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Turbulent pipe flow and grid flow have been explored by the scattering of light from small
particles suspended in a fluid. Laser Doppler velocimetry and visual observation were used to
characterize the gross features of the flows. However, novel information came from the
homodyne correlation function g(¢), which was measured as a function of the Reynolds
number, the photon momentum transfer, and the size of the scattering volume. In terms of
these control variables, g(¢) was found to be of scaling form. Using such measurements one
can deduce from the probability distribution function, P(¥,R), that two particles, separated by
a distance R, have velocity difference V(R,t). For small-velocity fluctuations, the scaling
behavior of g(¢) implies that P(¥,R) has the form Q[ ¥V /%(R)]/%(R). This self-similarity in
P(V,R) is seen only when Re exceeds a transition Reynolds number Re,. The measured
scaling velocity %(R) has the form #(R) ~R ¢, with { increasing from O at Re = Re, to ~}at
the maximum attainable levels of turbulence. This scaling behavior was seen in both the grid
and pipe flows. By measuring g(¢) at very small ¢, one can also obtain information about the
large-velocity fluctuations. It is found that P(¥,R) is well approximated by the product of a
Lorentzian and a Gaussian function with characteristic velocities %(R) and u(R), respectively.

Here u(R) identifies the large-velocity fluctuations.

I. INTRODUCTION

Turbulence is generally viewed as a cascade of energy,
injected at a large spatial scale, to smaller and smaller eddy
sizes.! Of special interest is the velocity difference V(R,t)
associated with eddies of size R. If follows from the eddy
cascade picture that these velocity fluctuations are self-simi-
lar at various spatial scales R in the inertial range, where the
energy cascade proceeds without dissipation. This implies®
that the moments of V(R,¢), {|V(R,t)|"), vary as some pow-
er of R. More generally, the probability distribution function
P(V,R) of V(R,t) is a homogeneous function, Q[|V|/
u(R)]/u(R), where u(R) is a characteristic velocity.? The
self-similarity, or scaling, is generally thought to hold only at
extremely large Reynolds number, where many experiments
have been carried out.** There has also developed in recent
years a great interest in hydrodynamic flows in the opposite
regime of low Reynolds number at the onset of turbulence.®’
The experiment described here is a light scattering study of
turbulent flows at intermediate Reynolds number, where
self-similarity is also seen.

It was shown®'° that the distribution function P(V,R)
is accessible by the technique of photon correlation homo-
dyne spectroscopy (HS).!! This was first demonstrated
many years ago by Bourke et al.'® The photon correlation
technique used here differs from the standard one of laser
Doppler velocimetry (LDV),'>!? in that LDV measures the
local velocity v(r()), whereas homodyne spectroscopy
senses the instantaneous velocity difference V(R,z). With
the HS scheme the scattering is produced by small seed parti-
cles in the fluid, which follow the local flow. The photodetec-
tor records the scattered light, which is the beating of
Doppler-shifted light scattered by pairs of flowing particles.
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The output of the detector is therefore modulated at a fre-
quency equal to the difference in Doppler shifts of all particle
pairs in the scattering volume. For each particle pair, sepa-
rated by a distance R, this difference is

@ [v(r(0)) — v(r(#) + R)] = ¢V(R,1),
where the scattering vector q has the amplitude
q = (4mn/A)sin(6/2).

Here 8 is the scattering angle, n the refractive index of the
fluid, and A is the wavelength of the incident light. With this
so-called homodyne method, one records the intensity corre-
lation function g(z) = {I(¢")I(t' + 8))/{I(¢"))?, where
I(1) is the intensity of scattered light, and the angle brackets
represent an ensemble average over many realizations.

The correlation function g(#) has the following form®°:

g(t) =1 -+ G(qtyL)’ (1)
where

L 0
G(qt,L) =f dR h(R) f dV P(V,R)cos(qtV).
0 — o0
(2)

Inthe above, Vis the component of V(R,) along the scatter-
ingvectorq,and A(R) = 2(1 — R /L) /L is the number frac-
tion of particle pairs separated by a distance R in the scatter-
ing volume. The scattering volume viewed by a
photodetector is assumed to be quasi-one-dimensional with
length L. Equations (1) and (2) indicate that the light scat-
tered by each pair of particles contributes a phase factor
cos(gt¥V) (as a result of frequency beating) to the intensity
correlation function g(¢), and g(¢) is an incoherent sum of
these ensemble averaged (or time averaged) phase factors
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over all the particle pairs in the scattering volume. The en-
semble average of the phase factor, cos[qV(R)¢?], involves
the velocity distribution function P(¥,R). The weighted
average over R is required because the detector is sensitive to
all particle pairs in the scattering volume, and for small R,
more pairs will be found in the scattering volume than that
for larger R.

