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An incoherent dynamic light-scattering technique is developed to measure the local velocity and its statistics.
By employing two parallel laser beams of different colors, the technique measures the cross-correlation function
of the scattered intensities from two separate illuminating volumes. Because there is no phase coherence
between the two laser beams, the measured cross-correlation function is sensitive only to the intensity
fluctuations caused by a seed particle that crosses the two beams in succession. The flow velocity is obtained
from the measured particle transit time. We frame the scattering theory so as to account for the two-beam
scattering geometry. Our experiment verifies the calculation and demonstrates applications of the technique.
The method has the unique feature of being able to measure simultaneously the local velocity in two opposite
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directions perpendicular to the incident laser beams.

Its advantages are high spatial resolution and accuracy,

fast temporal response, and ease of use. The technique is useful in studies of turbulent flows, sedimentation
of heavy particles, and flow phenomena in complex fluids.

1. INTRODUCTION

In recent years there has been a growing interest in
studying turbulence in simple fluids and nonlinear flow
phenomena in complex fluids. Examples of these studies
include turbulent Rayleigh—Bénard convection,! sedi-
mentation of colloidal particles,? and small convective
flows in binary liquid mixtures near the critical points.?
Many experimental methods have been used to measure
velocity fluctuations in these systems; a standard one
is laser Doppler velocimetry (LDV).* With the LDV
scheme, one focuses two coherent laser beams to a small
spatial point at which the two beams form interference
fringes. When a seed particle traverses the crossover
region, the scattering of the seed particle is modulated by
the interference fringes with a frequency proportional to
the velocity of the particle. Under certain unfavorable
conditions, however, the application of LDV is limited.
For example, in combustion and strong thermal convec-
tion, fluctuations of the fluid refractive index resulting
from large temperature fluctuations may cause the laser
beam to wander and defocus in the turbulent fluid and
therefore to perturb the crossing of the two laser beams
used in LDV. Because it can permit only one particle
in the scattering volume at a given time, LDV is also
limited in measuring the flow velocity near a solid wall
or in polymer solutions and other complex fluids, where
strong background scattering may ruin the LDV signal.
In this paper we present a new light-scattering tech-
nique, which can be used to measure accurately the local
velocity and its statistics in these complex systems. The
principle of the technique is simple—it involves measur-
ing the time for a small seed particle having a velocity v in
the flow field to cross two parallel laser beams. The two
laser beams have different colors and are separated by a
known distance [ (~0.1 mm). Experimentally this tran-
sit time, or delay time, is determined from the intensity
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cross-correlation function
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where I, and I, are the scattered light intensities from
the two parallel beams termed blue and green, respec-
tively. In the experiment to be described below, the two
beams are the blue light and the green light from an
argon-ion laser. Because there is no phase coherence
between I, and I,, the function g.(t) is sensitive only
to the scattering-amplitude fluctuations produced by the
seed particles moving in and out of the scattering vol-
umes. This method takes advantage of the laser source
while avoiding its coherence by using the two-color cross-
correlation scheme.

The method is an extension of our recently developed
technique of incoherent cross-correlation spectroscopy,’ in
which a single laser beam consisting of two colors is used.
Because of the radial symmetry of the laser-beam pro-
file, the single-beam method can measure only the square
of the velocity components perpendicular to the beam.
Since it can distinguish which of the two parallel beams
the seed particle traverses first, the dual-beam method is
sensitive to the flow direction. By simultaneously mea-
suring the two cross-correlation functions (I, (¢')I4(t' + ¢))
(blue cross green) and (Iz(¢')I;(¢' + t)) (green cross blue),
one can distinguish flows in two opposite directions per-
pendicularly across the two incident laser beams. This
feature is unique in studies of turbulent flows in which
the technique can be used to measure the velocity proba-
bility density functions P(v) and P(—v) simultaneously.

