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A systematic study of the effects of cell geometry on the dynamics of large-scale
flows in turbulent thermal convection is carried out in horizontal cylindrical cells
of different lengths filled with water. Four different flow modes are identified with
increasing aspect ratio Γ . For small aspect ratios (Γ 6 0.16), the flow is highly
confined in a thin disc-like cell with a quasi-two-dimensional (quasi-2D) large-scale
circulation (LSC) in the circular plane of the cell. For larger aspect ratios (Γ > 0.16),
we observe periodic switching of the angular orientation θ of the rotation plane
of LSC between the two longest diagonals of the cell. The sides of the container
along which the LSC oscillates changes at a critical aspect ratio Γc ' 0.82. The
measured switching period is equal to the LSC turnover time for Γ 6 Γc, shows
a sharp increase at Γc and decays exponentially to the LSC turnover time with
increasing Γ . For Γ > 1.3, a periodic rocking of LSC along the long axis of the
cylinder is also observed. The measured probability density function P(θ) of the LSC
orientation θ peaks at the two diagonal positions, and its shape is described by a
phenomenological model proposed by Brown & Ahlers (Phys. Fluids, vol. 20, 2008b,
075101; J. Fluid Mech., vol. 638, 2009, pp. 383–400). Using this model, we describe
the dynamics of the LSC orientation θ by stochastic motion in a double-well potential.
The potential is predicted from a model in which the sidewall shape produces an
orientation-dependent pressure on the LSC. This model also captures key features of
the four flow modes. The experiment reveals an interesting array of rich dynamics of
LSC in the horizontal cylinders, which are very different from those observed in the
upright cylindrical convection cells. The success of the model for both upright and
horizontal cylinders suggests that it can be applied to different geometries.
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1. Introduction
Turbulent thermal convection, where warm fluid rises and cold fluid falls and their

mixing produces convective turbulence, is ubiquitous in nature and technology. It is
found in the Earth’s mantle and outer core, in the atmosphere and oceans, and in
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the outer layer of the Sun (Ahlers, Grossmann & Lohse 2009b). In the laboratory,
one conducts controlled thermal convection experiments by using a Rayleigh–Bénard
convection (RBC) cell, where a fluid layer of height H and lateral dimension D is
heated from below and cooled from the top so that heat is transferred vertically from
the lower warm surface to the upper cold surface. When the temperature difference
1T across the fluid layer is large enough, the bulk fluid becomes turbulent and heat
is transported predominantly by convection (Kadanoff 2001; Ahlers et al. 2009b).
Up to now, many of the turbulent convection experiments were conducted in small
upright cylindrical cells with the cylinder diameter D being comparable to its height
H. These experiments have resulted in a large body of knowledge about the scaling
of global heat transport (Castaing et al. 1989; Cioni, Ciliberto & Sommeria 1997;
Niemela et al. 2000; Chavanne et al. 2001; Funfschilling et al. 2005; Sun et al.
2005a; Urban, Musilová & Skrbek 2011), structure (Qiu & Tong 2001a; Sun, Xia
& Tong 2005b) and oscillations (Qiu & Tong 2001b; Brown & Ahlers 2009; Zhou
et al. 2009) of the large-scale circulation (LSC), the dynamics of viscous and thermal
boundary layers (Belmonte, Tilgner & Libchaber 1993; Xin, Xia & Tong 1996; Sun,
Cheung & Xia 2008; du Puits, Resagk & Thess 2009) and the statistical properties
of local temperature (Castaing et al. 1989; Du & Tong 2001; Sun, Zhou & Xia 2006)
and velocity (Qiu et al. 2004) fluctuations. Our current theoretical understanding of
convective turbulence is largely built upon this body of experimental results (Ahlers
et al. 2009b; Lohse & Xia 2010).

While the use of small-aspect-ratio (Γ = D/H) cylinders has the advantages
of simple cell geometry, better experimental control and relatively large Rayleigh
numbers (Ra) attainable for a given cell diameter, a natural question regarding this
system is: To what extent can the experimental results and theoretical predictions for
small-aspect-ratio cells be applied to laterally large systems? This is an important
question because one wants to understand which aspects of convection are universal
and which depend on the details of spatial geometry (Daya & Ecke 2001). Such
an understanding is needed for a large number of practical problems, ranging from
the thermal convection processes in buildings (Hunt & Linden 1999) and metal
production (Brent, Voller & Reid 1988) to natural convection occurring in the
atmosphere (Hartmann, Moy & Fu 2001) and oceans (Marshall & Schott 1999) and
at geophysical and astrophysical scales, such as convection in the Earth’s mantle
(McKenzie, Roberts & Weiss 1974) and stars (Cattaneo, Emonet & Weiss 2003).

Experimental efforts have been made recently to understand the sidewall effect. The
experiments carried out in Göttingen (He et al. 2012), Hong Kong (Sun et al. 2005a)
and Ilmenau (du Puits, Resagk & Thess 2007) using large upright cylindrical cells
with diameter larger than 1 m studied the scaling laws of the global heat transport
and dynamics of the LSC, which spans the entire convection cell. The dynamics
of LSC, such as the torsional mode (Funfschilling & Ahlers 2004), rotations with
cessation (Brown & Ahlers 2006; Xi, Zhou & Xia 2006), random reversals (Xi & Xia
2007) and the sloshing mode (Brown & Ahlers 2009; Xi et al. 2009) were reported
in recent years. More recently, Song and Tong carried out a systematic study of
scaling laws in turbulent RBC under different geometry (Song & Tong 2010). Instead
of using a large upright cylinder, a new convection cell of smaller size but with
different geometry was constructed. The new cell has a shape of horizontal cylinder,
as shown in figure 1. The top and bottom 1/3 of the circular sidewall of the cylinder
are made of copper to provide constant cooling and heating, respectively. Sandwiched
in the middle of the circular sidewall are two pieces of thermal insulating (curved)
plate made of Plexiglas. L. P. Kadanoff (Private communication with P. Tong, 2000)
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FIGURE 1. (Colour online) Assembly of a horizontal cylindrical convection cell with
aspect ratio Γ = 0.5. The top and bottom 1/3 of the circular sidewall of the cylinder are
made of copper to provide constant cooling and heating, respectively. Sandwiched in the
middle of the circular sidewall are two pieces of thermal insulating (curved) plate made
of Plexiglas.

first proposed to build such a kind of cell in the hope that the circular cross-section of
the horizontal cylinder could better accommodate the LSC. The experiment revealed
that the measured Nusselt number Nu(Ra), which is a normalized total heat flux,
and the Reynolds number Re(Ra) associated with the LSC are insensitive to the
change of cell geometry; their scaling over varying Rayleigh numbers Ra remains
unchanged. Evidently, the boundary-layer dynamics, which determine the global heat
transport, and the buoyancy forces which drive the large-scale flow remain the same
under different cell geometry. Despite this universality, the LSC dynamics are known
to change with the boundary shape, as the observations in upright cylindrical cells
(Brown & Ahlers 2006; Xi et al. 2006), rectangular cells (Zhou, Sun & Xia 2007),
and thin circular cells (Song & Tong 2010) differ. If one wants to understand which
aspects of convection are universal, it is important to ask which aspects of the LSC
dynamics change with the boundary shape, and can these changes be predicted? So
far, there have been no systematic studies of how the LSC changes with boundary
shape (Chillà & Schumacher 2012).

In this paper, we report an experimental study of the dynamics of the LSC
in the horizontal cylinder filled with water. We carry out systematic temperature,
velocity and flow visualization measurements to fully characterize the structural
changes of the LSC with varying aspect ratios Γ . The experiment reveals an
interesting array of rich dynamics of the LSC in the horizontal cylinder, which
have not been observed in the upright cylinders. With increasing values of Γ , the
LSC develops from a quasi-two-dimensional (quasi-2D) circulation (Γ 6 0.16) to a
three-dimensional (3D) coherent structure. For all of the cells with 0.1 6 Γ 6 1.69, a
well-defined oscillation is observed in the temperature, velocity and flow visualization



LSC of turbulent thermal convection in a horizontal cylinder 139

measurements. Oscillations in the quasi-2D flow are found to be caused by the
periodic eruption of thermal plumes from the boundary layers. This effect can be
explained by Villermaux’s model involving two coupled nonlinear dynamic equations
for the instabilities of the upper and lower thermal boundary layers (Villermaux 1995;
Song, Villermaux & Tong 2011). Oscillations in the 3D flow result from the periodic
switching of the LSC orientation between the two diagonals of the horizontal cylinder.
This diagonal switching has two phases. For 0.16< Γ 6 0.82, the oscillation period
t0 is found to be approximately equal to the LSC turnover time τt (the time taken
for the LSC to go around for one cycle). For Γ > 0.82, the normalized oscillation
period t0/τt takes a sharp jump to a value of ∼5.3 and then exponentially decays to
unity with increasing Γ . The measured probability density function (p.d.f.) P(θ) of
the angular position θ(t) of the LSC orientation peaks at the two diagonal positions
and its shape is adequately described by a model proposed by Brown & Ahlers
(2008a,b). Using this model we describe the dynamics of the LSC orientation θ(t)
with stochastic motion in a double-well potential. This model captures key features
of the observed flow modes.

The remainder of the paper is organized as follows. We first describe the
experimental apparatus and methods in § 2. Experimental results are reported in
§ 3. Further theoretical analyses are provided in § 4. Finally, the work is summarized
in § 5.

