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From the measured thermal dissipation rate in turbulent Rayleigh–Bénard convection
in a cylindrical cell, we construct a locally averaged thermal dissipation rate χf τ by
averaging over a time interval τ . We study how the statistical moments 〈(χf τ )p〉 depend
on τ at various locations along the vertical axis of the convection cell. We find that
〈(χf τ )p〉 exhibits good scaling in τ , of about a decade long, with scaling exponents
µ(p) for p = 1–6. For Rayleigh number (Ra) around 8 × 109, the scaling range is
1.4–21 s at the cell center and 4–21 s at the bottom plate. The dissipative and turnover
times are about 0.8 s and 35 s respectively, while the timescale corresponding to the
local Bolgiano scale is estimated to be about 31 s at the cell center and 3.5 s at the
bottom plate. On the basis of several assumptions, we derive theoretical predictions for
µ(p) at the different locations. The measured values of µ(p) are presented and shown
to be in good agreement with our theoretical predictions.

Keywords: turbulent convection

1. Introduction

Fluid turbulence is often thought of as a cascade process that transfers kinetic energy
from large to small scales and in which the energy transfer rate plays a special role.
Kolmogorov’s 1941 theory [1] assumed that the energy transfer rate is constant and equal to
the mean energy dissipation rate 〈ε〉 and predicted universal statistics of δv(l), the velocity
increments between two points separated by a distance l, when l is within the inertial
range. Velocity increments δv(l) are difficult to measure, and in most experimental studies,
velocity data are taken as a function of time at a fixed spatial location; as a result, the
velocity temporal increments δv(τ ) between measurements taken at a time interval τ apart,
are studied instead. In turbulent flows where there is a relatively large mean flow velocity
U , the correspondence between the spatial and temporal increments can be made [2,3]
using Taylor’s hypothesis [4] with l = Uτ . In such situations, it has been known [2] that the
measured scaling behavior of δv(τ ) shows a deviation from the prediction of Kolmogorov’s
1941 theory (with the correspondence of l to Uτ made), and a long-standing challenge in
turbulence research is to understand from first principles the origin of this deviation, which
is known as anomalous scaling. The observed anomalous scaling of δv(τ ) is equivalent to
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2 X. He et al.

a τ dependence of the standardized probability density functions of δv(τ ). Kolmogorov’s
refined similarity hypothesis (RSH) [5] proposed the replacement of 〈ε〉 by the local energy
dissipation rate εl , averaged over a region of linear scale l, and attributed the origin of the
anomalous scaling of δv(l) to the scale dependence of the statistics of εl . The temporal
counterpart of Kolmogorov’s RSH would then attribute the origin of anomalous scaling of
δv(τ ) to the τ dependence of the statistics of ετ , the energy dissipation rate that is averaged
over a time interval τ .

Similar anomalous scaling behavior has been found in turbulent thermal convection, in
that the standardized probability density functions of the temperature temporal increments
δT (τ ) [6] and velocity temporal increments δv(τ ) [7] display a dependence on τ . In analogy
to the kinetic energy cascade, thermal convective turbulence has been proposed [8] as a
cascade process in which the variance of temperature fluctuations is being transferred
from large to small scales at a constant rate equal to the mean thermal dissipation rate
〈χ〉. An extension of the temporal counterpart of Kolmogorov’s RSH to turbulent thermal
convection leads to the proposal that the anomalous scaling in turbulent thermal convection
is due to the τ dependence of the statistics of the locally averaged thermal dissipation rate
over a time interval τ [9,10].

To gain insights into the cascade processes in turbulence and as a first step to investigate
the validity of these refined similarity ideas, it would thus be interesting to study the statistics
and particularly the scale dependence of the locally averaged energy or thermal dissipation
rates directly in experiments. Directly measuring ε involves simultaneous measurements of
the nine components of the velocity gradient tensor and is thus nontrivial. In comparison,
measuring χ , which involves simultaneous measurements of the three components of the
temperature gradient vector, is more manageable. Even so, direct measurements of χ were
only taken recently.