When the distribution function P(¥,R) has the scaling
form Q(V/u(R))/u(R) as mentioned above, Eq. (2) be-
comes

L
GlgtL) = f dR h(R)F(qru(R)), (3)
0

where F(x) is the Fourier cosine transform of Q (V /u(R)).
The above calculation was made by assuming that g(¢) var-
ies on only one dominant time scale. This assumption is valid
in our experiment where the time scale of interest is much
shorter than other characteristic times associated with the
decay of g(¢). These characteristic times are the turbulent
turnover time, the time associated with the particle diffu-
sion, and the transit time caused by the passage of particles
through a laser beam of small diameter.® The HS technique
yields information about velocity fluctuations without intro-
ducing an invasive probe, such as a hot wire anemometer.'*
Nor is it necessary to invoke Taylor’s “frozen turbulence”
assumption’® to interpret the measurements.

Recently, the present authors and their collaborators
have exploited the HS technique to study turbulent pipe flow
behind a grid at moderate Reynolds numbers.® The Reyn-
olds number of this grid flow is defined as Re = UM /v,
where U is the mean flow velocity at the centerline of the
pipe, M ( = 3.1 mm) is the aperture size of the grid that
generates turbulence, and v is the kinematic viscosity of the
fluid. It was found that when Re becomes larger than a tran-
sition Reynolds number, Re, ( ~ 300400 for the grid flow),
the function G(qt,L) extracted from the measured g(¢) has
the scaling form

G(qt,L) = G(x), (4)

where x = gria(L). Here u (L) is the characteristic turbulent
velocity at length scale L. Both the functional form of G(«)
and its scaling argument « provide information about the
statistical properties of the velocity fluctuations V(R,t).
Measurements of g (#) suggest that the distribution function
P(V,R) for small values of V(R,t) is Lorentzian-like when
Rez Re,. Equivalently the characteristic function F(x)
[the Fourier transform of P(V,R) ] in Eq. (3) decays expon-
entially. We also found that the characteristic velocity # (L)
has a scaling form #(L) ~ L . The exponent £ shows a non-
trivial Re dependence and reveals a transitional character
when Re is near and above Re,. When Re 1400, { has
climbed to, and saturated at, a value close to § (the Kolmo-
gorov value).

In this paper we report a further HS study of turbulent
grid flow, as well as pipe flow. The Reynolds number of the
pipe flow is defined as Re = Ud /v, where d( = 4.4 cm) is
the diameter of the pipe. When Re becomes larger than Re,
( ~ 30004000 for the pipe flow), the self-similar feature of
the relative velocity fluctuations seen in the grid flow are also
observed in pipe flow. When the Reynolds number is near
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and above Re_, the scaling exponent & of the characteristic
velocity #(L) has the form {(Re) ~ [ (Re — Re,)/Re, }*
for both flows. We found that the distribution function
P(V,R) is well approximated by a product of a Lorentzian
function and a Gaussian-like function. While the small-scale
statistics of velocity fluctuations in pipe flow are similar to
that of grid flow, there are some differences regarding the
different geometries of the two flows.

In a future paper (denoted as II), we present a phenom-
enological model in an attempt to intercept our measure-
ments. Using multifractal ideas,'®!” we generalize the ran-
dom beta model'® to explore the Re dependence of the
self-similarity of turbulence at moderate Reynolds number.
According to this model, the scaling behavior of small-veloc-
ity fluctuations can be characterized by a single Re-depen-
dent scaling exponent a,. The calculated Re dependence of
a, is consistent with the experiment described here.

Section II contains the experimental details, including a
brief description of the experimental methods for visual ob-
servation of flows and laser Doppler velocimetry. The re-
sults appear in Sec. III, and the work is summarized in Sec.
Iv.

Il. APPARATUS AND METHOD

The physical arrangement for the correlation function
measurement is the same as that of Ref. 8 and is shown in
Fig. 1(a). The water, seeded with polystyrene spheres of
diameter 0.06 um, is circulated through a closed system by a
pump. Since the size of the polystyrene spheres is much
smaller than the wavelength of the incident light (4 = 0.488
pm), the scattering by these particles is nearly isotropic. A
section of the pipe (diameter = 4.4 cm) is made of glass to
admit the incident laser beam and observe the scattering.
Undesirable velocity fluctuations produced by the pump or
by the pipe corners are damped out by a screen (SC) (aper-
ture size = 2.0 mm) on the high-pressure side of the grid
(G), which generated the turbulence. The aperture size of
the grid, M, was 3.1 mm and the diameter of rods with which
the grid is made was 1.5 mm. The measuring point was on
the axis of the pipe and 28 cm downstream from the grid (x/
M =90). In the pipe flow experiment we simply removed
both the grid and the screen. The temperature of the circulat-
ing water was stabilized at room temperature. The mean
flow velocity U was varied by changing the pump speed.