2. Experimental apparatus and methods
2.1. Horizontal convection cell

The convection experiment is conducted in four horizontal cylindrical cells with the
same inner diameter D= 18.8 cm but their horizontal length L is different. The four
fixed lengths used are L= 31.8, 18.8, 9.4 and 3.0 cm. The corresponding aspect ratio
of the four cells is Γ ≡ L/D = 1.69, 1.0, 0.5 and 0.16, respectively. Water is used
as the convecting fluid. For all the four convection cells, the top and bottom 1/3
of the circular sidewall of the cylinder is made of copper with a wall thickness of
0.5 cm. The surface of the conducting plates is electroplated with a thin layer of
gold. Sandwiched in the middle of the circular sidewall are two pieces of a thermal
insulating (curved) plate made of transparent Plexiglas. The two flat end walls of the
cell are made of the same Plexiglas with a wall thickness of 2.3 cm.

Except for the difference in cell shape, the other aspects of the apparatus and
the experimental procedures used for the horizontal cylinder are similar to those
used for the upright cylinder, which have been described elsewhere (Du & Tong
2000; Qiu et al. 2004). Two silicon rubber film heaters connected in parallel are
sandwiched on the back side of the bottom 1/3 conducting plate to provide constant
and uniform heating. A dc power supply with 99.99 % long-term stability is used to
provide the heating power. The voltage applied to the heaters varies from 15 to 85 V,
and the corresponding heating power is in the range between 10 and 300 W. The
top 1/3 conducting plate is in contact with a cooling chamber consisting of many
squarely winded water channels of 1 cm in width. These water channels are doubly
wound with a channel separation of 0.5 cm, so that the incoming cooler fluid and
the outgoing warmer fluid in adjacent channels can compensate with each other and
provide uniform cooling on the top plate. A temperature-controlled circulator (Neslab,
RTE 740) with a temperature stability of 0.01 ◦C is used to circulate the cooling
water and maintain the top-plate temperature.
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FIGURE 2. (Colour online) (a) Sketch of the Γ = 1.69 horizontal cylindrical cell with
a mobile piston installed so that the length L of the left flow chamber can be varied in
the range of 0–30 cm. (b) Assembly of the Γ = 1.69 horizontal cylindrical cell (without
piston).

To have a horizontal flow chamber with a variable length L, we install a mobile
piston in the Γ = 0.5 and Γ = 1.69 cells. The piston is made of a Plexiglas plate
of thickness 1.0 cm and diameter 18.6 cm, which is 2 mm smaller than the diameter
D of the cell, allowing the piston to move freely along the axis of the cylindrical
cell. Figure 2(a) shows a sketch of the Γ = 1.69 horizontal cylindrical cell with a
mobile piston installed. The piston divides the cell into two flow chambers, which
are connected by a narrow gap, so that the length L of the left flow chamber (without
the handle of the piston) can be varied in the range of 0–30 cm. The aspect ratio of
the left flow chamber, Γ = L/D, is thus in the range of 0–1.6 (the Γ = 0.5 cell is
used to cover the small Γ range). Figure 2(b) shows the assembly of the Γ = 1.69
cell (without piston). This cell is made by combining two shorter cylindrical cells and
an aluminium frame with two flat plates and four supporting posts is used to clamp
the two separate cells together. For the measurements in the left flow chamber, the
entire cell is filled with water and is heated (and cooled) uniformly across the whole
conducting plate. It was reported recently that the coupling of an unsealed cell to the
outside chamber can produce some peculiar effect on the measured Nusselt number
Nu(Ra) at high Rayleigh numbers (Ra∼ 1014) (Ahlers, Funfschilling & Bodenschatz
2009a). To examine the coupling effect of the right flow chamber to the left flow
chamber, we compare the flow patterns and the main characteristics of the temperature
and velocity measurements carried out in the left flow chamber with those obtained
in the horizontal cylinders with the same fixed aspect ratio (Γ = 1.0, 0.5 and 0.16)
but without the piston. Identical results are found in the two types of the flow cells,
indicating that the coupling effect of the right flow chamber to the left flow chamber
is negligibly small for the measurements presented in this paper, which are obtained
at much lower values of Ra compared with the experiment mentioned above (Ahlers
et al. 2009a).

The entire convection cell is placed inside a thermostat box, whose temperature
matches the mean temperature of the bulk fluid, which is fixed at ∼30 ◦C. At this
temperature, the Prandtl number Pr = ν/κ is fixed at Pr ' 5.4. Here ν and κ are,
respectively, the kinematic viscosity and thermal diffusivity of the convecting fluid. In
the convection experiment, the control parameter is the Rayleigh number Ra, which
is defined as Ra= βg1TD3/(νκ), where g is the gravitational acceleration, 1T is the
temperature difference across the fluid (i.e. between the top and bottom conducting
plates) and β is the thermal expansion coefficient of the convecting fluid. Here the
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FIGURE 3. (a) Sketch of a free rotating floater used to indicate the direction of the large-
scale flow: (a) cone shaped plummet, (b) rectangular flag, (c) connecting line, (d) buoyant
styrofoam sphere and (e) lower conducting plate. (b) Image of an actual floater standing
on the centre of the bottom conducting plate of the Γ = 1.69 cell. The rectangular flag
points to the direction of mean flow.

cylinder diameter D is used as the cell height. In the experiment to be discussed below,
the value of Ra is varied in the range between 108 and 1010.

The temperature of each conducting plate is measured using four thermistors
(Omega, Model 44006) of diameter 2.4 mm and time constant 1 s with an accuracy
of 0.05 ◦C. These thermistors are embedded in the four corners of the conducting
plate and are 5 mm away from the convecting fluid. A digital multimeter (Keithley
2700) is used to simultaneously measure the resistance value of these thermistors.
In the experiment, the temperature difference 1T between the top and bottom
plates varies from 1.5 to 35 ◦C depending on the heating power. By adjusting the
temperature of the cooling water, we maintain the temperature of the bulk fluid at
∼30 ◦C for all of the measurements. The temperature stability of the top and bottom
plates is found to be within 0.05 ◦C in standard deviation for low-power heating and
within 0.15 ◦C for high-power heating. These temperature variations are less than 3.3
% of the minimum 1T used in the experiment.

2.2. Temperature, velocity and flow visualization measurements
The local temperature of the convecting fluid is measured using a waterproof
thermistor (Thermometrics, AB6E3-B05) of diameter 0.3 mm and time constant
10 ms (in water). This thermistor is connected to an ac transformer bridge as a
resistor arm and the other resistor arm is connected to a variable resistor to balance
the bridge. The bridge is driven by a lock-in amplifier (Stanford, SR 830) at a working
frequency f ' 1 kHz. The output signals are digitized by an analogue-to-digital card
at the sampling rate of 40 Hz. All of the thermistors used to measure the local
temperature of the convecting fluid are calibrated individually with an accuracy of
5 mK.

The local velocity is measured using a laser Doppler velocimetry (LDV) system
(TSI Inc.) together with an argon-ion laser (Coherent Innova 90). Monodispersed
polystyrene latex spheres of 5.1 µm in diameter are used as seed particles. A
shadowgraph technique (Settles 2001; Song 2011) is used to visualize the large-scale
flow and thermal plumes in small-aspect-ratio cells. For large-aspect-ratio cells, a
homemade floater is used to indicate the direction of the large-scale flow. It consists
of a plummet (see (a) in figure 3a), which is made of tin and has an inverted cone
shape of 5 mm in height. As shown in figure 3(a), the plummet has a sharp end
tip in contact with the bottom plate of the cell (e) and its weight is balanced by a
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FIGURE 4. (Colour online) Normalized oscillation period t0/τt by the LSC turnover time
τt as a function of the aspect ratio Γ . The circles (shown in red online) are obtained at
Ra= 2.7× 109 and the squares (shown in black) are obtained at Ra= 5.5× 109.

buoyant styrofoam sphere of 5 mm in diameter (d). The styrofoam sphere is linked
to the floater by a fishing line (c). The buoyant mass of the floater system is adjusted
so that it can freely rotate when pushed by the mean flow but its position remains
stationary in the flow. The floater is placed at the centre of the bottom plate, which
is a symmetric point in the cell and always stays in the rotation plane of the LSC. A
rectangular flag (15 mm× 3 mm) with a small piece of white plastic sheet attached
to its end (see (b) in figure 3a) is attached to the floater system. This flag points to
the direction of mean flow. Figure 3(b) shows the image of an actual floater standing
on the bottom centre of the Γ = 1.69 cell. A digital camera is used to take movies of
the floater’s motion at a sampling rate of 1 frame s−1. These movies are used to find
the angular position θ of the flag using a homemade MATLAB program. Because
the flag follows the flow well, its angular position θ can be considered as the angular
orientation of the LSC rotation plane.

