce the result
of Eq. (21), is the lognormal distribution,

P(V,R) = (R/Ly)*~>>™Q(V,R), (28)
where
Q(V,R) = (1/\2maV)exp[ — (In V — 1)*/26%].  (29)

In the above g = In[ V(R /Ly)**®], and ¢* = a(x)In(R /
L,), where V¥, has the dimension of the relative velocity.

With the distribution of Egs. (28) and (29), G(kt,L) in
Eq. (24) can be calculated. First, by changing the integra-
tion variable, the ensemble average of cos(k¥?) in Eq. (24)
can be carried out, and the result is

- e ngr2n a(x)n?
f dV Q(V,R)cos(kVt) = ¥ %(I‘A)’ 0 ’
o ) :
BE

where K = Vokt(R /Ly)**®. Inserting Eq. (30) into Eq.
(24), and only keeping the first two terms for the small ¢
limit, we obtain

G(kt,L) zA{l — B [ktVo(L /Lo)au(X) + a(x) ] 2}’ (31)
where A and B are two irrelevant coefficients. Thus the
short-time behavior of G(k#,L) can be characterized by a
decay time T(L)~L ~ >~ 2> According to this equa-
tion, the measured exponent £ in I has the form

§=ay(x) + a(x). (32)

To have a numerical comparison between our calcula-
tions and the experimental results in I, the functional form of

x(Re) must be given in advance. A simple function that
gives a good fit to our measurement of £(Re) is

P. Tong and W. |. Goldburg 3257

Downloaded 30 May 2002 to 139.78.124.138. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



x(®) = A tanh(Cw?). (33)

Here @ = (Re — Re_)/Re,, and C and ¢ are parameters
chosen to fit the experimental data in 1. The parameter 4 is
the asymptotic value of x(@w) when Re— . If the turbu-
lence is space filling and fully developed (Re very large)
then 4 = 1. To include the effect of intermittency, we set
A < 1. For example, Benzi ez al.'® analyzed the experimental
data of Anselmet et al.'” and found 4 = 0.875, according to
their model. Because of the relatively large experimental un-
certainty in {(Re), both values of 4 can fit our data.

The transition Reynolds number Re, in the definition of
@ is that value of Re below which G(kt,L) no longer has
scaling form and where § approaches zero from above (see
I). We calculate ay[x(@)] as a function of w explicitly by
using Eqgs. (33) and (17). Figures 5 and 6 show our meaure-
ments of £ vs @ in the turbulent grid fiow and pipe flow,
respectively. The data are taken from Fig. 7 of I. Also shown
is the calculated function ay(w) (solid curve). The fitting
parameters in the plots are C = 0.5 4 0.1, ¢ = 0.5 4- 0.1 for
the grid flow,and C = 0.3 £+ 0.1, ¢ = 0.6 4 0.15 for the pipe
flow. Using Egs. (33) and (17) we have, for small o,

ay(@) ~?, (34)

which is the fitting function we used in Fig. 8 of I. For the
grid fiow the fitted value of ¢ as shown above is consistent
with that in Fig. 8 of I. For the pipe flow the fitted value of ¢
is twice as large as that in Fig. 8 of I. In Fig. 8 of I we fit the
data in pipe flow out to w ~ 10, and here we fit the data out to
@ ~=27. This large uncertainty in ¢ is because we only have a
few data points for { (@) at small @ in pipe flow (¢ is sensitive
to the data at small ). Drawing a parallel with the mean
field theory of phase transitions, Egs. (33) and (34) are
suggestive of the development of a local order in strong tur-
bulence.