In this paper, we report our study of the statistics of the locally averaged thermal
dissipation rate constructed from direct measurements of χ taken in turbulent Rayleigh–
Bénard convection. In Section 2, we describe the experiment and discuss our method of
analysis. In particular, we explain how we construct the locally averaged thermal dissipation
rate χf τ , which focuses on the contribution solely due to the fluctuation of the temperature
gradient and averaged over a time interval τ , from the direct measurements of χ . We study
how the statistical moments of χf τ depend on τ and find good scaling behavior of 〈(χf τ )p〉
in τ for p = 1, 2, . . . , 6 at various locations along the vertical axis of the cylindrical
convection cell. In Section 3, we discuss how we generalize earlier work [11,10], which is
based on several assumptions, to obtain theoretical predictions for the scaling exponents of
the statistical moments of χf τ at different heights from the bottom plate of the convection
cell. In Section 4, we present the measured values of the scaling exponents and show that
they are in good agreement with the theoretical predictions. Finally, we end this paper with
a summary in Section 5.

2. Experiment and method of analysis

Turbulent Rayleigh–Bénard convection has been a system of much research interest (see,
e.g., [12,13,14] for a review). In Rayleigh–Bénard convection, a closed cell of fluid is heated
from below and cooled on top. For a given fluid at a fixed mean temperature in a given
cell, the state of flow is characterized by the dimensionless Rayleigh number (Ra), which is
defined by αg(�T )H 3/(νκ) and measures how much the fluid is driven by the temperature
difference �T across the height H of the cell. Here, g is the acceleration due to gravity,
and α, ν, and κ are respectively the volume expansion coefficient, kinematic viscosity,
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and thermal diffusivity of the fluid. Previous experimental studies of turbulent Rayleigh–
Bénard convection focused mainly on temperature T and velocity measurements [14].
Direct measurements of the thermal dissipation field

χ (r, t) = κ|∇T (r, t)|2 (1)

were carried out only recently [15] as a function of time t and over varying Ra and spatial
positions r across the convection cell.

The experiment was conducted in an upright cylindrical cell, of inner diameter D =
19.0 cm and height H = 20.5 cm, filled with water. The Prandtl number (Pr = ν/κ) was
kept fixed at Pr ≈ 5.5. The measurements of χ (r, t) were made using a small homemade
temperature gradient probe consisting of four identical thermistors, with one placed at
the center of the probe and the other three placed at a short distance δl = 0.25 mm from
the central one, each along the three perpendicular x, y, and z directions. We note that the
shortest length scale of interest in the problem would be the thermal boundary layer
thickness δ, which is known to scale as Ra, approximately as δ ∼ Ra−2/7 [16]. Using the
measurements [17] taken for Ra from 2 × 108 to 2 × 1010, we find that along the central
vertical axis, δ = 1.0 mm at Ra = 1.75 × 109. Thus for the range of Ra studied, which
is between 9 × 108 and 9 × 109, the separation δl is smaller than the thermal boundary
layer thickness δ. All the thermistors were calibrated individually with an accuracy of about
5 mK for the temperature difference in each direction. Other details about the convection
cell and the measurements of χ (r, t) can be found in [15].

The temperature gradient ∇T is a sum of the mean temperature gradient and the
fluctuation in the temperature gradient, which are the gradient of the mean temperature Tm

and temperature fluctuation Tf respectively:

∇T (r, t) = ∇Tm(r) + ∇Tf (r, t). (2)

From its definition in Equation (1), χ contains three terms:

χ (r, t) = κ|∇Tm(r)|2 + κ|∇Tf (r, t)|2 + 2κ∇Tm(r) · ∇Tf (r, t) . (3)