3. Experimental results
3.1. Dynamic phase diagram

The convective flow exhibits four different steady states (or dynamic phases) with
increasing values of Γ . These flow modes are distinguished in the experiment by their
unique flow patterns. For small aspect ratios (Γ 6 0.16), the flow is highly confined in
a thin disc-like cell with a quasi-two-dimensional rotation (quasi-2DR) in the circular
plane of the cell. For larger aspect ratios (Γ > 0.16), the LSC orientation periodically
switches between the two longest diagonals of the cell. For 0.16<Γ 6 0.82, the LSC
passes along the curved sidewall as it switches between diagonals, which we refer to
as small-Γ diagonal switching (SDS). For 0.82<Γ 6 1.69, the LSC passes along the
flat sidewall as it switches between diagonals, which we refer to as large-Γ diagonal
switching (LDS). For 1.3 6 Γ 6 1.69, there is also a coexisting phase in which the
LSC plane undergoes a periodic rocking (PR) around the long axis of the cylinder.
Figure 4 shows the ‘phase diagram’ of the convection system. The vertical axis shows
the measured switching period t0/τt, normalized by the large-scale turnover time τt =
πD/Vh, as a function of Γ . Here Vh is the velocity component of the LSC along the
circumference πD of the horizontal cell. More details about the measurement of τt
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FIGURE 5. (a) A shadowgraph showing the large-scale flow and the spatial distribution
of thermal plumes in the Γ = 0.16 cell at Ra= 4× 109. (b) Measured horizontal velocity
profile Vh(r) at Ra= 6× 109. The measurements are made along the vertical diameter of
the cell from the cell centre (r= 0) to the centre of the bottom plate (r=D/2).

are given in § 3.4. The circles (shown in red online) are obtained at Ra= 2.7× 109

and the squares (shown in black) are obtained at Ra= 5.5× 109. It is seen that the
normalized t0/τt does not change much with Ra (see more discussions on figure 12a
below). We describe each of the flow modes in detail in the following subsections.

3.2. Two-dimensional rotation
Figure 5(a) shows the large-scale flow and the spatial distribution of thermal plumes in
the Γ = 0.16 cell. The arrows indicate the direction of the large-scale flow. It is found
that the thermal plumes organize themselves with rising warm plumes (darker) on the
right and falling cold plumes (brighter) on the left. The spatially separated warm and
cold plumes exert buoyancy forces on the fluid and drive the vertical flow near the
sidewall. The central region is sheared by the rising and falling plumes, resulting in a
LSC confined in the circular plane of the cell. The fly-wheel-like flow structure is also
observed in the measured horizontal velocity profile Vh(r) along the vertical diameter
of the cell from the cell centre (r= 0) to the centre of the bottom plate (r=D/2), as
shown in figure 5(b). The velocity field in the circular plane of the cell has a zero
mean at the centre and increases linearly with the radial distance r in the bulk region
of the flow. A similar flow structure for the LSC was also observed in the Γ = 1
upright cylinders (Qiu & Tong 2002).

Even in this confined space, where it is impossible to excite the torsional and
sloshing flow modes (Funfschilling & Ahlers 2004; Brown & Ahlers 2009; Xi et al.
2009) in the horizontal directions, we observed a well-defined oscillation frequency
in the power spectrum of five different signals, including local (fluid) temperature,
local conducting plate temperature, local horizontal velocity, time-varying total heat
flux of the top conducting plate and image intensity variations. In a recent letter
(Song et al. 2011), we have reported the experimental study of the physical origin
of the coherent oscillations in the 2DR state. The experiment demonstrated that
the coherent oscillations are produced by the periodic emission of thermal plumes
from the boundary layers, which gives rise to periodic pulses of forcing, resulting
in a pulsed LSC in the thin cell. The experimental results were explained by a new
solution of Villermaux’s model involving two coupled nonlinear delayed equations for
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FIGURE 6. (a) Angular position θ of the rotation plane of the LSC in the SDS phase
(top view). The arrows indicate the two diagonal orientations of the LSC in the SDS
phase. The rectangular box depicts the cross-sectional area at the middle height of the
horizontal cylinder with L being the length of the cell and D being its diameter. (b)
Measured histogram H(θ) of the LSC orientation θ in the Γ = 0.7 cell at Ra= 5.5× 109.

the instabilities of the upper and lower thermal boundary layers (Villermaux 1995;
Song et al. 2011).

3.3. Small-Γ diagonal switching
As Γ increases, the LSC is no longer confined within the circular plane of the cell
and a 3D LSC develops. It is found that the rotation plane of the LSC prefers to stay
along the two diagonals of the cell. Using a small homemade floater, we obtain the
time series data of the angular position θ(t) of the LSC orientation. The definition
of θ is depicted in figure 6(a). Figure 6(b) shows the histogram H(θ) of the LSC
orientation in the Γ = 0.7 cell. The obtained H(θ) peaks at two angular positions θ0'
±0.6, indicating that they are the two most probable angular positions for the LSC
orientation. The two peak positions of the measured H(θ) coincide with the angular
position of the two diagonals of the Γ = 0.7 cell: θ = ± arctan(Γ = 0.7) = ±0.61.
From the time series data θ(t), we also calculate the auto-correlation function of the
LSC orientation θ(t),

Cθ(τ )= 〈θ(t)θ(t+ τ)〉/σ 2
θ , (3.1)

where σθ is the root-mean-square (r.m.s.) value of θ(t). The oscillatory behaviour of
the measured Cθ(τ ), as shown in figure 7, suggests that the LSC orientation oscillates
periodically between the two diagonals of the cell. The oscillation period t0 (∼25 s)
can be determined from the temporal distance between two adjacent peaks in Cθ(τ ).
Figures 6 and 7 thus demonstrate that the rotation plane of the LSC in the SDS phase
switches periodically from one diagonal of the cell to the other.

The floater system works well for high-Ra flows, which are strong enough to drive
the rotation of the floater. For low-Ra flows (Ra ∼ 108), however, the flow is too
weak to force the floater to rotate. To increase the dynamic range of the experiment,
we use the LDV setup to measure the horizontal velocity Vh(t) at a location 1 cm
above the centre of the bottom conducting plate. This is a symmetric location of the
cell, which always stays in the LSC rotation plane regardless of its orientation. As
shown in figure 6(a), the measured Vh(t) is a projection of the LSC velocity along
the θ = 0 direction. Figure 8(b) shows the time series data of the measured Vh(t) in
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FIGURE 7. Measured auto-correlation function Cθ (τ ) of the angular position θ of the LSC
orientation in the Γ = 0.7 cell at Ra= 5.5× 109.
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FIGURE 8. (a) Measured power spectrum Pv(f ) of the horizontal velocity Vh(t) in the
Γ = 0.5 cell at Ra= 5.5× 109. (b) Time series data of the measured Vh(t).

the Γ = 0.5 cell, which fluctuates around a mean value of ∼2 cm s−1. Figure 8(a)
shows the power spectrum Pv(f ) of Vh(t). Two frequency peaks are observed in
Pv(f ); the dominant peak is located at ∼0.08 Hz and the second peak is located at
∼0.04 Hz. The dominant peak (0.08 Hz) corresponds to the periodic switching of
the LSC orientation. This frequency is twice as large as that obtained by the floater
(0.04 Hz), because Vh cannot tell the difference between θ and −θ (see figure 6a).
In the actual velocity measurements, however, minor misalignment in the LDV set-up
may exist, which will result in a small difference in Vh between the two angular
positions θ and −θ . Such a misalignment will give rise to a weak oscillation signal
in Pv(f ) at 0.04 Hz and possibly also at 0.08 Hz (harmonics).

It is seen from figure 4 that the switching period t0 remains approximately the same
as the LSC turnover time τt in the SDS phase. When Γ approaches the lower phase
boundary Γ '0.16, the switching signals of both the local velocity and floater become
very weak. In fact, in the range 0.16<Γ 6 0.20, the floater shows no oscillation and
we cannot tell whether the oscillations in the velocity signal are from the 2DR phase
or from the SDS phase. Therefore, we consider 0.16<Γ 6 0.20 as a transition region
between the two phases.
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FIGURE 9. (a) Angular position θ of the rotation plane of the LSC in the LDS phase (top
view). When analysing the LDS state, we redefine the θ = 0 position to be at the centre
of the flat sidewall. The arrows indicate the two diagonal orientations of the LSC in the
LDS phase. The rectangular box depicts the cross-sectional area at the middle height of
the horizontal cylinder with L being the length of the cell and D being its diameter. (b)
Measured histogram H(θ) of the LSC orientation θ in the Γ = 1.0 cell at Ra= 5.5× 109.
The solid line is drawn to guide the eye.

The LSC in the SDS phase exhibits interesting new dynamics, which have not been
observed in the upright cylinders. The fact that the normalized switching period t0/τt
is unity suggests that the driving force of the switching dynamics scales with Vh/D.
To compare with turbulent convection in the Γ ∼ 1 upright cylindrical cells, we also
measured the Nusselt number Nu and Reynolds number Re as a function of Ra (Song
& Tong 2010). In the Γ = 0.5 cell, for example, we found that the measured Nu(Ra)
can be well described by an effective power law, Nu = 0.25Ra0.27. The measured
Re(Ra) is also found to have a power-law form, Re= 0.02Ra0.55. These results reveal
that besides the new LSC dynamics, the convective flow in the SDS phase possesses
other key features of turbulent convection, which are independent of cell geometry and
have been observed in the Γ ∼ 1 upright cylinders (Ahlers et al. 2009b).

3.4. Large-Γ diagonal switching
Figure 4 reveals that the normalized switching period t0/τt undergoes a sharp increase
from ∼1 to over 5 when Γ becomes larger than the transition aspect ratio Γc' 0.82.
In the LDS phase (Γ >Γc), we find that the rotation plane of the LSC still oscillates
between the two diagonals of the cell but the oscillation span is no longer across the
curved sidewall, as indicated in figure 6(a), rather across the flat end wall, as shown
in figure 9(a). Thus, when analysing the LDS state we redefine θ = 0 at the centre of
the flat sidewall, as shown in figure 9(a). Figure 9(b) shows the measured histogram
H(θ) of the LSC orientation θ using the rotating floater. The measured H(θ) reveals
two most probable (peak) positions at θ ' ±π/4, which coincide with the angular
position of the two longest diagonals of the Γ = 1.0 cell.