Measurements of the correlation function g(¢) were
performed using a standard light scattering apparatus and a
multichannel correlator (Langley Ford 1096). The lens L,
in Fig. 1(a) focuses the laser beam from an argon-ion laser to
make the scattering volume as one dimensional as possible
on the axis of the pipe (the focused beam diameter ~0.1
mm), while L, forms an image of this volume on the slit S of
that the size of the scattering beam is the same as that of its
image (the magnification is 1). Itis the light passing through
the slit that illuminates the photomultiplier (PM) located
far behind the slit. The water inlet and outlet as well as a
standpipe (BT), where air bubbles can leave the fluid, are
also shown in Fig. 1(a). The incident beam direction and the
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(b)

FIG. 1. Schematic diagram of (a) homodyne spectroscopy setup: LS, argon
ion laser; L, and L,, lenses; S, slit; G, grid; SC, screen; BT, air bubble trap;
PM, photomultiplier; COR, correlator; CP, computer; IN, inlet of flow;
OUT, outlet of flow; and LDV setup: LS, He—Ne laser; BS, beam splitter,
RP, right-angle prism; A /2, half-wave plate; GT, Glan-Thompson polariz-
er; L,, L,, lenses; PM, photomultiplier; BP, bandpass filter; SP, signal pro-
cessor; SO, storage oscilloscope; CP, computer.

aligned optical apparatus (the lens L,, the slit S, and the
photomultiplier PM) define the scattering angle 6. The out-
put signal from the photomultiplier was converted into
pulses of standard size, which went to the correlator (COR),
whose output gives the correlation function g(¢). Also indi-
cated is the computer (CP) (PDP-11/24) for storing and
analyzing the data.

In order to classify the pipe flow and the grid flow, two
kinds of ancillary measurements were carried out, namely,
visual observation of the flow and laser Doppler velocimetry
(LDV).'>!3 To view the flow, the incident laser beam from
an argon-ion laser entered the fluid along the axis of the pipe
and was defocused by a lens. The laser beam then illuminat-
ed the large center region of the pipe. The circulating fluid in
the pipe was tap water, and the moving traces of big dust
particles in the water could be seen by eye.

The dual-beam forward-scattering method'* was used
in measuring the longitudinal local velocity v(r(¢)). The opti-
cal layout of the laser Doppler velocimeter is shown in Fig.
1(b). The cubic beam splitter (BS) and the right-angle
prism (RP) produce two parallel beams. The right-angle
prism sits on an optical mount that has fine orientational
controls to bring the two beams into exact parallelism. The
half-wave plate (4 /2) and the Glan-Thompson polarizer
(GT) are adjusted so that the two beams have the same
intensity and the same polarization. The lens L, with a focal
length of 12 cm focuses the interfering beams at the point
where the velocity is to be measured. The lens L, collects the
scattered light, whose amplitude is modulated as particles
pass through the fringes produced by the interfering beams.
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The modulated light is focused on the photomultiplier
(PM). The LDV system was mounted on a train so that it
could be easily calibrated and could be moved without
realignment to obtain velocities at different points in the
flow.

The photomultiplier was operated in the current mode
to detect the Doppler signal at a frequency of the order of 100
kHz. The photomultiplier output was first filtered by a band-
pass filter (BP), and then went to a TSI Model 1980 counter-
type signal processor (SP). The counter was operated so
that it counted no less than 16 cycles of a Doppler burst, and
rejected the signal if the cycle period within each burst fluc-
tuated by more than 1%. The seed particles were polysty-
rene spheres of 1 um in diameter. The mean velocity, the
variance of the local velocity, and the local velocity distribu-
tion can be deduced from an ensemble of velocity measure-
ments that were stored in the computer (CP). The typical
sampling rate in the LDV measurements was about 1 Hz.
Both the fast digital oscilloscope (SO) display of individual
Doppler bursts and the measurements of the velocity distri-
butions showed that our velocity measurements were very
accurate..

. EXPERIMENTAL RESULTS
A. Visual observation of flows and LDV measurements

Before turning to the discussion of our new findings ob-
tained from the measurements of the intensity correlation
function, we first discuss results from the visual observation
of flows and from the LDV measurements. The main aim of
these ancillary observations was to establish that the turbu-
lence in our system (both the grid flow and the pipe flow)
was typical of previously studied flows of the same geome-
try.'*?! The reader who wants to learn first about our new
results should turn to Secs. III B and 111 C.