We construct the locally averaged thermal dissipation rate by averaging over a time interval
τ . We are interested in the scale dependence of the statistics of the locally averaged
thermal dissipation rate, that is, how the statistical moments of the locally averaged thermal
dissipation rate depend on τ . As ∇Tm(r) is time-independent, its average over a time interval
τ is independent of τ and is thus not of interest. Therefore, to study the leading-order τ

dependence of the statistics, we focus only on χf :

χf (r, t) ≡ κ|∇Tf (r, t)|2, (4)

which is the contribution to χ that has the strongest dependence on time. We then construct
the locally averaged thermal dissipation rate χf τ by averaging χf over a time interval τ :

χf τ (r, t) = 1

τ

∫ t+τ

t

χf (r, t ′) dt ′. (5)

Then we evaluate the statistical moments 〈(χf τ )p〉, averaged over time, at different locations
r and study how they depend on τ . In this study, we focus on measurements taken along
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4 X. He et al.

the vertical axis at different heights from the bottom plate. As we shall see in Section 4,
〈(χf τ )p〉 exhibits good scaling in τ with scaling exponent µ(p), defined by

〈(χf τ )p〉 ∼ τµ(p) , (6)

for p = 1, 2, . . . , 6.

3. Theoretical predictions

In this section, we obtain theoretical results for µ(p) at different vertical heights from
the bottom plate of the convection cell on the basis of earlier work [11,10]. In [10], the
focus is on understanding the statistics in the central region of the convection cell, and
the locally averaged thermal dissipation rate was defined as the average of χ over a time
interval τ and denoted as χτ . In the central region, ∇Tm ≈ 0, and thus χτ ≈ χf τ . In the
present work, we are also interested in the statistics at locations other than the central bulk
region. In these other regions, particularly within the thermal boundary layers, ∇Tm would
be dominant. As discussed in Section 1, the average of ∇Tm over a time interval τ would
be independent of τ and is thus not of interest. Hence, we exclude the contributions from
∇Tm and first generalize the earlier work by refining the definition of the locally averaged
thermal dissipation rate to χf τ .

The starting point of the theory is an assumption that the moments 〈(χf τ )p〉 have a
hierarchical structure of the She–Leveque form [18]:

〈(χf τ )p+2〉
〈(χf τ )p+1〉 =

[ 〈(χf τ )p+1〉
〈(χf τ )p〉

]β [
lim

q→∞
〈(χf τ )q+1〉
〈(χf τ )q〉

]1−β

, (7)

where β is some parameter satisfying 0 < β < 1. This assumption has been checked in [11].
As direct measurements of χ were not available at that time, the temperature gradient in χ

was estimated by a temperature time derivative, and the corresponding hierarchical structure
was found to be valid for p around 1 for temperature measurements taken at the cell center
in an experiment using low-temperature helium gas [19]. Higher-order moments could not
be studied because of insufficient statistics.

This hierarchical structure [Equation (7)] implies [18] that the scaling exponents µ(p)
are given by the following mathematical form:

µ(p) = c(1 − βp) − λp, (8)

where c is the codimension of the sets of the maximum thermal dissipation rate or the
so-called most dissipative structures and λ is the negative of the scaling exponent of
〈(χf τ )m+1〉/〈(χf τ )m〉 as m → ∞, that is,

lim
m→∞ 〈(χf τ )m+1〉/〈(χf τ )m〉 ∼ τ−λ. (9)

For p = 1, 〈χf τ 〉 ≈ 〈χf 〉 = 〈χ (r, t)〉 − κ〈|∇Tm(r)|2〉, and is τ -independent. Thus µ(1) is
equal to 0, and β, c, and λ are related:

c(1 − β) − λ = 0. (10)
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The ratio of 〈(χf τ )q+1〉/〈(χf τ )q〉 is dominated by the largest thermal dissipation rate as
q → ∞ [18] and was thus estimated [10,11] as (�T )2/tr(τ ). Here tr (τ ) is the timescale at
the scale r = U0τ and U0 is some typical velocity, which is estimated by the mean velocity
in regions where there is a mean flow, as near the top and bottom boundaries, and by the
root-mean-squared velocity fluctuations in regions where there is no mean flow, as in the
central bulk region. Take [11] tr(τ ) = r/ur , where ur is the velocity fluctuation at scale r ,
and let ur ∼ rb; then λ is related to the scaling exponent b of ur by λ = 1 − b.