The sharp transition at Γc'0.82 can be explained as follows. As shown in figure 10,
the shortest distance between the two ends of the conducting plate is AB= (√3/2)D=
0.86D. We take this length as the span across which the rotation plane of the LSC
switches periodically in the LDS phase. On the other hand, the span of the LSC
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FIGURE 10. End view of the horizontal cylinder with the length AB between the two
ends of the conducting plate being (
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FIGURE 11. (a) Measured local velocity Vh(t) as a function of time t at 1 cm above the
centre of the bottom conducting plate. (b) Time series data of the local temperature at
the mid-height of the cell, 1.5 cm away from the curved sidewall. (c) Measured power
spectrum Pv(f ) (open circles) of Vh(t) in (a). The solid line is drawn to guide the eye.
All of the measurements are made in the Γ = 1.0 cell at Ra= 5.5× 109.

oscillation in the SDS phase is across the cell length L, as indicated in figure 6(a). The
two spans become equal when Γ ' 0.86. The sharp transition between the SDS and
LDS phases, therefore, suggests that the rotation plane of the LSC tends to oscillate
between the two diagonals of the cell with the shortest span possible. In the SDS
phase (Γ 6 0.82), the shorter span is across the curved sidewall of length L, whereas
in the LDS phase (Γ > 0.82), the shorter span is across the flat end wall.

As indicated in figure 9(a), when the LSC rotation plane switches from one diagonal
to the other, the measured Vh(t) will change its sign from being positive to negative
(or vice versa). Similarly, the temperature probe near the mid-point of the sidewall
can also detect the alternative changes of warm and cold plumes passing through the
region. Indeed, the periodic switching of the LSC orientation is observed from the
local velocity and temperature measurements, as shown in figure 11(a,b). Figure 11(c)
shows the power spectrum Pv(f ) (open circles) of the measured Vh(t). Two frequency
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FIGURE 12. (a) Normalized switching frequency f0τt by the LSC turnover time τt as
a function of Ra in the Γ = 1.0 horizontal cylinder. The frequency is obtained using
three different methods: temperature (circles), velocity (squares) and floater (triangles). (b)
Measured LSC turnover time τt as a function of Ra in the Γ = 1.0 horizontal cylinder.
The solid line is a power-law fit to the data, τt = aRa−γ , with a = 1.34 × 106 and
γ = 0.46± 0.02. The dashed line indicates the measured τt in the Γ = 1.0 upright cylinder
(Qiu & Tong 2002):τt = 2.29× 106Ra−0.46.

peaks are observed in Pv(f ). The dominant peak at f0 ' (5.2 ± 0.65) × 10−3 Hz
corresponds to the switching frequency of the LSC orientation and is the same as
that obtained by using the floater. The second peak at f1 ' (2.2 ± 0.065)× 10−2 Hz
is approximately 4.2 times larger than f0 and thus is not a simple harmonic of the
first peak. It results from the wiggling of the LSC rotation plane around the corner
of the longest diagonals of the cell. Since this oscillation frequency is faster than
the turnover frequency, it must be different from the advected sloshing and twisting
oscillations previously observed in Γ = 1 upright cylinders (Funfschilling & Ahlers
2004; Xi et al. 2006; Brown & Ahlers 2009).

Figure 12(a) shows the measured switching frequency f0 as a function of Ra in the
Γ = 1 cell. In the plot, f0 is normalized by the LSC turnover time τt. The switching
frequencies obtained using three different methods superpose with each other and
remain approximately constant in the Ra range studied. Figure 12(a) thus reveals that
f0 has the same Ra dependence as 1/τt does. Figure 12(b) shows the measured τt
as a function of Ra in the Γ = 1 cell. The data are well described by a power law,
τt = aRa−γ , with a= 1.34× 106 and γ = 0.46± 0.02 (solid line). For comparison, we
also plot in figure 12(b) the measured τt in the Γ = 1 upright cylinder (Qiu & Tong
2002), τt = 2.29 × 106Ra−0.46 (dashed line). The obtained value of γ in the Γ = 1
horizontal cylinder agrees well with the value obtained in the Γ = 1 upright cylinder.
In figure 4, we have shown that the normalized switching period, t0/τt = 1/(f0tτ ),
does not change much with Ra. Figure 12(a) further confirms that the measured t0/τt
(or f0τt) is indeed invariant with Ra in the Ra range studied. It is also found that the
wiggling frequency f1 discussed above has the same Ra-dependence as f0 does (Song
2011).

There is a clear distinction between the SDS and LDS phases. In the SDS phase,
one finds the normalized switching period t0/(πD/Vh)'1 for all values of Γ , whereas
in the LDS phase, t0/(πD/Vh) is found to be strongly dependent on Γ . Figure 13
shows the measured t0/(πD/Vh) as a function of the reduced aspect ratio ε = (Γ −
ΓC)/ΓC, where ΓC = 0.82 is the transition aspect ratio between the SDS and LDS
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FIGURE 13. (Colour online) Normalized switching period t0/(πD/Vh) as a function of
the reduced aspect ratio ε = (Γ − ΓC)/ΓC. The measurements are made at 1 cm above
the centre of the conducting plate with Ra= 2.7× 109 (circles, shown in red online) and
5.5× 109 (black squares). The solid line is an exponential fit to the data: t0/(πD/Vh)=
1.4 + 4e−ε/ε0 , with ε0 = 0.25. The dashed line is another exponential fit: t0/(πD/Vh) =
1+ 3.86e−ε/ε0 , with ε0 = 0.42.

phases. The two sets of data obtained at two different values of Ra superpose with
each other and can be fit by an exponential decay function, t0/(πD/Vh)=1.4+4e−ε/ε0 ,
with ε0 = 0.25 (solid line). The data could also be fit to a function, t0/(πD/Vh) =
1+ 3.86e−ε/ε0 , with ε0= 0.42 (dashed line), where the constant is fixed so t0/(πD/Vh)
decays to unity when Γ becomes very large. It is seen from figure 13 that the dashed
line fits the data less well than the solid line.

3.5. Periodic rocking
In the LDS phase, the temperature distribution along the curved sidewall is not
uniform. For example, if the fluid temperature at position B shown in figure 14(a) is
colder, the fluid temperature at position C (near the opposite end of the cell) will be
warmer due to the heat transport by the LSC. At position O, the fluid temperature
oscillates following the switching of the LSC orientation. When Γ > 1.3, we find that
the fluid temperature at positions B, C and O sometimes becomes fully synchronized.
Figure 14(b) and (c) show the temperature time series data simultaneously taken
at positions B, C and O. During the time period 500–2000 s (labelled as PR), the
temperature signals at the three positions oscillate in phase at a low frequency. In
the time period 4500–6500 s (labelled as LDS), the temperature signals at positions
B and C oscillate out of phase at a higher frequency. By carefully examining the
temperature time series data of the top and bottom conducting plates as shown in
figure 15(a,b), we find that the mean temperature of the conducting plates along
the sidewall remains the same pattern with one side of the cell being warmer than
the other side. Temperature oscillations in the conducting plates also become fully
synchronized within each plate in the time period 500–2000 s (labelled as PR).
The amplitude of these synchronized temperature oscillations is larger than those in
the time period 4500–6500 s (labelled as LDS). The spatial synchronization of the
temperature oscillation along the sidewall and along the conducting plates suggests
the emergence of a new flow state with the bulk fluid as a whole rotating back and
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FIGURE 14. (Colour online) (a) Positions of the local temperature measurement near the
curved sidewall (side view). The top and bottom four points (numbered 1–8) indicate
the positions of the thermistors embedded inside the top and bottom conducting plates.
The middle three points (B, O and C) indicate the positions at which the local fluid
temperature is measured (15 mm away from the curved sidewall, on the same side, and
at the same height). Positions B and C are D/4 (with D being the cell diameter) away
from the end. Position O is 0.75D away from one side and 0.94D away from the other
side. (b) Temperature signals at positions B (lower curve, shown in green online) and C
(upper curve, shown in red online). (c) Temperature signal at position O. Measurements
are made in the Γ = 1.69 cell at Ra= 5.5× 109.
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FIGURE 15. (a) Temperature signals of the top conducting plate at positions 1 (black),
2 (green), 3 (blue) and 4 (red). (b) Temperature signals of the bottom conducting plate
at positions 5 (black), 6 (green), 7 (blue) and 8 (red). Measurements shown are made
simultaneously with those shown in figure 14 in the Γ = 1.69 cell at Ra= 5.5× 109.

forth (rocking) around the central axis of the horizontal cylinder. Therefore, we name
this new phase as PR.
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FIGURE 16. Measured power spectra PT(f ) of local temperature fluctuations at positions
B (green), O (black) and C (red) as shown in figure 14.

Figure 16 shows the power spectra PT(f ) of the measured fluid temperature at
positions B (shown in green online), O (black) and C (shown in red online). The
dominant peak at f PR

0 ' 2.5 × 10−3 Hz corresponds to the PR, which is observed at
all three positions. The second peak at f LDS

0 ' 0.01 Hz, which is only observed at
position O (black curve), corresponds to the LDS phase. Near the two flat end walls
of the cell (positions B and C), temperature oscillations due to the periodic switching
of the LSC orientation are much weaker than that in the middle region of the cell
(position O). Therefore, the measured PT(f ) at positions B and C do not show a
LDS peak. For cells with 1.3 6 Γ 6 1.69, the LDS phase and PR phase coexist and
they compete with each other. It appears that the two flow modes changes randomly
inside the cell. In the Γ = 1.69 cell (without a piston), the ratio of time occupied by
the PR phase to that by the LDS phase is ∼60/40.