The idea of measuring time of flight between two small
volumes in space for flow measurements has been ex-
plored by several authors; some directly detect the separa-
tion between two consecutive pulses as a measure of the
time of flight®-8; others use various kinds of correlation
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schemes.”~1! Because of the limitations of the receiv-

ing electronic, the early time-of-flight methods could de-
tect only large intensity fluctuations produced by a single
(large) seed particle. The local velocity was determined
on the basis of individual scattering events, and no prob-
ability distribution of the velocity was obtained. With a
new digital correlator and the cross-correlation scheme,
we are able to measure small intensity fluctuations pro-
duced by many particles moving in and out of the scat-
tering volumes. We frame the scattering theory so as to
encompass fluctuations in the number of particles in the
scattering volumes. By signal averaging a large number
of intensity fluctuations, one can obtain the exact func-
tional form of g.(¢) with high statistical accuracy. The
probability density function P(v) for the local velocity v
can then be deduced from the measured g.(t).

Our two-color cross-correlation scheme is capable of
measuring the scattering-amplitude fluctuations with a
cutoff frequency up to 10 MHz and a spatial resolution
better than 60 um. The experimental uncertainties are
essentially statistical. At a moderately high scattering
intensity (I ~ 10* counts/s), it takes only ~5 min to col-
lect data with an adequate signal-to-noise ratio. Since
an incoherent detecting method is used, an increasing
number of particles in the scattering volume tends to
average out the scattering-amplitude fluctuations. In
fact, as will be shown below, g.(¢) goes as 1/ N, where N is
the average number of particles in the scattering volume.
In our experimental arrangement the particle number in
the scattering volume can be controlled in the range 1 <
N < 100, and therefore the smallest signal-to-noise ratio
[evaluated by the value of g.(¢) at time ¢ = 0] is at the
1% level. Because of the small signal-to-noise ratio, it
is difficult to measure g.(¢) by using normal commer-
cial correlators. The new correlator used in the experi-
ment is the ALV-5000 multiple-7 correlator, which
utilizes a symmetric normalization technique, making it
much easier to probe incoherent fluctuations with small
amplitudes and long relaxation times. The ALV-5000
correlator is capable of measuring fluctuating signals
with a signal-to-noise ratio as low as 0.1%. It should be
pointed out that the present technique is not meant to
replace LDV, particle imaging velocimetry, and other
time-of-flight velocimeters; rather, it should be used
to complement these techniques. Our cross-correlation
method is particularly useful for measuring the local
velocity and its statistics in situations in which either
vibrations or refractive-index fluctuations may cause the
laser beam to wander in the fluids or there is a strong
background scattering from a nearby wall or in polymer
solutions and other complex fluids.

Section 2 contains theoretical calculations for particle-
number fluctuations involving two scattering volumes.
Experimental details appear in Section 3, and the results
are presented and analyzed in Section 4. A brief com-
parison between the present technique and LDV as well
as other time-of-flight methods is also made in Section 4.
Finally, the work is summarized in Section 5.

2. THEORY

The basic dynamic light-scattering theory for coherent
and incoherent sources is well documented.!?>® Here we
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reframe the theory so as to account for a new scattering
geometry involving two parallel laser beams of different
colors (say, blue and green) with a small separation [.
We calculate the intensity cross-correlation function
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where the angle brackets represent a time average over ¢’
and ¢ is the delay time. In the experiment to be described
below, the two scattering intensities I,(¢) and I,(¢) are
measured from two separate scattering volumes, V; and
V,, respectively. We will focus on fluctuations in the
number of seed particles in the scattering volumes and
discuss the application of the technique in velocimetry.

Let us now consider scattering by uniform spherical
solid particles, which scatter light isotropically. The
scattered electric field can be written as'*

No
E@t) = _Zl aj(t)exp[—iq - r;(t)], 2)
-

where N, is the total number of particles in the fluid, a(¢)
is the scattering amplitude of the jth particle, and r;(z)
is the position of the particle at time ¢. For an isotropic
particle with a fixed scattering cross section, a;(t) changes
with time continuously because the scattering of the parti-
cle varies as the particle changes its position in a nonuni-
formly illuminated scattering volume. If the scattering
volume is uniformly illuminated, this amplitude will take
a constant value when the particle is in the scattering
volume and will become zero when the particle leaves the
scattering volume. In Eq. (2) the polarization of the inci-
dent light is assumed to be perpendicular to the scattering
plane, and a proportionality constant has been omitted for
simplicity. The photon momentum-transfer vector q has
an amplitude g = (47n/A¢)sin(6/2), where 6 is the scat-
tering angle, n is the refractive index of the fluid, and A
is the wavelength of the incident light.