It is known that the value of b can be different, depending on whether buoyancy is
significant or not. When buoyancy forces are sufficiently strong, they would directly affect
the velocity statistics, and in this sense, temperature is an active scalar. In this case, ur is
expected to be related to the buoyancy term, which gives ur ∼ r3/5 [11], that is, b = 3/5. On
the other hand, when buoyancy is not significant, one expects ur ∼ r1/3, that is, b = 1/3.
Buoyancy forces are the strongest at the top and bottom plates, where the temperature
gradient is the largest. As one moves away from the bottom plate toward the cell center, the
effect of buoyancy becomes increasingly weaker. The second assumption of the theory is
that temperature is active at the top and bottom plates and becomes passive at the cell center
for moderate Ra. This assumption is consistent with the conclusion [14] that the best chance
to observe Bolgiano–Obukov scaling, the scaling behavior that is believed to hold when
buoyancy is significant, is close to the top and bottom plates and that Bolgiano–Obukov
scaling cannot be expected at the cell center. As a result, λ(z) is a function of the vertical
distance z from the bottom plate. It increases from

λ(z = 0) = λactive = 2

5
(11)

at the bottom plate to

λ(z = H/2) = λpassive = 2

3
(12)

at the cell center and decreases back to λactive as one goes beyond the central region to the
top plate. When Boussinesq approximation holds, the top–bottom symmetry implies that

λ(z) = λ(H − z). (13)

The sets of largest thermal dissipation rate should be along the top and bottom plates,
where the temperature gradients are the strongest, and are thus quasi-two-dimensional.
Hence we take the most dissipative structures to be sheetlike, and c = 1, near the top and
bottom plates. It is unclear how the dimension of the most dissipative structures might
change as one moves away from the bottom plate. Our third assumption is that they remain
sheetlike such that c remains 1 as one moves away from the bottom plate along the vertical
axis.

Putting these results together, we have

µ(p) = 1 − [1 − λ(z)]p − λ(z)p (14)

along the vertical axis. Hence we predict the p dependence of µ(p) to be different at
different heights from the bottom plate, and this difference along the vertical axis is solely
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6 X. He et al.

due to the change in the strength of the buoyant forces. We shall check these theoretical
predictions in the next section.

4. Results and discussions

We construct χf τ from χ taken at different locations along the vertical axis. For the
measurements taken at the center of the bottom plate, one thermistor was in contact with
the plate, and the other three were at a distance δl above the plate. At each location, there
are 1 × 106 to 4 × 106 data points, resulting from over 8-h long measurement at a sampling
rate of 40 Hz. We evaluate 〈(χf τ )p〉 and find good scaling behavior of 〈(χf τ )p〉 with τ . The
values of the scaling exponents µ(p) do not change with Ra in the Ra range studied.

To display the scaling behavior more clearly, we show the compensated plots of
τ−µ(p)〈(χf τ )p〉/〈χ〉p versus τ for several values of p in the cell center and at the bot-
tom plate in Figures 1 and 2 respectively. Here we normalize 〈(χf τ )p〉 by 〈χ〉p, where
〈χ〉 = 〈χ (r, t)〉 depends on r.