Figure 17(a) shows the normalized rocking period tR/τt as a function of Γ at Ra=
5.5× 109. The solid line is a linear fit, tR/τt =−5.2+ 6.2Γ . For comparison, we plot
in figure 17(b) the measured Γ -dependence of the LSC turnover time τt at the same
value of Ra. It is seen that the LSC turnover time τt has a much weaker Γ -dependence
compared with the rocking period tR. By comparing figures 17(a) and 4 one finds
that the rocking period tR has a different Γ -dependence from that of the switching
period t0; tR increases linearly with Γ whereas t0 decreases exponentially with Γ . This
finding indicates that the two flow modes are driven by different mechanisms. We also
studied the Ra-dependence of tR (Song 2011). It was found that tR = 0.7Ra−γPR with
γPR= 0.48. This value of γPR is very close to the value obtained for the LSC turnover
time τt (see figure 12b).

4. Theoretical analysis
Brown & Ahlers (2007, 2008a,b) proposed a stochastic model that explains many

aspects of the LSC dynamics in the upright cylinders. In the Brown–Ahlers model,
the dynamics of the azimuthal orientation θ(t) of the near-vertical rotation plane of
the LSC is described by a (damped) diffusive process in a potential. The equation of
motion is

θ̈ + θ̇

τθ̇
=−∇Ux(θ)+ fθ̇(t). (4.1)
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FIGURE 17. (a) Normalized rocking period tR/τt by the LSC turnover time τt as a
function of Γ at Ra = 5.5 × 109. The solid line is a linear fit, tR/τt = −5.2 + 6.2Γ .
(b) Measured LSC turnover time τt as a function of Γ at Ra= 5.5× 109.

The damping time scale τθ̇ is associated with the rotational inertia of the LSC. The
stochastic term fθ̇(t) represents a driving due to turbulent fluctuations, and is modelled
as Gaussian distributed white noise with strength characterized by a diffusivity Dθ̇

such that the mean-square change in rotation rate is 〈1θ̇ 2〉 = Dθ̇1t in the limit
of 1t → 0, where 1t is the delay time. The properties of and dynamics due to
the damping and stochastic terms have been studied in detail with experiments in
upright cylinders (Brown & Ahlers 2008a). Motivated by these earlier experiments,
the potential term Ux(θ) was predicted to be due to the pressure from the sidewall
and produces an azimuthal forcing as a function of the sidewall shape. The subscript
x is used as a placeholder for different model potentials which will be identified by
different subscripts.

In the upright cylinders used in the original experiments (Brown & Ahlers 2008b),
the potential was uniform due to the azimuthal symmetry of the cell. For an idealized
LSC of approximately zero width in an upright cylindrical cell with no vertical
variation in wall shape, but with a non-circular cross-section with mean diameter
〈D(θ)〉 equal to its height H, the potential was given by (Brown & Ahlers 2008b)

Uu(θ)=
ω2
φH2

2D(θ)2
, (4.2)

where ωφ = 2π/τt is the LSC turnover frequency. An important feature of (4.2) is
that the potential is a simple function of the geometry, in terms of the orientation-
dependent diameter D(θ) in a horizontal cross-section of the cell.

We now test the applicability of this model to a different geometry, namely, the
horizontal cylinder. We will calculate the potential based only on the horizontal cross-
section at the mid-height of the cell without taking into account the vertical variation
of the horizontal cross-section. We will first keep the approximation of a zero-width
LSC, and in later sections we will introduce a modification to the potential for a LSC
of non-zero width.

Figure 18 shows the top view of the horizontal mid-height cross-section of a Γ >
0.82 cell, with L being the length of the curved sidewall and D being the length of
the flat end wall. Line BF represents the LSC plane with diameter equal to the length
of BF and orientation θ(t) with respect to OA, centred at the middle of an end wall.
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FIGURE 18. (Colour online) Top view of the horizontal cross-section of a Γ >0.82 cell at
the mid-height. Line BF represents the instantaneous LSC orientation θ(t) with respect to
line OA, and its length is the azimuthally varying diameter D(α) with the angle α being
defined with respect to the diagonal line OC. The three arrows (shown in red online)
indicate the velocity coordinate system used in the LDV measurement.

The potential in (4.2) still needs be modified to account for the variation of the
mean horizontal diameter with Γ , as that equation assumed the average horizontal
diameter was equal to the height of the container. The factor H/D(θ) in (4.2)
represents the ratio of the mean LSC diameter over the diameter of a horizontal
cross-section along the sidewall. The overall diameter of the LSC can be estimated
as the geometric mean of the end cap diameter D and the maximum horizontal
diameter Dm=D

√
1+ Γ 2 (Niemela & Sreenivasan 2003), so we make the substitution

H = D
√

1+ Γ 2/2. We rewrite the potential for the horizontal cylinder with the
approximation of a zero-width LSC as

Uh =
ω2
φC(Γ )D2

m

2D(θ)2
, (4.3)

where C(Γ ) = (1 + Γ 2/2)/(1 + Γ 2) is a dimensionless factor dependent on aspect
ratio, and its value varies between 1 and 0.5 due to the changing vertical aspect ratio
of the cell. Since this is a weak variation, and there are significant other differences in
the geometry of the horizontal cylinders at different aspect ratios that have not been
modelled yet, we are not able to test the accuracy of C(Γ ) or attribute any significant
physics to it at this time.

For the convenience of later expanding around the potential minimum in the corners,
we alternately define the LSC orientation α relative to the nearest diagonal. As shown
in figure 18, α is related to θ via the equation α = arctan(Γ −1) − θ . The diameter
function D(α)=BF is given by Brown & Ahlers (2008a) as

D±(α)= Dm

|cos α| + Γ ±1|sin α| , (4.4)

where D+(α) stands for the diameter D(α) when α is along the flat end wall (on the
left side of the diagonal line OC in figure 18) and D−(α) is the diameter when α is
centred along the curved sidewall (on the right side of OC).

4.1. Probability distribution of the LSC orientation for a zero-width LSC
In this subsection, we test the validity of the potential in (4.3) for a zero-width
LSC in the horizontal cylinders. This is done by comparing the measured probability
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distribution of the LSC orientation P(θ) to a model prediction. In the strong-damping
limit of (4.1), evaluating the Fokker–Planck equation (Gitterman 2005; Brown &
Ahlers 2008b) results in a prediction for the probability distribution

Px(θ)∝ exp
(
−Ux(θ)

Dθ̇τθ̇

)
= exp

(
− Ũx(θ)

Ũ0

)
, (4.5)

where the rightmost expression is rewritten in terms of dimensionless quantities. The
factor Ũ0 ≡ 2τθ̇Dθ̇/ω

2
φ is a dimensionless ratio of kinetic to potential energy scales

independent of the cross-section shape. The geometry dependence for the potential Ũh
is given by

Ũh(α)≡ C(Γ )D2
m

D(α)2
=C(Γ )× (|cos α| + Γ ±1|sin α|)2. (4.6)

Combining (4.5) and (4.6) leads to a prediction for P(θ) for a zero-width LSC
in the horizontal cylinder. The main feature of this function is that the longest
diameter corresponds to the lowest potential and thus the highest probability, which
generally agrees with our data shown in figure 9(b) as well as previous experiments
in rectangular geometries (Zocchi, Moses & Libchaber 1990; Daya & Ecke 2001;
Zhou et al. 2007).

To test this model, we obtain higher-resolution data for θ(t) than those shown in
figure 9(b). Because the response time of the floater is not fast enough to accurately
determine the instantaneous value of θ(t) near the diagonal positions of the cell (small
values of α as shown in figure 18), we use the velocity data to compute P(θ). In the
experiment, we use the angle θ to describe the LSC orientation. The three arrows
(shown in red online) in figure 18 represent the velocity coordinate system used in
the LDV measurement. Our LDV measurements can only give the horizontal velocity
Vh parallel to the flat end wall of the cell and the measuring position is located
at ∼14 mm above the centre of the bottom conducting plate. This is a symmetric
location in the cell, which always stays in the LSC rotation plane. From figure 18
one finds that Vh = Vp tan θ , where Vp is the velocity component perpendicular to the
end wall of the cell. While Vp is not directly measured in the experiment, one can
obtain its value when the LSC orientation is aligned along the cell diagonal, at which
Vh takes its most probable value Vm and thus one has Vm=Vp tan θ0 with tan θ0=Γ −1.
Assuming Vp does not change very much with θ , we have Vp = Γ Vm. Therefore, the
LSC orientation θ is given by

θ = arctan(Vh/Vp)= arctan[Vh/(Γ Vm)]. (4.7)

In figure 19 we plot a direct comparison between the prediction of (4.5) and (4.6)
and the measured P(θ) in the Γ = 1.2 cell. While the peaks of P(θ) are located near
the cell corners as predicted, this model Ph(θ) predicts sharp peaks at the corners
due to the sharp corners of the cross-section, a discrepancy with the measured smooth
peaks shown in figure 19.