With Eq. (2) one finds that the function K in Eq. (1)
has the form®

K= If (@:®(ab(t)ars ' + t)a8(t' + t))
i,j,k,1
X (exp{—iqy - [ri(¢') — r;(t")]
—iqg - [rp( +t) — v (¢ + O], 3

where the superscripts b and g denote the blue and the
green beams, respectively. In the above, we have as-
sumed that the phase and amplitude fluctuations of
the scattered light are statistically independent. This
decoupling approximation is valid because the time
scales involved in the two processes are usually widely
separated. Because of the random distribution of the
particles in the fluid, the only terms that survive the en-
semble average in Eq. (3) must satisfy one of the following
four conditions®: (1) i = j = k = [ for arbitrary nonzero
qp and qg, (2) i = j # k = [ for arbitrary nonzero q; and
q, B i=1l#j=kforqy=q,#0,or(d)i=k+j=1
for q, = —q, # 0. Equation (3) then becomes
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where A;(¢) = a;%(t) and the function F;(q, ¢) = (exp{—iq -
[x(#) — r(¢' + t)]}), which arises from the interference
of the coherent fields scattered by the moving particles.
Condition (3) or (4) gives rise to Fi(q, ). In dynamic
light scattering this phase-fluctuation term is usually
measured to study diffusive motions of small particles'®!®
and fluid dynamics in laminar'® and turbulent!” flows.
In our incoherent cross-correlation scheme, neither the
condition q; = q, nor q, = —q, is met, and therefore
Fi(q, t) = 0. We will subsequently drop this term.

We now focus on the first two terms in Eq. (4), which
are from condition (1) (i = j = £ = [) and condition (2)
(i=j # k =1), respectively. Notice that these two terms
are independent of the photon momentum-transfer vector
q, because they arise from amplitude fluctuations of the
scattered light. By writing the scattering power A(¢) as
a sum of its average value A and the fluctuation SA(z)
from A [i.e., A(t) = A + 5A(t)], we have

K = (No)2A A% + Ny(sAL(H)A4(H + 1))
+ No(No — 18 AL ()6 A4 (E + 1)), (5)

where subscript 1 in the second term denotes that the cor-
relation function is from a single particle and subscripts 1
and 2 in the third term denote that it is from a pair of par-
ticles. Again, we have assumed that all particles behave
the same statistically. Similarly to the case with Eq. (3),
one can show® that _111} Eq. (1) the average scattering inten-
sities (Ip(¢')) = NoA and (I,(t)) = NyA®. Substituting
these results and Eq. (5) into Eq. (1), we have

N (6ALL(t)6A8(t + 1)

&) =1 NA" A
L (No = (AL ()3 A4t + 1)
NoA"A*
=1+ gns(t) + gnr(?). (6)

It should be pointed out that both gns(¢) and gnr(¢) mea-
sure the correlation between fluctuations in the number of
particles in the two scattering volumes V;, and V,. The
difference between them is as follows: gys(t) is caused
by a single particle, which is in V at time ¢’ and visits V,
at a later time #' + ¢. The correlation function gyr(%),
on the other hand, is caused by two different particles;
one of them is in V; at time ¢’ and the other is in V, at
a delay time ¢’ + . We therefore call gys(¢) the single-
particle (or self) number-fluctuation correlation function
and gyr(t) the two-particle (or pair) number-fluctuation
correlation function.

When the particles in the fluid are randomly dis-
tributed, there is no correlation between the number
fluctuations in the two scattering volumes, and there-
fore gnr () = 0. The correlation function gyr(¢) becomes
nonzero only when there exists a spatial coherence among
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the particles in the fluid. Such a spatial coherence can
be found in a colloidal crystal in which all the colloidal
particles form a lattice in the solvent.!®!° An advantage
of using the two-beam scheme is that one can measure
gns(t) and gyr(t) individually by changing the orienta-
tion of the plane defined by the two parallel laser beams.
When the flow direction is not perpendicular to the nor-
mal direction of the two-beam plane, the single-particle
correlation function gys(¢) = 0 and the measured cor-
relation function is simply the two-particle correlation
function gyr(#). If the two scattering volumes coincide
(single-beam geometry, which was used in most previous
studies of number fluctuations®'3), one cannot distinguish
gns(t) and gnr(t) even when there is a spatial coherence
among the particles.