At Ra = 8.3 × 109, the scaling range is about a decade long and ranges from 1.4 to 21 s
at the cell center and from 4 to 21 s at the bottom plate. It is expected that buoyancy
would be significant above a certain length scale. This length scale was first defined [20]
using the mean energy and thermal dissipation rates that are averaged over the whole
cell, LB = (αg)−3/2〈ε〉5/4〈χ〉−3/4, and is known as the Bolgiano scale. However, since the
energy and thermal dissipation rates, averaged over the cross section of the cell and denoted
as ε(z) and χ (z), are different at different heights z, one should consider a local Bolgiano
scale [21]: LB(z) = (αg)−3/2[ε(z)]5/4[χ (z)]−3/4. In a numerical simulation at moderate
Ra [22], it has been found that LB(0)/H ≈ 0.1 at the bottom plate and LB(H/2)/H ≈ 0.88
at the cell center. The turnover time τ0 can be estimated [7] as the period of the velocity
oscillations observed in the system [23], and τ0 ≈ 35 s at Ra = 8 × 109. Associating
τ0 with H , we define the local Bolgiano time τB(z) as τ0LB(z)/H . Thus τB(0) ≈ 3.5 s
at the bottom plate and τB(H/2) ≈ 31 s at the cell center. Moreover, the Kolmogorov
viscous length η ≡ (ν3/〈ε〉)1/4 is related [24] to the Nusselt number (Nu) and Ra by an
exact relation (see, e.g., [12]): η/H = Pr1/2/[Ra(Nu − 1)]1/4. Using the measured Nu–Ra

0.1 1 10 100
τ

10
0

10
1

10
2

10
3

10
4

τ−µ
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) 〈(
χ f τ

)p 〉/〈
χ〉

p

Figure 1. Plot of τ−µ(p)〈(χf τ )p〉/〈χ〉p as a function of τ at the cell center for p = 2 (circles) and
p = 4 (squares). The measurements were taken at Ra = 8.3 × 109, and τ is in units of seconds.
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 χ 〉

p

Figure 2. Plot of τ−µ(p)〈(χf τ )p〉/〈χ〉p as a function of τ at the center of the bottom plate for
p = 2 (diamonds) and p = 4 (triangles). The measurements were taken at Ra = 8.3 × 109, and τ is
in units of seconds.

relation Nu = 0.17Ra0.29 in a similar experiment [25], we obtain η/H ≈ 2.3 × 10−3 at Ra
= 8 × 109. We take the dissipative length to be 10η and estimate the dissipative time τd , the
time scale corresponding to the dissipative length, to be about 0.8 s. Thus at the cell center,
the scaling range starts from around τd and ends before τB(H/2) while at the bottom plate,
the scaling range starts from around τB(0) and ends before τ0.

The measured values of µ(p) at different locations along the vertical axis are shown in
Figure 3. We compare the values of µ(p) measured at the bottom plate with Equation (14)
using Equation (11) (dashed line in Figure 3). Good agreement can be seen, confirming that
λ = 2/5, the value for an active temperature, at the bottom plate. Similarly, we compare the
values of µ(p) measured at the cell center with Equation (14) using Equation (12) (solid
line in Figure 3), and again good agreement is found, confirming that λ = 2/3, the value

0 2 4 6
p

-5

-4

-3

-2

-1

0

µ(
p)

Figure 3. Values of µ(p) for different locations along the vertical axis at a distance z = 0 (circles),
z = 0.5δ (diamonds), z = 0.8δ (pluses), z = 1.0δ (squares), and z = 2.0δ (triangles) from the bottom
plate and at the cell center (stars) together with the error bars for the two largest values of p. Here Ra
= 1.75 × 109 and δ = 1.0 mm is the thermal boundary layer thickness. The solid and dashed curves
are the theoretical results [Equation (14)] with λpassive and λactive respectively, while the dot-dashed
line is a fit using Equation (14) with the fitted value of λ(z = 1.0δ) = 0.47.
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8 X. He et al.

for a passive temperature, at the cell center. Our results, therefore, indicate that temperature
is active near the bottom plate and passive at the cell center, and this is consistent with
the observation in a numerical study [22] that the local Bolgiano length, the length scale
above which buoyancy is important, is smallest near the top and bottom plates and largest
and comparable to the height of the cell at the cell center. It was reported in [22] that
the scaling exponents of the velocity and temperature structure functions change with the
height, reflecting a change in the strength of buoyancy as a function of height. Our work
thus shows the interesting finding that the strength of buoyancy can also be reflected from
the directly measurable scaling exponents of the moments of the locally averaged thermal
dissipation rate.