Asshown in Fig,. 2, the normalized mean velocity profile
of the grid flow in the direction transverse to the mean flow
direction becomes flat rather than parabolic when the Reyn-
olds number is above 280. The velocity was measured 28 cm
downstream from the grid (x/M = 90), the same position at
which HS measurements were carried out. The flat velocity
profile indicates the onset of turbulent flow. Similar flatten-

1.0 /Q—O—l\ .
A
5/3 é g\
0.8 /§/ } ]

o -]

: |& -
O 0.6} 7
~ Re
) * 2200

0.4} { 4 1400 e
° 620
o 280

o0.2f . ae 1
(o) 1 ! 1 A

0 0.5 1.0

r/a

FIG. 2. The normalized mean velocity profiles in the transverse direction
for grid flow at indicated Reynolds numbers. Here U, is the mean velocity
at the centerline of the pipe, and a is the radius of the pipe.
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ing of the mean velocity profile in the pipe flow was also
observed when Re becomes larger than the transition Reyn-
olds number of the pipe flow.

A Gaussian-like local velocity probability distribution
was observed in our flows. An example of the distribution
function is displayed in Fig. 3, which shows the local velocity
distribution function of pipe flow at Re = 20 000. The hori-
zontal axis in the plot is the Doppler frequency, which is
proportional to the local velocity of fluid. The bandwidth in
the measurement, 50-120 kHz, was set by the bandpass fil-
ter. We repeatedly measured the local velocities (3000-1000
data points for each record) for various mean flow speeds at
six downstream positions. Both the grid flow and the pipe
flow show similar behavior of the velocity distributions at
different downstream positions and different Reynolds
numbers. These velocity distributions are Gaussian-like
with a kurtosis (the fourth moment normalized by the
square of the variance) close to 3 and a small skewness (the
third moment normalized by the variance to the § power). It
should be noted that, due to the intrinsic limitation of the
LDV technique and the slow sampling rate in our measure-
ments (as a result of the severe conditional sampling and
sparse seeding), our LDV measurements were insensitive to
rare but large relative velocity fluctuations even though they
were very noticeable by visual observation.

Comparing the grid and pipe flows, the LDV measure-
ments reveal that the turbulent intensity near the pipe wallin
the pipe flow is much larger than that in the grid flow at
equal values of U. The turbulent intensity is defined as

J{(6v)®)/U, where v is the fluctuating part of the flow
velocity about its mean value U. This indicates that the pipe-
generated turbulence is produced by the boundary and that
the boundary effect on the grid flow is relatively small. The
difference between the two flows becomes more apparent
from the way that both flows change their character as Re is
increased to the transition Reynolds number Re,. This pro-
cess was best followed by the visual observation of flows,
which is also a useful way to study turbulence at low Reyn-

olds numbers.
For the grid flow, when Re < 20, which is far below Re,

(~300—400), the flow is seen to be laminar throughout the
entire test section, which extended 30 cm downstream from
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FIG. 3. The local velocity distribution of pipe flow at Re = 20 000.
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the grid. The moving traces of particles are straight lines
parallel to the axis of the pipe. As Re is increased to about
100, small-scale local velocity disturbances appear first near
the grid. The trajectory of the individual particles becomes
entangled in very small regions of size ~ 1 cm near the grid,
and they are almost straight lines farther downstream. This
suggests that these local disturbances (eddies) are generated
by the grid. The number of visible eddies at this stage is quite
small. At this Reynolds number we also observed that in the
“eddy region,” the velocity fluctuation V(R,¢) is larger than
the mean flow velocity U, and in the “laminar”-like region
the velocity fluctuations are small compared to U. When
Re~200, the apparent number of eddies is increased and
eddies near the grid form a turbulent region, within which
the particle trajectories become intertwined. As Re is in-
creased toward Re,, the “laminar”-like region progressively
decreases in volume, and the turbulent region expands in the
downstream direction. Finally, when Re 2 Re, the turbulent
region occupies the entire test section. Now the further de-
velopment of the turbulent flow becomes hard to follow by
eye. We have found that the parameter Re, can also be de-
duced from the measurements of g(¢).*° One purpose of our
visual observations was to see if the flow pattern changes as
Re = Re, is crossed.

For the pipe flow, when Re £ 450, the flow is laminar in
the entire test section and the traces of particles are straight
lines parallel to the axis of the pipe. As Re is increased to
~ 1600, particles in the flow start to meander slowly in both
the longitudinal and transverse directions. When Re reaches
~2000, eddies appear first in the downstream region of the
test section. As Re approaches Re,_ (Re, ~ 3000-4000), the
turbulent region expands in the upstream direction, a behav-
ior opposite to that of the grid flow. Occasionally, eddies
were seen to sweep through the illuminated region from the
pipe wall. When Re ~Re,_, the turbulent region occupies the
entire test section as in the grid-generated turbulence. We
emphasize that the transition from laminar to turbulent flow
occurs at approximately the same velocity for both pipe and
grid flows, even though the Reynolds numbers are very dif-
ferent.