For two laser beams having intensity profiles I(r) and
I (r), the correlation function gys(#) can be written as!®20

1 1/Vfd3rf d?roIy(r) I, (ro)P(r — ro; )
gns(t) = A ’
0 (1/V)2[Ib(r)d3r[1g(r)d3r

(N

where V is the total volume of the scattering sample and
P(r — ry; t) is the probability density for a particle to
move from ro torin atime¢. In atypical laser-scattering
experiment, the scattering volume has a thin cylindrical
shape, with its length L, defined by a slit in the detecting
optics, being larger than its waist radius. A laser beam
usually has a Gaussian intensity profile

I(r) = Iy exp[—2(r./0)?], (8)

where r, is the radial distance from the center of the laser
beam and o is the beam radius at which the intensity
falls to 1/e? of its maximum value I, at the center of
the beam.

The probability density function P(r — ry; ¢) charac-
terizes the dynamics of the probe particles in the fluid.
When the particles move with a uniform velocity v, the
probability density function P(r — ro; ¢) takes the form

P(r —ry;t) =68(x — x9 — vt)6(y — y0)8(z — z0).  (9)

In the above, we have assumed that v = v£, and a coordi-
nate system is chosen such that the blue beam coincides
with the z axis and the green beam is parallel to the z
axis, at x = [ and y = 0. Substituting Eqgs. (8) and (9)
into Eq. (7), we obtain

1 (vt — 1)?
gns(t) = ~ exp[%}

2
IR A )
=5 P 2<\/§a/v> (10

where 02 = (012 + 092)/2, with o1 and o, being the 1/e?
radii of the blue and the green beams, respectively, and
N = Ny(V,/V) is the average number of the particles
in the average scattering volume V, = (V, + Vo)/2 =
7 L(01% + 022)/2. Here, L is the length of the scattering
volumes as defined by the slit width (see Section 3). In
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Fig. 1. Schematic diagram of the experimental setup: M1, M2, and M3, mirrors; L1, 1.2, and L3, lenses; S, adjustable slit; BS, beam
splitter; PM1 and PM2, photomultipliers; and C, scattering cell (drawing not to scale).

Eq. (10) to = l/v is the time for a particle having a velocity
v to cross the two parallel laser beams with a separation /.
Equation (10) clearly shows that the correlation function
gns(t) is a Gaussian function centered at the delay time ¢,
with a 1/e? half-width v/2 o/v. The height of the Gauss-
ian peak is proportional to 1/ N, where N is the average
number of particles in the scattering volume. When the
separation [ = 0, Eq. (10) agrees with our previous result.?
For a turbulent flow we have

— —_ 2
gns(t) = % [ va(v)exp{%} (11)

where P(v) is the probability density function of the lo-
cal velocity v in the direction perpendicular to the laser
beams. In the above, the flow velocity is measured over
the distance / between the two parallel laser beams. In
a typical experimental arrangement, [ can be reduced to
~50 um. The measured local velocity is also averaged
over the length L of the two scattering volumes viewed by
the photodetectors. In our experiment the length of the
scattering volume is ~50 um. By changing the direction
of the incident laser beams, one can measure the local ve-
locity in different directions. For a fixed beam orienta-
tion our technique is capable of distinguishing v and —uv,
the local velocities in the direction perpendicular to the
two laser beams. This is because the time delay between
the intensity fluctuations in the two scattering volumes,
introduced by a particle crossing the two laser beams, is
unidirectional. Therefore one can obtain the probability
density functions P(v) and P(—v) by measuring the inten-
sity cross-correlation functions (I, (¢')I4(¢' + ¢)) (blue cross
green) and (I(¢)I;(¢' + t)) (green cross blue), respectively.