As one moves away from the bottom plate toward the cell center, the p dependence
of µ(p) varies, and we check that the variation is well fitted by Equation (14) with a
changing λ(z) that decreases with increasing z. Furthermore, we see that the transition
of the temperature from being active to being passive is rather sharp: the measured µ(p)
immediately approaches that for λ = λpassive once the vertical distance z from the bottom
plate is beyond twice the thermal boundary layer thickness δ.

The good agreement of the measured µ(p) with our theoretical predictions thus sup-
ports the several assumptions of our theory: (1) there exists a hierarchical structure; (2)
temperature is active at the bottom plate and becomes passive as one moves toward the cell
center such that the value of λ is different at different heights; and (iii) the most dissipative
structures remain sheetlike as one moves away from the bottom plate toward the cell center
along the vertical axis [26].1

5. Summary

We have studied the scale dependence of the statistics of the local thermal dissipation rate
χf τ , averaged over a time interval τ , using direct measurements of the thermal dissipation
rate χ . In our construction of the locally averaged thermal dissipation rate, we exclude
contributions from the mean temperature gradient and focus on the part that is solely due to
the fluctuation of the temperature gradient. This allows us to focus on the leading-order τ or
scale dependence of the statistics. We have found that the statistical moments 〈(χf τ )p〉 have
a power-law dependence on τ with about a decade-long scaling range that varies slightly
with location.

By generalizing earlier work [11,10], we have obtained theoretical predictions for the
scaling exponents µ(p) at different vertical height above the bottom plate of the convection
cell. There are three assumptions in our derivation. First, we have assumed that the statistical
moments obey a hierarchical structure of the She–Leveque form [18]. This gives µ(p) in
terms of two independent parameters c and λ [see Equation (8)]. The parameter c is the
codimension of the sets of the largest thermal dissipation rates and λ is related to the scaling
exponent of the velocity fluctuation at scale r with r , which, in turn, depends on whether
temperature is active or passive. Our second assumption is that temperature is active at
the top and bottom plates and becomes passive as one moves toward the cell center at
moderate Ra. The sets of largest thermal dissipation rates are quasi-two-dimensional near
the top and bottom plates. Our third assumption is that such most dissipative structures
remain sheetlike as one moves away from the boundaries toward the cell center along the
vertical axis. With these assumptions, we have arrived at our predictions: Equation (14)
with Equations (11)–(13) for locations along the vertical axis of the convection cell. We
note that the variation in the p dependence of µ(p) along the vertical axis is predicted to
be the sole result of the weakening of the buoyancy effects as one moves away from the
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boundaries. The measured values of µ(p) confirm our theoretical predictions (see Figure 3).
The measurements further show that for Ra about 109, the transition of temperature from
being active to passive is rather sharp, occurring over a short distance of about twice the
thermal boundary layer thickness.

Our present study has concentrated on positions along the vertical axis of the convection
cell. For other regions of the cell, we expect λ to depend on the distance from the bottom
plate only, as the strength of the buoyancy is the same at the same height. On the other
hand, c might be different when one moves away from the vertical axis toward the sidewall
region. Finally, we comment that whenever the extension of the temporal counterpart of
Kolmogorov’s RSH to turbulent convection is valid, µ(p) would be directly related to
the scaling exponents of the temporal velocity and temperature structure functions. These
issues will be addressed in future studies.
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Note
1. We note that the statistics of a passive scalar in a wind tunnel have also been studied using the

hierarchical structure model, and the corresponding parameter for the codimension of the most
intermittent structures was reported to be 0.8 ± 0.1 (see [26]).
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