4.2. Correction for the finite width of the LSC
In this subsection, we correct the discrepancy in P(θ) near the corners of the cell by
introducing a correction to the potential to account for the width of the LSC. This
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FIGURE 19. Comparison between the measured p.d.f. P(θ) (open circles) and the
calculated Ph(θ) using (4.5) and (4.6) for a zero-width LSC (solid line). The value of
Ũ0 in (4.5) is chosen to fit to the data. The measurements are made in the Γ = 1.2 cell
at Ra= 5.5× 109.

discrepancy near the corners can be attributed to the model assumption of relatively
small variations in the cross-section diameter of the cell, which becomes invalid at
the sharp corners. The original model of Brown & Ahlers (2008b) approximated the
LSC to be of zero width so that the pressure forcing from the sidewall depended
only on the slope of the diameter function at α. However, for a LSC with a finite
angular width δα and non-negligible variations in D(α) over the width δα, the
sidewall provides different forces along the width of the LSC. The net forcing from
the sidewall could be modified by smoothing the potential over the range of δα.
Assuming a uniform weighting, the potential can be modified by averaging over the
width of δα:

Ũδα =C(Γ )
〈

D2
m

D(α)2

〉

δα

≡C(Γ )
1
δα

∫ α+δα/2

α−δα/2

D2
m

D(α′)2
dα′. (4.8)

Since this smoothing will have the largest effect near the corners, we characterize
the potential near the corners by a first-order expansion in α around a corner. The first-
order expansion of the diameter in (4.4) yields D2

m/D(α)
2' (1+ 2Γ ±1|α|). Integrating

(4.8) up to second order yields

Ũδα 'C(Γ )
[

1+ (Γ + Γ −1)
δα

4
+ (Γ − Γ −1)α + (Γ + Γ −1)

α2

δα

]
. (4.9)

This smoothed potential with Γ = 1.2 (black solid line) is shown in comparison to the
unsmoothed potential Ũh (see (4.6); dashed line, shown in red online) in figure 20.
In the plot, the solid line is obtained using (4.9) for |α| < δα/2, and (4.6) is used
elsewhere. We choose the value δα=π/10 as a fixed parameter for all of our analysis.
With this small value of δα, the second-order expansion in Ũδα(α) remains within
2 % of the exact calculation, and this produces enough smoothing to better fit the
data in figure 20. The calculated potentials have two wells for −π/2 < θ < π/2
and are repeated over the full range of 2π. The potential minima correspond to the
diagonals of the cell, and there is a potential barrier in between the closer corners
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FIGURE 20. (Colour online) Comparison between the smoothed potential Ũδα/Ũ0 from
(4.9) (black solid line) and the unsmoothed potential Ũh/Ũ0 from (4.6) (dashed line, shown
in red online) for the Γ = 1.2 cell. The two calculated potentials are normalized by a
constant Ũ0 = 1/3.5 in order to compare with the measured potential Ũm(θ)/Ũ0 at Ra=
5.5× 109 (open circles).

Γ 1 1.1 1.2 1.4 1.69

1/Ũ0 3.5 3.5 3.4 2.6 2.1

TABLE 1. Fitting results for the measured p.d.f. P(θ) with different values of Γ . The
fitting uncertainty for 1/Ũ0 is ±0.1.

of a rectangular cell. The correction for the finite width produces a much smoother
potential minimum, as shown in figure 20.

Figure 21 shows the measured P(θ) in five panels for five different values of Γ in
the range 1 6 Γ 6 1.69 (open circles). Also shown are fits of the model prediction
using (4.5) and (4.9) with the correction for a non-zero width LSC (solid lines).
We used the potential Ũδα from (4.9) for |α| < δα/2, and the potential Ũh from
(4.6) elsewhere. In each fit, Ũ0 is the only free fit parameter (δα = π/10 is a fixed
parameter, and the overall proportionality constant is determined by the normalization
requirement), and the least-squares fit is conducted over the angular range between
the two probability peaks. The fitted values of Ũ0 are given in table 1. The measured
P(θ) shows a slight asymmetry with the peak value of P(θ > 0) being slightly larger
than that of P(θ < 0). This is observed in figures 19 and 21 as well as in figures 9(b)
and 6(b). The slight asymmetry shown in these figures is probably caused by the
minute misalignment of the vertical orientation of the horizontal cylinder relative to
the direction of gravity. In the experiment, we have tried our best to keep the cell
vertically symmetric but imperfections do exist.

The correction for the non-zero width of the LSC results in a significant
improvement to the prediction for P(θ) compared with that for the sharp potential
shown in figure 19. In particular, it captures the curvature of the peaks and more
accurately reflects the potential difference between the central minimum and the peak
values of P(θ). The model fits the measured P(θ) well for the Γ ∼ 1 cells, and for



LSC of turbulent thermal convection in a horizontal cylinder 157

1.0

0.5

0

–2 –1 0 1 2 –2 –1 0 1 2

–2 –1 0 1 2

–2 –1 0 1 2

–2 –1 0 1 2

1.0

0.4

0.6

0.8

0

0.2

0.8

0.4

0.6

0

0.2

0.6

0.4

0

0.2

0.6

0.4

0

0.2

FIGURE 21. Comparison between the measured p.d.f.s P(θ) at five values of Γ (open
circles) and fits of the model prediction Pδα(θ) using (4.5) and (4.9) for a non-zero width
LSC (solid lines). The fitting is made using Ũ0 as a free parameter. The measurements
are made at Ra= 5.5× 109 and the values of Γ are each shown in different panels.

1 6 Γ 6 1.2, the values of Ũ0 remain constant within the uncertainties (see table 1),
as expected by the model. For larger values of Γ , the model fits less well, and the
best fit values of Ũ0 start to vary. The model may be less accurate for Γ further
from 1 because the model assumptions include a relatively slow variation in D(θ)
with θ , which becomes less accurate at Γ further from 1. The peak positions of
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P(θ) are measured to be slightly further apart than the nearest corners of the cell,
compared with the model prediction which puts the peaks slightly closer together
than the corners. This discrepancy could be due to the system being out of the
strong-damping limit (which is suggested by the fact that there are steady oscillation
modes), or an effect of the curved sidewall, which may provide a smaller restoring
force compared with that of a flat sidewall. The tails of P(θ) along the longer
sidewall are significantly lower than the model prediction. This discrepancy is also
likely attributable to the curvature of the sidewall and heater, which are the only
source of asymmetry for Γ = 1.

We compare the model parameters found here for horizontal cylinders with those
found for upright cylinders. Using the equation Ũ0 ≡ 2τθ̇Dθ̇/ω

2
φ and the measured

values of ωφ , τθ̇ and Dθ̇ for a Γ = 1 upright cylinder, we find Ũ0 ' 3.7 × 10−2 at
Ra' 5.5× 109 (medium cell) (Brown & Ahlers 2008b). This value of Ũ0 is 7.7 times
smaller than the measured Ũ0 (' 0.29) in the Γ = 1 horizontal cylinder. This suggests
the azimuthal motion is more strongly driven in the horizontal cylinder. While τθ̇ and
ωφ are physically related to the Reynolds number and not expected to vary with cell
geometry (Brown & Ahlers 2008a), it remains unknown how the stochastic driving
strength Dθ̇ depends on cell geometry and the turbulence microstructure.

Using (4.5) one can directly obtain the potential Ũm(θ)/Ũ0 = − ln[P(θ)] + const.
from the measured P(θ). The circles in figure 20 show the measured potential in the
Γ = 1.2 cell in comparison with the predictions of the smoothed potential Ũδα/Ũ0

(black solid line) and the unsmoothed potential Ũh/Ũ0 (dashed line, shown in red
online). Here the fitted value of Ũ0 = 1/3.5 (see table 1) is used for the calculated
potentials. The two valleys of the potential correspond to the angular position of the
two diagonals of the cell. The middle peak is located at the centre of the flat end wall
of the cell. The measured periodic switching of the LSC orientation in the LDS phase
corresponds to a periodic hopping between the two potential wells. Figure 20 reveals
that the smoothed potential Ũδα/Ũ0 for a non-zero width LSC accurately describes
the measured double-well potential, especially in the central barrier region between
the two valleys.

To characterize the variation of the potential with Γ , we consider the potential
barrier defined by the potential difference between the minima and maximum in
between the closer corners, given by 1Ũδα ≡ Ũh(α = arctan(Γ ∓1)) − Ũδα(α = αmin)
where αmin= (δα/2)(Γ −Γ −1)/(Γ +Γ −1) is the orientation of the potential minimum.
The potential minimum is shifted slightly from zero due to the smoothing from the
non-zero width of the LSC. Here 1Ũδα can be calculated from (4.6) and (4.9),

1Ũ±δα =C(Γ )
[

1
Γ ±2
− δα

Γ + Γ −1

]
, (4.10)

where 1Ũ+δα is used for Γ > 1 and 1Ũ−δα is used for Γ < 1. A measurement of the
potential barrier can be deduced from (4.5) to be 1Ũm/Ũ0 = − ln[P(θ = 0)/P(θ =
arctan(Γ ∓1)− αmin)]. Figure 22(a) compares the measured 1Ũm/Ũ0 (circles) with the
predicted 1Ũδα/Ũ0 using (4.10) (triangles) for different values of Γ . The model gives
an accurate description of the evolution of the potential barrier height with Γ . The
function 1Ũm/Ũ0 =−0.2084+ 32.40e−2.586Γ (solid line) is fit to the data to obtain a
function to approximate 1Ũm/Ũ0.
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FIGURE 22. (Colour online) (a) Comparison between the measured barrier height
1Ũm/Ũ0 (black circles) and the calculated 1Ũδα/Ũ0 using (4.10) (triangles, shown in red
online) for different values of Γ . The solid line shows the fitted function: 1Ũm/Ũ0 =
−0.2084+ 32.40e−2.586Γ . (b) Measured t0/τt in the LDS phase as a function of 1Ũm/Ũ0.
The circles (shown in red online) are obtained at Ra= 2.7× 109 and the (black) squares
are obtained at Ra= 5.5× 109. The solid line shows a fit to (4.11) with κ = 0.395.