3. EXPERIMENT

Figure 1 shows the experimental setup. The argon-ion
laser (Coherent Innova-70) was under multiline opera-
tion with a wavelength range from 457.9 to 514.5 nm.
The laser beam was first incident upon a prism, and the
dispersed beams of different colors were reflected by a
mirror, M1, at a higher elevation. Two small mirrors,
M2 and M3, mounted above the original laser beam were
then used to intercept the blue (488.0-nm) and the green
(514.5-nm) beams, while other less-intensive beams (not
shown in the figure) were allowed to pass through the
edges of the two mirrors or were blocked before they
reached the two mirrors. The blue and the green beams
intercepted by M2 and M3 were reflected at 90° with re-
spect to the original laser-beam direction. The orienta-
tions of the two mirrors were individually adjusted so
that the two beams became parallel to each other after
reflection. One can vary the separation of the two par-
allel beams, which was 8 mm in our setup, by changing
the mirror heights and the interception distances of the
three mirrors. The diameters and the separation of the
two parallel beams were then further reduced by a beam
reducer (a reverse beam expander) consisting of a pair of
achromatic lenses, L1 and L2. The focal lengths of L1
and L2 were 500 and 10 mm, respectively, and the dis-
tance between the two lenses was adjusted to be the sum
of their focal lengths (510 mm). This arrangement gave
a reduction ratio of 50. Using the measured values of
the beam radii (2 mm) and the beam separation (8 mm)
at the entrance of L1 together with the reduction ratio, we
calculated the beam radii and separation at the exit of L2
to be 0.05 and 0.16 mm, respectively. These two beam
parameters were verified from the measured intensity
profile of the two laser beams. We measured the beam
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profile by using a micrometer-controlled translation stage,
a small pinhole (~5 um in diameter), and a photodiode.

The two parallel beams were incident upon a flow cell,
C, placed closely behind 2. Lens L3 with a focal length
f = 100 mm was placed at a 90° scattering angle and at a
distance 2f from the flow cell, so that it projected the scat-
tered laser beams in the flow cell onto an adjustable slit,
S, with a 1:1 magnification. The slit width L together
with the beam diameters determine the scattering vol-
umes to be viewed by the photodetectors. A typical slit
width used in our experiment was 0.05 mm. Light pass-
ing through the slit fell into a pinhole 0.6 mm in diameter.
Two photomultiplier tubes, PM1 and PM2, were mounted
at a right angle on a cubic box, which was connected to the
pinhole by a 400-mm-long metal tube. This arrangement
ensured that only the scattered light passing through the
slit could be viewed by the two PM tubes. The beam
splitter, BS, at the center of the box had a reflection-to-
transmission ratio of 50/50. An interference filter (not
shown in the figure) was placed in front of each PM tube.
The center wavelengths of the two filters were 488.0 and
514.5 nm. Both filters had a bandwidth, full width at
half-maximum, of 1 nm.

The pulse trains from the two photomultipliers were
fed to an ALV-5000 correlator whose output gives the
intensity cross-correlation function,

_ DL+ 1)
&) = Ly LRG0, a2

where I, and I, are the scattering intensities of the blue
light and the green light, respectively, and B is a con-
stant that depends on the geometry of the experimen-
tal setup. Because there is no phase coherence between
the blue light and the green light, the function G.(¢) in
Eq. (12) is simply gns(¢) + gnr(¢). In our experiment the
seed particles were randomly distributed in the fluid, so
that gn7(¢) = 0 and therefore g.(¢) = 1 + Bgns(¢). The
ALV-5000 multiple-r correlator used to measure g.(¢) had
a fixed range of delay times between 0.2 us and 1 h.

Our flow cell was a section of glass tube, 70 cm in
length, 3.6 mm in inner diameter, and 6.0 mm in outer
diameter. The tube was placed vertically so that the flow
lines were perpendicular to the incident laser beams and
lay in the plane defined by the two beams. The long glass
tube chosen for the experiment ensured that our flow mea-
surements were conducted in a well-developed laminar-
flow region. The fluid used in the experiment was
distilled water filtered by 0.22-um filters. Monodis-
persed latex spheres 0.55 um in diameter were used
as the seed particles. To measure the concentration de-
pendence of gns(¢) [see Eq. (10)] we varied the volume
fraction of the particles between 1 X 1077 and 3 X 1075,
We verified that in this concentration range, the parti-
cle interaction can be ignored. All measurements were
made at room temperature. With a magnetically coupled
pump (Micropump Model 1316SS), the aqueous solution
of the latex spheres was pumped through the tube at
different flow rates.