B. Small relative velocity fluctuations

As discussed in Sec. I, the function G(qt,L) extracted
from the measured g(¢) in the grid flow has the scaling form
G(x) in Eq. (4). The data analysis® suggests that for small
relative velocity fluctuations, P(¥,R) is Lorentzian-like, for
which moments higher than the first diverge. Of course
P(V,R) cannot remain Lorentzian for very large velocity
fluctuations, since the turbulent energy injection rate is fi-
nite. Referring to the above experimental results, Onuki pro-
posed?? that the three-dimensional distribution P(V,R) for
the isotropic turbulent flow is a product of two functions.
One function is associated with the small-velocity fluctu-
ations, having the Lorentzian-square form (in the three-di-
mensional case) and being characterized by a scaling veloc-
ity #(R) as mentioned above. The other function is
associated with the large-velocity fluctuations, having finite
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moments and being characterized by a “cutoff’ velocity
u(R)>#(R). Under the assumption that the moments
(|V(R,?)|") obey the original Kolmogorov theory,' it is
shown by Onuki that the two characteristic velocities #(R)
and u(R) have the same R dependence [#(R)
~u(R) ~R '/*]. Onuki also predicts that the characteristic
function F in Eq. (3) should cross over from exponential-
like form [F~1 — @(R)qt] to Gaussian-like form [F~1
— const #(R)#(R) (gt)?] when gtu(R) ~1.

We first discuss here the long-time [gtu (L) > 1] behav-
ior of the correlation function g(¢) in the pipe flow. These
measurements provide information about the small-scale
statistics of the small relative velocity fluctuations [since
V(R,t)/u(R) and qtu(R) are two conjugate variables in the
Fourier transformation, qtu(R)>1 means V(R,t)/
u(R) €1]. In Sec. III C we will discuss the statistical prop-
erties of large-velocity fluctuations [ V(R,)/u(R)~1], in
which case the correlation function g(¢) is measured at very
small times so that gru(L) ~1.

It is found that the measured G(qt,L) in pipe flow (grid
removed) has the same self-similar feature as that of the grid
flow, the functional form of G(gq¢,L) in the pipe flow being
the same as that shown in Eq. (4). In Ref. 8 we detailed the
procedure with which it was established that G(qt,L) has
the scaling form G(x). The scaling result,
G(qt,.L) = G (qtu(L)), where u(L) ~ L%, implies that log—-
log plots of G(qt,L) at various values of ¢ and L can be
brought into coincidence by sliding them horizontally with
respect to each other. The same scaling feature is also found
in pipe flow when Re exceeds some particular value, i.e.,
Re.. In grid flow Re, ~300—400, and in the pipe flow Re,
~3000—4000. Figure 4 shows G(«) as a function of x defined
in Eq. (4) for various values of Re, slit width L, and scatter-
ing angle 6. It is seen that the functional form of G(gt,L) in
the two flows is the same. However, the absolute value of the
decay time, T(L) ~ [qu(L)] ™", of G(«) is different in the
two flows, though the L dependence of 7°(L) is the same. In
fact, we observed that under the same physical conditions,
the correlation function g(#) in pipe flow decays faster than
that in grid flow. This difference in decay time was found to
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FIG. 4. The homogeneous function G(x) vs x = qtt(L) for both pipe and
grid flows at indicated parameters.
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be independent of the size of the scattering volume L when ¢
and Re were fixed. This is related to the fact that the two
flows may have different proportionality constants in the
equation T(L) ~ [qu(L)] ™"

The L dependence of the characteristic velocity #(L) in
pipe flow is found by measuring the decay time T(L) of
G(gt,L). The integral in Eq. (3) can be approximated by a
sum =Y_,A4,F(x,), where the N + 1 weights 4, and the
N + 1abscissas x,, are determined using the Gaussian quad-
rature method.?® The error introduced by this approxima-
tion is estimated in terms of the (2N + 2)-th derivative of
F(x).?® In particular, we found that G(q¢,L) in Eq. (3) can
be approximated by the characteristic function F(x) evalu-
ated at its zeroth-order abscissa 0.643qtu(L). It turns out
that the error introduced by this approximation is no more
than 49% when ¢t (R)<1. Hence G(qt,L) extracted from
the measured g(¢) at small ¢ is proportional to the character-
istic function F(0.643g7%(L)). Figure 5 is a semilog plot of
G(qt,L) versus time ¢ at Re =23 000, 6 =90°, and L = 0.3
mm. When 7 % 20 usec, log[ G(gt,L) ] is a linear function of ¢,
which indicates that the characteristic function F(x) decays
exponentially. The slope of the straight line (see Fig. 5)
yields a characteristic decay rate, 1/T(L), of G(gqt,L). From
a series of such plots, corresponding to various L but fixed ¢,
we found that T as a function of L obeys a power law,
T(L)~L ~%, as is seen in Fig. 6. Figure 6 shows log-log
plots of the decay time 7"vs L. The three curves in the figure,
all made at @ = 90°, correspond to Re = 5400, 14 300, and
26 000. The lower two curves of Fig. 6 show thatlog[ 7(L)]
lies on a straight line when L isinthe range 0.1mm <L < 1.0
mm.