We now can (re)plot the measured t0/τt in the LDS phase (see figure 4) as a
function of 1Ũm/Ũ0. Figure 22(b) shows the plot and the two symbols are obtained
at two different values of Ra. The data can be well fit to an exponential function
(solid line):

t0

τt
= 1.265eκ1Ũm/Ũ0, (4.11)

where κ = 0.395. Equation (4.11) is of Arrhenius–Kramers type (Arrhenius 1889;
Kramers 1940), in which the energy barrier 1Ũm lengthens the switching period t0.

4.3. Oscillation frequency around a single corner
The model equation of motion given by (4.1) becomes a second-order linear harmonic
oscillator equation for the smoothed potential Ũδα given by (4.9), which applies in
the limit of small angular displacements around a corner. In the underdamped regime,
such an equation has sinusoidal solutions, where the restoring force comes from the
pressure gradient due the variable diameter of the cell. The resonant angular frequency
is given by the quadratic term in the potential to be

ω2
δα =ω2

φC(Γ )(Γ + Γ −1)/δα. (4.12)

For δα = π/10 and Γ = 1, this frequency is ∼4.8ωφ , so it is faster than the LSC
turnover frequency, with a slight aspect ratio dependence. The predicted oscillation
around a single corner, and its higher frequency than the turnover rate agree with the
observed wiggling mode shown in figure 11, in which we observed that the frequency
f1 is ∼4.2 times larger than the turnover frequency.

The restoring pressure from the sidewall comes from the same origin as that which
drives the twisting and sloshing oscillations observed in upright cylinders (Brown
& Ahlers 2009), but these oscillation modes are distinct because in the latter case
advection around the circulation loop slaves the oscillation frequency to the turnover
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frequency (Brown & Ahlers 2009). We note that a qualitatively similar oscillation
mode around the longest diagonal of a cell has been predicted based on analytical
mean flow solutions in an ellipsoid (Resagk et al. 2006).

4.4. 2DR: disappearance of the potential barrier at extreme Γ
We observed a transition to 2DR for Γ 6 0.16, as shown in figure 4. This transition
can be characterized by a change in the shape of P(θ) from a single peak in the
2DR phase to two peaks in the SDS mode. Such a transition can be reproduced
in the stochastic model with the correction for the finite width of the LSC. As Γ
becomes more extreme (either very small or very large compared with 1), the peaks
of P(θ) get closer together. Due to the smoothing of the potential, the peaks become
indistinguishable when they get close enough, effectively merging into a single peak.
This occurs when the width δα exceeds the angular distance 2θp between the two
peaks. This determines the critical aspect ratios for the transition to be Γ ±1

c = tan θp=
tan(δα/2). For δα = π/10, this yields Γc = 0.16 and 6.3. The model prediction for
the lower Γc is in excellent agreement with the observed transition at Γc = 0.16, as
shown in figure 4. The predicted transition for large aspect ratios (Γc= 6.3) is outside
of the measured range.

4.5. Periodic switching in the LDS and SDS phases
The agreement between the measured and predicted P(θ) suggests the LSC can
be described by the Brown–Ahlers model of a stochastic process in a multi-welled
potential. In that model, stochastic switching between corners was predicted on
occasions when fluctuations are strong enough to drive the LSC over the potential
barrier according to the Arrhenius–Kramers model (Brown & Ahlers 2008b). However,
in the current experiments, regular oscillations between corners across the lower
potential barrier were observed; the SDS state for Γ < 0.82 and the LDS state for
Γ >0.82. Regular oscillations in a double-well potential are known, for example, from
solutions of the stochastic Duffing oscillator (Dykman et al. 1988). In a model of
stochastic motion in a double-well potential, regular oscillations between neighbouring
corners can occur if either the driving force is at a specific frequency, or white noise
can drive oscillations at the resonant frequency of a wider potential. The first case
may be possible for example if the LSC switching is excited by another internal
oscillation mode such as sloshing or twisting (Brown & Ahlers 2009). However, we
do not have measurements of those modes to compare to, so we will consider the
latter case.

Since we do not have analytical solutions for periodic oscillations in the wider
potential well, we present numerical simulation results to compare with the
experimental observations. We use the model equation (4.1) with the potential given
by (4.9) for |α|<δα/2 and (4.6) otherwise. The differential equation for θ is evolved
using a first-order Euler method. The stochastic term fθ̇(t) is generated as a Gaussian
distributed random number with standard deviation

√
Dθ̇/h at each time step separated

by time h. We report simulations with h = 0.125 s, which we confirmed is in the
continuum limit and validated the simulations by checking that 〈θ̇ 2〉 =Dθ̇τθ̇/2 (Brown
& Ahlers 2008a). Simulation runs are reported for several aspect ratios Γ in the
range of the experiments, lasting 3 × 106 s each. The value of ωφ = 0.12 s−1 is set
equal to the measured turnover rate at Γ = 0.83.

This numerical model produces regular oscillations between adjacent corners across
the lowest potential barriers as observed in the experiments if the stochastic driving
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FIGURE 23. A comparison between values of the normalized period t0/τt of switching
oscillations in the SDS and LDS states as a function of aspect ratio Γ . Solid circles:
experimentally measured. Open circles: numerical solutions of the resonant frequency
obtained from the Brown–Ahlers model for a rectangular cross-section with parameter
values explained in the text.

provides enough kinetic energy to regularly cross the potential barrier (Dθ̇τθ̇ >1Uδα)
and if the system is underdamped (τθ̇ > 1/ωφ), analogous to the stochastic Duffing
oscillator (Dykman et al. 1988). For smaller τθ̇ the switching oscillation mode
becomes overdamped, and the switching between adjacent corners is irregular. The
oscillation period is obtained by first calculating a histogram of the time between
switchings between corners. In the overdamped regime, the irregular switching
produces a peak at zero time. If the peak of this histogram is at a non-zero time, we
consider the switching to be dominated by a periodic mode and take that peak time
as the oscillation period t0.

Simulation results for the oscillation period t0 are normalized by the turnover time
τt plotted as a function of the aspect ratio Γ in figure 23. Results are shown for a
value of Ũ0= 1/3.5, matching the experimentally obtained value for Γ = 1. We chose
τθ̇ = 75 s which is just large enough to be in the underdamped regime. These values
require Dθ̇ = Ũ0ω

2
φ/2τθ̇ = 2.7× 10−5 s−3. Regular oscillations are observed across the

smallest potential barrier, corresponding to the SDS phase for Γ < 1 and the LDS
phase for Γ > 1. The oscillation period is longest at Γ = 1 where the potential barrier
is largest and slows the oscillation, and the period decays to either side as the potential
barriers become smaller.

The parameter value of τθ̇ = 75 s is about an order of magnitude higher than that
measured in upright cylindrical containers (Brown & Ahlers 2008a). Results for this
larger value are reported because the variable LSC speed was found to reduce the
effective damping just enough to move the system state from the overdamped regime
to the underdamped regime for other oscillation modes (Brown & Ahlers 2009), and
τθ̇ = 75 s is just large enough to be in the underdamped regime. As long as the system
is in the underdamped state, the oscillation period is not significantly dependent on τθ̇
if Ũ0 is held constant. We also note that for this value of τθ̇ and Ũ0, the values of
the other model parameters are close to those obtained from experiments in upright
cylinders for the same Ra; ωφ = 0.09 s−1 and Dθ̇ = 3 × 10−5 s−3 (Brown & Ahlers
2008a). Thus, the model is approximately quantitatively self-consistent when applied
to different geometries.
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The experimentally measured oscillation period is also shown in figure 23 for
comparison to the numerical simulations. While the numerical solution of the model
accurately predicts the existence of both the SDS and LDS oscillation states with
the correct scale for the period of the switching oscillation, there are a couple of
discrepancies. One discrepancy is that the observed oscillation period in the SDS
state for Γ 6 0.82 precisely matches the turnover time, in contrast with the plotted
prediction which is close to but differs from the turnover time. This suggests that
the oscillation is coupled to the LSC turnover, similar to the twisting or sloshing
oscillations in upright cylinders (Brown & Ahlers 2009). The prediction plotted
corresponds to the resonant frequency, which should correspond to the observed
frequency when the system is driven by white noise. Since the turnover of the LSC
can provide a driving frequency, which is close to the resonant period, then it can
easily drive oscillations coupled to the turnover period.

A second discrepancy between experiment and theory in figure 23 appears due to
the fact that the model is nearly symmetric around aspect ratio 1, since the horizontal
cross-sections having the aspect ratios Γ and Γ −1 are nearly equivalent as a shift in
θ by π/2 transforms from one to the other (there is a slight asymmetry due to the
aspect ratio dependence of D/Dm). As a result, the transition between the SDS and
LDS states is predicted to occur at aspect ratio Γ = 1 when the potential barriers
on all sides are equal. However, the experimentally observed transition between the
SDS and LDS states is at Γ ≈ 0.82, close to the point where the heater aspect ratio
is 1, as explained in § 3.4. In addition, the measured period is not symmetric around
Γ = 0.82. These asymmetries between large and small aspect ratios must be due
to the difference that is not included in the model; namely the vertical variation of
the boundaries, including the curvature of the sidewall and heater. This suggests that
the Brown–Ahlers model for the LSC pathlength could be improved by taking into
account the heater shape in addition to the sidewall shape. We have not performed
such an adjustment here because it would only produce minor quantitative changes,
and not affect qualitative behaviour. Further study is needed to more generally
determine how the LSC forcing and pathlength depend on the combination of heater
shape and sidewall with a variable horizontal cross-section.