4. RESULTS AND DISCUSSION

To test the technique, we first performed the cross-
correlation-function measurements in a laminar flow with
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a constant flow rate J. The flow was set such that the
seed particles would first pass the green beam and then
the blue one. The slit S (0.05 mm in width) shown in
Fig. 1 was positioned in such a way that only the scat-
tering from the center of the pipe could be viewed by the
photodetectors. Therefore the flow velocity Vi at the
center of the pipe was measured. Figure 2 shows two
cross-correlation functions measured simultaneously by
our correlator operated in the dual cross-correlation mode.
The circles represent the green cross blue correlation func-
tion, where the measured green light I,(¢) was delayed
relative to the blue light I,(¢). The squares represent
the blue cross green correlation function, where I, (¢) was
delayed compared with I,(¢). It can be clearly seen from
Fig. 2 that the measured g.(¢) for green cross blue is a
Gaussian-like function with a baseline of 1 and that the
g.(t) for blue cross green is essentially a constant of 1
at all delay times.

Figure 2 can be understood as follows. Because the
particles first pass the green and then the blue beams, de-
laying I,(¢) with a time interval equal to the time for the
particle to cross the two laser beams will give a nonzero
product of the two scattering intensities at the correspond-
ing delay times. For other delay times the average of the
product is zero, since the delay times do not match the
transit time of the particles. Obviously, the blue cross
green correlation function is zero in our flow configura-
tion, because the measured I(¢) is delayed in the wrong
direction. This was further confirmed by the observation
that when the flow direction is reversed, the two correla-
tion functions shown in Fig. 2 exchange their functional
forms. Figure 2 thus demonstrates that our technique
is capable of distinguishing flows in two opposite direc-
tions perpendicular to the incident laser beams. This
feature is useful in studies of turbulent flows, in which
one can measure simultaneously the velocity probability
density functions P(v) and P(—v) and study any asymme-
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Fig. 2. Intensity cross-correlation functions g.(¢) measured in
a laminar flow, with Vy = 29.74 cm/s: circles, green cross blue
correlation function; squares, blue cross green correlation func-
tion. The solid curve is a fit to the green cross blue data.
The fitted function is g.(¢) = 1 + 0.633 exp{—2[(¢ — 0.538 ms)/
0.253 ms]?} (see text).
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Fig. 3. Measurements of the velocity Vy at different pump
settings: circles, from the measured cross-correlation function
g.(¢); triangles, from the flow rate measurement. The solid line
is a linear fit to the triangles.

try between the two density functions. The solid curve
in Fig. 2 is a fitted function 1 + A exp[—2(¢ — #0)%/72],
with A = 0.633, #, = 0.538 ms, and 7 = 0.253 ms. The
functional form of the measured g.(¢) agrees well with
the calculated one in Eq. (10). From the fitting above
we find that V, = [/¢y = 29.74 cm/s, where [ = 0.16 mm
is our beam separation.

For a laminar pipe flow the velocity at the center
of the pipe Vo = 2J/7R?, where R = 1.8 mm is the
radius of the pipe and JJ is the flow rate, which can be di-
rectly measured. The triangles in Fig. 3 show the veloc-
ity V, obtained from the measured flow rate J at different
pump settings. The solid line is a linear fit to the trian-
gles and can be used as a calibration curve for V,. The
circles in Fig. 3 represent the velocity V; obtained from
the measured g.(¢) at different pump settings. It is
clearly shown in Fig. 3 that the two independent mea-
surements are in excellent agreement with each other.
This suggests that our scattering method is indeed an ac-
curate velocimetry technique.

It is also found that the 1/e2 half-width 7 of the Gauss-
ian peak shown in Fig. 2 changes with the flow veloc-
ity Vo. Figure 4 shows the measured 7 as a function of
Vo. The solid curve is the fitted function 7 = 7.64/V,
(ms), which agrees well with Eq. (10). Using the rela-
tion 7 = /2 ¢/V,, we obtain the laser-beam radius o =
(7.64/+/2) X 10 um = 54 um, which is in excellent agree-
ment with the direct measurement of o, as discussed in
Section 3. The measured gys(¢) thus can be used as an
accurate method to calibrate the laser-beam radius when
the flow velocity is known. In the above, one obtains the
beam radius o by fitting the measured values of 7 as a
function of Vy. In fact, o can be obtained from a single
measurement of 7 at a given Vj [see Eq. (10)]. The inset
in Fig. 4 shows the values of ¢ obtained from the mea-
sured 7 at different velocities V. It clearly shows that
the average value of o agrees with that obtained from
the fitting in Fig. 4.