Experimentally we have verified that the power law be-
havior at large L was limited by the coherence length of the
optical system.'' The lower cutoff at small L was controlled
by the diameter of the incident laser beam (~0.1 mm).
When L 50.1 mm, the measured decay time is determined
by the width of the beam rather than its length, and a further
decrease of L will not change 7. From the straight line seg-
ment (solid line in Fig. 6) we can extract the slope &, which
shows a Re-dependent feature. The number below each
straight line in Fig. 6 is the value of £ at the indicated Re. We
speculate that T should be independent of L when L is less
than the Kolmogorov dissipation length L, since there are
no eddies smaller than this size. One may hope to measure
L, by finding the value of L at which T levels off as L is
decreased. In fact, it can be seen from Fig. 6 that when
Re = 5400, T levels off at L ~0.3 mm (dashed line), which
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FIG. 5. A plot of log[G(gt,L)] vs ¢ for pipe flow at indicated parameters.
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FIG. 6. The variation of the decay time Twith L for pipe flow at different Re
and fixed & (90°). The number labeled below a line is the slope of that line.

suggests that L, ~0.3 mm at this turbulent level.

The Re dependence of the exponent £ in pipe flow is
displayed in Fig. 7. For the purpose of comparison we also
includein the inset a plot of £ vs Re in the grid flow.® The two
curves are similar except that the two flows have a different
transition Reynolds number, i.e., Re,. For both flows ¢ satu-
rates at ~} (the Kolmogorov value) at higher Re, and there
is a small amplitude oscillation superimposed on the satura-
tion line of £. This oscillation may be real in spite of the large
uncertainty.

In the grid flow we have found® that £ as a function of Re
near Re, was well fitted to the equation

£(Re) = Co®, (5
where o = (Re — Re_)/Re,. Here C and ¢ are fitting pa-
rameters. The measured ¢ in the pipe flow can also be fitted
to Eq. (5). But this time the transition Reynolds number
Re, and the exponent ¢ are different. Because of the large
uncertainty in Re,, the exponent ¢ is not well determined.
Our data were fitted to Eq. (5) with ¢, Re_, and C as fitting
parameters. Figure 8 shows the fitting results for the data

0.4 T

0.2+

T

0.4F %7 0%

0 1 1 L L I} L 1 1
103 104 10°

Re
FIG. 7. The exponent £ as a function of Re in pipe flow. The solid curve is

drawn by eye through the data points, and the dashed curve shows the oscil-
latory behavior of £. The inset shows ¢ vs Re in grid flow.
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FIG. 8. The variation of £ with Re near the transition Reynolds number
Re,. The solid curve is a fit to Eq. (5); (a) pipe flow, (b) grid flow.

from Fig. 7. For the pipe flow [upper curve (a)] the fitted
results are Re, = 2160 + 1000 and ¢ = 0.30 + 0.1. For the
grid flow [lower curve (b)] Re =263 +64 and
¢ = 0.47 + 0.05. The large uncertainty of the fitting param-
eters in the pipe flow is due to the lack of data at small ».

C. Large relative velocity fluctuations

As mentioned above, the functional form of the charac-
teristic function Fshould cross over from exponential-like to
Gaussian-like when gtu(L) ~ 1.2 Hence if the sampling
time of the correlator is set so small that gzu(L) ~1, the
measured correlation function should change its functional
form. In this section we discuss this short-time crossover of
g(#) in the grid flow.

If P(V,R) is a product of two functions, the Fourier
transform of P(V,R) is the convolution of the two individual
Fourier transforms. Because the distribution function
P(V,R) is assumed to have the form

P(V,R) ~exp( — {v/[V2u(R)1Y})/{1 + [V /4(R) ]},

6
the Fourier transform of P(V,R) becomes ©
F(qt,R) = J-m dt’ exp[ — (L"—t))z]

—w a;
Xexp( — |¢'|a})
=aj [e— V% erfe{ — t/a} + a5/ (2a5)}
+¢/% erfe{t /a3 + a5/(2a3)}]. )

In the above, erfc{x} is the complementary error function,
a, = 1/{q(R)], and a; = v2/[qu(R)]. The parameter a;
is an irrelevant constant. As mentioned in Sec. III B, with
the Gaussian quadrature method®* G(g¢¢,L) in Eq. (3) can
be approximated by the characteristic function F(x) evalu-
ated at its zeroth-order abscissa 0.643x. Therefore we have

G(qt,L) ~a,{e """ erfc[ — t /a; + a;/(2a,)]
+ e'’% erfct /a; + a3/ (2a,) 1} (8)
where a, = 1/[0.643 g (L)), a, = v2/[0.643qu(L)], and
a,is also irrelevant. The error introduced by this approxima-
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tion is no more than 13% when gru(R)<1. Equation (8)
was well fitted to the measured G(gt,L) in the short-time
region, where a,, a,, and a; are fitting parameters. A typical
fit is displayed in Fig. 9 (solid line), which shows G(gt,L) at
Re~837, 8 =90°, and L = 1.0 mm. The fitting results are
a, =4.77X 107 sec and a; = 8.30 X 107° sec.