The effect of a(x) on ¢ in Eq. (32) is small. Figure 5
displays the difference of the two curves: ay(w) vs @ (solid

0.36

ao(w)
—=— gy (w) + alw)

I | L L 1

4 8 12 16
w = (Re —Re.) /Re,

FIG. 5. The measured scaling exponent { vs @ = (Re — Re_ }/Re, in turbu-
lent grid flow. The solid curve is a fit to @y(w), and the dashed curve is a fit
to ao(@) + a(w) with C = 0.6 and ¢ = 0.5 [cf. Eqs. (32) and (33)].
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FIG. 6. The measured scaling exponent { vs @ == (Re — Re_)/Re, in turbu-
lent pipe flow. The solid curve is a fit to ay(w).

line) and ay(®) + a(w) vs @ (dashed line). The relative
difference between the two curves, |a(x)|/ay(x), increases
as Re is decreased but is no more than 23% when Re % Re,.
The fitting of ay(w) + a(®) to the data is slightly better
than that of a¢y(@). From Eq. (3) it is apparent that the
deviation of £, (x) from linear p dependence of Eq. (22), or
P(V,R) from the scaling form of Eq. (25), will increase for
the large-velocity fluctuations (large p) at fixed Re. Our
measurements in I were not sensitive enough to establish the
presence of corrections to £, (x) from higher powers of p in
Eq. (3). Put in another way, the data were not sufficiently
accurate to determine whether the low Reynolds number
turbulence should be described by the multifractal model
presented here, or merely by a homogeneous fractal with a
fractal dimension that increases with Reynolds number.
Further measurements for higher moments of velocity fluc-
tuations are required in order to verify the present calcula-
tion.

V. CONCLUSION

In paper I and the present paper we have investigated
turbulent flows at moderate Reynolds numbers. The experi-
ment® described in I suggests that the scaling picture can be
applied to the small-velocity fluctuations in turbulent flows
at moderate Re, provided that one introduces a Re-depen-
dent scaling parameter. In particular, we find that when
Re> Re, the distribution function P(V,R) has a scaling
form Q[V /u(R)]/u(R), where the characteristic velocity
u(R) obeys the scaling law, #(R) ~ R ¢. In contrast to fully
developed turbulence, where § is a constant, the measured
exponent § for turbulence at moderate Re shows a nontrivial
Re dependence. In the vicinity of Re,, £ as a function of Re is
approximately of the form {~ [ (Re — Re,)/Re,]?, where
¢~0.5. Near the maximum attainable values of Re, { has
climbed to, and saturated at, a value close to §, the Kolmo-
gorov value. This transition behavior is found both in pipe
flow and in grid flow.

In conformity with the above experimental results, we
conjecture that turbulence in the transition region can be
characterized by a general scaling theory. In this paper a
model calculation is presented to study the scaling behavior
of turbulence at moderate Re. In particular, we propose that
the fractional volume occupied by eddies of various sizes
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depends on the Reynolds number. To achieve this, we extend
the random beta model by introducing a Re-dependent prob-
ability amplitude x(®) in the bimodal distribution of 8,
where = (Re — Re_)/Re, is the reduced Reynolds num-
ber. With this extension we have shown that the small-veloc-
ity fluctuations in the flows at relatively low turbulence lev-
els can be characterized by a scaling velocity #(R). This
scaling velocity has the form, #(R) ~ R **_ Therefore the
distribution function P(¥,R) can be approximated by a ho-
mogeneous function of the form, P(V,R)
~R¥= 20 (V /u(R))/u(R). In the above, D,(x) and
ay(x) can be thought of as an “average” fractal dimension
and an “average” scaling exponent, respectively, both of
them depending on Re. The calculated Re dependence of the
scaling exponent a(x) is consistent with the experimental
datain L.

We have also calculated a correction to scaling as shown
in Eq. (3), even though the measurements in I were not able
to confirm the presence of this correction. It is interesting to
note that in this calculation the quadratic term correction in
Eq. (3), la(x)|/ay(x), increases as Re decreases toward the
transition Reynolds number Re,, but never exceeds 23% as
long as ReR Re,. Using multifractal ideas the Re depen-
dence of the generalized dimension D_(x) and the “spec-
trum of singularities” f{a,x) have been calculated. This cal-
culation gives predictions for the large-velocity fluctuations
in turbulent flow. These predictions should be tested by
further measurements on the higher moments of the velocity
fluctuations, {(V(R,t)”), or the distribution function,
P(V,R), of the large-velocity fluctuations at various Reyn-
olds numbers.
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