It is interesting to note that in the LDS phase, the observed period of oscillations
follows (4.11), which is of Arrhenius–Kramers type (Arrhenius 1889; Kramers 1940;
Hanggi, Talkner & Borkovec 1990). However, the Arrhenius–Kramers model is
intended to apply to a stochastic switching across a potential barrier with randomly
distributed switching times (like a Poisson process), whereas the observed oscillations
in the LDS phase have a regular period. The Brown–Ahlers model allows for both
regular periodic switching between corners with a period close to τt for higher kinetic
energies (large Dθ̇τθ̇/1Uδα) as observed in the SDS phase, and stochastic switching
with the mean period following the Arrhenius–Kramers prediction at lower kinetic
energies. In the periodic case, the potential barrier is predicted to have relatively
little effect on the oscillation period. Oddly, the observed LDS phase seems to
have features of both model regimes. Again, since we developed the Brown–Ahlers
model accounting only for the horizontal cross-section at the mid-height of the
cell (i.e. ignoring the wall curvature), the models for the SDS and LDS phases are
equivalent with a shift in θ by π/2. Thus, the difference in the oscillation period
between the SDS and LDS phases must be due to some effect of the curved sidewall.

4.6. Periodic rocking
The PR phase is notable because it is only found for Γ >1, so it must be due to some
aspect of the curved sidewall. The PR mode is also reminiscent of various oscillation
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FIGURE 24. Side view of the cell illustrating the oscillation in the PR mode. The restoring
force for this mode may come from the azimuthal component of a buoyant forcing on the
LSC near the curved wall for Γ > 0.82.

modes observed in upright cylinders. The coupled twisting and sloshing oscillation
mode of the LSC observed in the upright cylinders was explained as due to a restoring
force provided by the curved sidewalls when the LSC is displaced from a central
path (Brown & Ahlers 2009); this force has the same origin as the pressure from the
sidewall responsible for the potential Uh(α). A similar situation occurs in an upright
cylinder tilted relative to gravity, in which the flow moves upslope along the hot plate
and downslope along the cold plate (Brown & Ahlers 2008b). This leads to a restoring
buoyant force when the LSC was slightly displaced from the preferred path, producing
an in-phase oscillation around the cylinder axis and centred on the preferred path.

In the horizontal cylinder, a similar buoyant forcing can act on the LSC plane when
it is slightly tilted at an angle φ relative to the central vertical plane which extends
along the cylinder axis for Γ >1, as shown in figure 24. Modelling the LSC as a rigid
rotor, a vector analysis of the buoyancy forcing gives a component of the forcing that
pushes the LSC toward φ= 0. This restoring force can lead to an azimuthal oscillation
of the LSC plane around its preferred vertical alignment at φ = 0. These features are
exactly those inferred from the observed in the PR mode. This mode cannot occur
for Γ < 0.82 in the experimental geometry, since there is no restoring force when the
LSC plane is slightly displaced from parallel to the flat end caps. This explains the
observation that the PR phase is not found for Γ < 0.82.

Evaluating the vector balance of the buoyancy forces for the circular cell geometry
gives a contribution to the angular acceleration of

φ̈PR ≈ (2βgδ/D) sin φ ≈ 318Re3/2φν2/D4 (4.13)

for small angles φ, where δ is the horizontal temperature difference due to the LSC,
and using the approximate scalings for the Reynolds number Re(δ) from Brown &
Ahlers (2008a). This results in a resonant frequency ωPR ≈ (φ̈PR/φ)

1/2 ' 18Re3/4ν/D2.
If we define Re = ωφD2/ν, the resonant frequency ωPR is of the order of the LSC
turnover rate 1/τt for Re in the range of the experiments, similar to the observed PR
frequency. However, the observed scaling of the period tR with Re and Γ in the PR
phase are not reproduced by this simple model.

5. Summary
We have carried out a comprehensive study of the effects of cell geometry on the

LSC of turbulent Rayleigh–Bénard convection in a horizontal cylindrical cell filled



164 H. Song, E. Brown, R. Hawkins and P. Tong

with water. An LSC with its rotation plane aligned along the longest path of the cell,
namely the diagonal of the cylinder, is observed in the horizontal cells with varying
aspect ratios in the range of 0.16 6 Γ 6 1.69. The dynamics of LSC are found to be
different from those in the upright cylinders and they have shown strong dependence
on the aspect ratio Γ . Four different flow modes are identified with increasing Γ : (i)
2DR for Γ 6 0.16; (ii) SDS for 0.16<Γ 6 0.82; (iii) LDS for 0.82<Γ 6 1.69; and
(iv) PR for 1.36Γ 6 1.69. The periodic oscillations of the LSC in the SDS, LDS and
PR states are new flow modes, which have not been observed in upright cylinders.

In the 2DR phase (Γ 6 0.16), the flow is quasi-2D and is confined in the circular
plane of the cell. A well-defined oscillation is observed in the power spectrum of local
temperature and velocity signals as well as from the flow visualization measurements.
From these measurements, we conclude that the coherent oscillations are produced
by periodic emission of thermal plumes from the upper and lower thermal boundary
layers, which gives rise to a pulsed LSC in the circulation plane of the cell. The
oscillations in the thin cell are explained by a new solution of Villermaux’s model
(Villermaux 1995; Song et al. 2011), which considered the interaction between the
top and bottom thermal boundary layers as two coupled oscillators.

In the SDS phase (0.16 < Γ 6 0.82), the rotation plane of the LSC switches
periodically between the two diagonals of the cell, spanning across the curved
sidewall. It is found that the switching period t0 is approximately equal to the LSC
turnover time τt.

In the LDS phase (0.82<Γ 6 1.69), the periodic switching of the LSC orientation
remains along the two longest diagonals of the cell but the switching in this case spans
across the flat end wall of the cell. The switching period t0 shows a sharp increase
near the transition aspect ratio Γc= 0.82 and decays exponentially with increasing Γ .
The longest switching period t0 obtained near Γc is ∼5.3 times larger than τt.

In the PR phase (1.30 6 Γ 6 1.69), the flow becomes quasi-2D again with the
bulk fluid as a whole rotating around the central axis of the horizontal cylinder with
periodic reversals. The rocking period is found to increase linearly with Γ . The quasi-
2D PR phase coexists with the LDS phase. The two flow modes compete and the state
of the LSC randomly switches from one to the other.

The measured p.d.f. P(θ) of the angular position θ(t) of the LSC orientation
peaks at the two diagonal positions, and its shape is adequately described by a
model proposed by Brown & Ahlers (2008a,b). This model consists of stochastic
ordinary differential equations in which turbulent fluctuations drive motion a
cell-geometry-dependent potential Uh(θ), which controls the dynamics of the LSC
orientation θ(t). The calculated Uh(θ) has a double-well shape and the barrier height
1Uδα(θ) between the two potential wells decreases with increasing Γ , with potential
minima near the cell corners. These features of the model agree well with the
experimental results.

We introduced a new correction to the Brown–Ahlers model for the finite width of
the LSC, which effectively smooths the potential to better fit the measured P(θ). This
correction leads to closed-form solutions for oscillations around a potential minimum
driven by stochastic fluctuations, matching the newly observed wiggling mode. This
correction also causes the potential to transition from two wells to one well as Γ is
decreased below Γc = 0.16, corresponding to the observed 2DR phase with a single-
peaked P(θ).

The Brown–Ahlers model predicts the periodic switching between the nearest
corners in the SDS and LDS states as oscillations in the wider double-well potential,
where the stochastic kinetic energy of the LSC is large enough to regularly cross
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over the potential barrier. The oscillation in the PR phase may be possible due to
a restoring force from buoyancy with a component along the curved sidewall when
the LSC plane becomes tilted relative to the vertical plane which extends along the
cylinder axis for Γ > 1, analogous to the restoring force responsible for oscillations
in tilted upright cylinders (Brown & Ahlers 2008b).

In the LDS state, the normalized switching period t0/τt is found to be related to
the barrier height 1Ũm(θ) via (4.11), which is of Arrhenius–Kramers type (Arrhenius
1889; Kramers 1940; Hanggi et al. 1990) for random switching between potential
wells. This is in contrast to the predicted and observed periodic switching in this
regime, in which case the switching period is predicted to have a much weaker
dependence on the barrier height. We applied the Brown–Ahlers model without
taking into consideration of vertical variation in the cell shape, so that the SDS and
LDS phases are equivalent to each other with a rotation in θ by π/2. Since the
model can accurately predict the oscillation period in the SDS state, we conclude that
the discrepancy with the periods in the LDS and PR states has something to do with
the fact that the cell shape is non-uniform in height, i.e. with the curved sidewall or
the heater geometry. A further understanding of the contribution of vertical variations
in the geometry to the LSC dynamics remains open for future studies.

The new features found in the horizontal cylinders and their dependence on the
aspect ratio and shape of the convection cell provide important insights toward our
understanding of many large-scale convective flows occurring in nature and industry.
We find the Brown–Ahlers approach of using a geometry-dependent potential Ũh(θ)
captures the essential features of the LSC dynamics in the horizontal cylinder. This
success suggests promise for this approach to be able to predict single-roll LSC
dynamics in arbitrary geometries with a geometry-dependent potential. We propose
that multiple-roll flows found in experiments and natural flows with more extreme
aspect ratios may require an additional equation for the dynamics of the orientation
for each roll with interaction terms between neighbouring rolls, but such an extension
to multiple-roll flows remains an open problem for future studies.
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