The fitting results in Fig. 9 yield the ratio of the two
decay times, a,/a; = 5.75. Because the Gaussian factor in
P(V,R) introduces a roundoff to G(gt,L) near t =0, the
absolute value of the slope of G(gz,L) should decrease as ¢
approaches zero. This decrease in slope is more clearly seen
in the semilog plot of G(gt,L) in the inset of Fig. 9. The inset
of Fig. 9 also shows that G(gt,L) at large ¢ is best fitted to a
single exponential, which is associated with the Lorentzian
factor in P(V,R). Many measured G(qt,L) at various slit
widths and Re were fitted to Eq. (8). It is found that the
typical value of the ratio, ¥y = u(L)/%(L) = V2a,/a,, is
about 7, and does not change very much with Re and L.
Using the fitted values of @, and a; we calculated that u(L)/
U=~4.0% and \(|V]?)/U=~2.7%, whereas the turbulent in-
tensity measured by using LDV technique /(6v°) /U was
about 5.6%.

Kraichnan pointed out®* that the Brownian motion of
the seed particles may affect the behavior of G(gt,L) near
t = 0. The effect of the Brownian motion is to contribute a
factor exp( — 2Dg*t) to G(qt,L), where D is the diffusion
constant of Brownian particles. The diffusion time T,
= (2Dg*) 7! can be obtained by measuring the correlation
function g(#) when the flow is absent.”® In our experiment
the measured diffusion time 7, = 1.13X10™* sec. By
equating the Brownian motion contribution with that of the
Gaussian roundoff of G(gt,L) in the short-time region,?? we
can show that the Brownian motion will eventually domi-
nate over the Gaussian roundoff effect when t<3wD/
[u(L)u(L)]. This time is 6.83 X 10~ sec for Fig. 9. The
time resolution (the smallest sampling time) in the measure-
ment of G(gt,L) is 10~ 7 sec. Therefore the Brownian motion
must be taken into account. The measured G(gt,L) shown in
Fig. 9 has been divided by exp( — ¢ /T, ) to eliminate the

0.14 ]
0.12 :
3
o 0.10 ]
4 2% 1.6x107° 3.2
o 0.08r Time {sec} E
Re = 837
0.06F g = s0° :
L =1.0mm e
0.04 Rik XY .
S i 1 1 i 1 1 1 1
o} 1.6 3.2 4.8 6.4 %105

Time (sec)

FIG. 9. A typical plot of the function G(g#,L) vs ¢ in grid flow. The solid
curveisa fit to Eq. (8). The inset is a semilog plot of G(gt,L) vs t at the same
parameters. The solid line in the inset shows the limiting exponential behav-
ior of G(gt,L) when ¢ is large. A small contribution to the decay from the
Brownian motion of the seed particles has been divided out (see Sec. III C).
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Brownian motion effect. The Brownian motion effect can be
neglected for flows at large Reynolds number.?®

IV. SUMMARY

We have studied turbulent grid flow and pipe flow using
the rarely exploited technique of photon correlation homo-
dyne spectroscopy and other ancillary experimental tech-
niques. Measurements of g(#) give access to the relative ve-
locity distribution function P(¥,R) that a pair of particles in
the turbulent fluid, having separation R, differ in velocity by
V(R,t). The flow visualization and the LDV measurements
as well as the HS measurements suggest that both the grid
flow and the pipe flow change their character when the
Reynolds number becomes larger than an experimentally
determined transition Reynolds number, Re,. In the grid
flow Re, ~300-400, and in the pipe flow Re, ~ 3000—4000.
When Re > Re,, the distribution function P(¥,R) is well
approximated by a product of a Lorentzian and a Gaussian-
like function, and hence must be characterized by at least
two parameters [#(R) and #(R)]. The scaling velocity
#(R) characterizes the small velocity fluctuations while
u(R) identifies the large velocity fluctuations. This is in no-
table contrast to the local velocity distribution where a
Gaussian-like probability distribution is obtained. Our find-
ing that P(V,R) is adequately represented by the product of
Lorentzian and Gaussian factors is consistent with the no-
tion that V(R,t) arises from two distinct regions of the tur-
bulent flow.?>

It is found that the characteristic velocity #(R) has the
scaling form %(R) ~ R ¢. The exponent £ shows a nontrivial
Re dependence. In the vicinity of Re,, £ as a function of Re is
approximately of the form ¢~ [ (Re — Re,)/Re,]%. Near
the maximum attainable values of Re, { has climbed to, and
saturated at, the value close to }, i.e., the Kolmogorov value.
Our measurements show that both the grid flow and the pipe
flow possess the same self-similar feature, though there exist
some differences between the two flows. The above de-
scribed pilot experiment, carried out in the region of transi-
tion between laminar and turbulent flows, shows that the
technique of photon correlation homodyne spectroscopy is a
powerful tool for probing small-scale turbulent velocity fluc-
tuations. It also shows that turbulent flows at even relatively
low Reynolds numbers exhibit self-similarity that usually is
associated only with flows at very high Reynolds numbers.

ACKNOWLEDGMENTS

We have benefited from illuminating discussions and
correspondence with M. Nelkin, enjoyed a continuing fruit-
ful interaction with A. Onuki, and are indebted to R.
Kraichnan for his valuable suggestions and comments. We
are grateful for the collaboration of A. Sirivat in the LDV
measurements.

This work is supported by the National Science Founda-
tion under Grant No. DMR-8611666.

'A. N. Kolmogorov, C. R. Dokl. Acad. Sci., URSS. 30, 301; 31, 538
(1941).
2U. Frisch, P. Sulem, and M. Nelkin, J. Fluid Mech. 87, 719 (1978).

P. Tong and W. |. Goidburg 2847

Downloaded 30 May 2002 to 139.78.124.138. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



3C. W. Van Attaand J. Park, in Statistical Models and Turbulence, Lecture
Notes in Physics, edited by M. Rosenblatt and C. W. Van Atta, (Springer,
Berlin, 1972), Vol. 12, p. 402.

“F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia, J. Fluid
Mech. 140, 63 (1984).

SR. A. Antonia, B. R. Satyprkash, and A. K. Hussain, Phys. Fluids 25, 29
(1982).

SSee, e.g., Chaos, edited by Hao Bai-Lin (World Scientific, Singapore,
1984).

"H. G. Schuster, Deterministic Chaos (Physik, Berlin, 1984).

8P. Tong, W. I. Goldburg, C. K. Chan, and A. Sirivat, Phys. Rev. A 37,
2125 (1988).

°W. L. Goldburg and P. Tong, in Fritz Haber International Symposium:
Chaos and Related Nonlinear Phenomena (Plenum, New York, in press).

19p, . Bourke, J. Butterworth, L. E. Drain, P. A. Eglestaff, A. J. Hughes,
P. Hutchinson, D. A. Jackson, E. Jakeman, B. Moss, J. O’Shaughnessy,
E. R. Pike, and P. Schofield, J. Phys. A Gen. Phys. 3, 216 (1970).

B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York,
1976).

12, E. Drain, The Laser Doppler Technigue (Wiley, New York, 1980).

3F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser-
Doppler Anemometry (Academic, New York, 1981), 2nd ed.

2848 Phys. Fluids, Vol. 31, No. 10, October 1988

14A. V. Smolyakov and V. M. Tkachenko, The Measurement of Turbulent
Fluctuations, English edition (Springer, Berlin, 1983).

153, L. Lumley, Phys. Fluids 8, 1056 (1965).

16U. Frisch and G. Parisi, in Turbulence and Predictability in Geophysical
Fluid Dynamics and Climate Dynamics, edited by M. Ghil, R. Benzi, and
G. Parisi (North-Holland, New York, 1985), p. 84.

'T. C. Halsey, H. J. Mogens, L. P. Kadanoff, 1. Procaccia, and B. L. Shrai-
man, Phys. Rev. A 33, 1141 (1986).

'8R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, J. Phys. A Gen. Phys. 17,
3521 (1984).

198. Corrsin, in Handbuch der Physik, edited by S. Flugge and C. Trusdell
(Springer, Berlin, 1963), Vol. 8, part 2, p. 524.

201, L. Lumley, Trans. ASME Ser. D, J. Basic Eng. 86, 218 (1964).

21D. J. Tritton, Physical Fluid Dynamics (Van Nostrand Reinhold, New
York, 1977).

22A, Onuki, Phys. Lett. A 127, 143 (1988).

ZA. Ralston, 4 First Course in Numerical Analysis (McGraw-Hill, New
York, 1965).

2R. H. Kraichnan (private communication, 1987).

2N. A. Clark, H. J. Lunacek, and G. B. Benedek, Am. J. Phys. 38, 575
(1970).

6P, Tong and W. 1. Goldburg, Phys. Lett. A 127, 147 (1988).

P. Tong and W. {. Goldburg 2848

Downloaded 30 May 2002 to 139.78.124.138. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