As shown in Eq. (10), the amplitude of gns(¢) is pro-

portional to 1/N, where N is the average number of
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particles in the scattering volume. Figure 5 shows the
measured height, g.(to) — 1, of the Gaussian peak (see
Fig. 2) as a function of N. The average number N was
obtained from the known particle concentration and the
calculated scattering volume from the beam radius and
the slit width. The solid line in Fig. 5 represents the
fitted function g.(t,) — 1 = 0.79/N. Figure 5 thus con-
firms that the amplitude of gyg(¢) is indeed inversely
proportional to the average number of particles in the
scattering volume. To our knowledge, this is the first
time that the N dependence for number fluctuations has
been measured.

To demonstrate further the capability of the technique,
we measured the velocity profile across the pipe diameter
for both laminar and turbulent pipe flows. In the experi-
ment the light-collecting lens L3 (see Fig. 1) was mounted
on a micrometer-controlled translation stage (Oriel model
16123). By moving the lens L3 laterally, one can conve-
niently project different portions of the scattering beams
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Fig. 4. Measured 1/e? half-width 7 of the Gaussian peak as a
function of the velocity Vy. The solid curve is the fitted function
T = 7.64/Vy (ms). The inset shows the laser beam radius o
obtained from the measured 7 at different V.
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Fig. 5. Measured Gaussian peak height, g.(¢9) — 1, as a func-

tion of the average number N of particles in the scattering
volume. Solid line, fitted function g.(¢9) — 1 = 0.079/N.
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Fig. 6. Measured velocity profiles across the pipe diameter in a
laminar pipe flow (circles, Re = 617) and in a turbulent pipe flow
(squares, Re = 3014). The solid curve is a fit to the Poiseuille
formula V(r) = Vo[1 — (r/R)?] for laminar pipe flows. Here r is
the radial distance from the center of the pipe, Vo = 34.3 cm/s
is the velocity at r = 0, and R = 1.8 mm is the inner radius of
the pipe.

along the pipe diameter onto the slit. In this way the
local velocity near the pipe wall can be accurately mea-
sured. Figure 6 shows the measured velocity profiles at
two different flow rates. The circles were obtained at a
low flow rate with the maximum velocity at the center
of the pipe Vo = 34.3 cm/s. The corresponding Reynolds
number Re = V2R/v = 617, where R = 1.8 mm is the in-
ner radius of the pipe, V = V,/2 is the mean velocity of
the pipe flow, and » = 0.01 cm?/s is the kinematic vis-
cosity of water. This Reynolds number is well below the
turbulent-transition Reynolds number Re. for pipe flows
(Re, = 2000).2' The solid curve in Fig. 6 is a fit to the
well-known Poiseuille formula V(r) = Vo[1 — (r/R)?] for
laminar pipe flows. Here r is the radial distance from
the center of the pipe. The squares show the velocity
profile measured at Re = 3014. This Reynolds number
is larger than Re,, and the flow is certainly in the turbu-
lent regime. The characteristic of turbulent pipe flows is
clearly shown in the measured velocity profile, which has
a flat central region and a well-developed boundary layer.
The above results thus demonstrate that our technique
is a convenient and accurate method for high-resolution
measurements of the velocity profile and the turbulent
boundary layer in the near-wall region. When the image
of the scattering beam is scanned with a moving lens, it
takes only ~1 h for our technique to measure the entire
velocity profile. This is much faster than the LDV tech-
nique, with which one has to move either the entire opti-
cal system or the whole flow system in order to measure
the velocity profile. Unlike LDV, particle imaging ve-
locimetry, and other time-of-flight techniques, our cross-
correlation scheme is insensitive to the static background
scattering from either reflecting walls or carrier fluids and
therefore enhances the signal-to-noise ratio considerably
unless the number of scatterers is truly overabundant.
The largest velocity that can be measured by the
present technique is determined by the time resolution of
the digital correlator. For our correlator (ALV-5000), a
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0.1-us time scale can be easily resolved, which corre-
sponds to a velocity of 106 cm/s for a 1-mm beam sepa-
ration. The smallest velocity that can be measured with
the technique is limited only by the Brownian diffusion of
the seed particles. When the transit time for a particle
to cross the two laser beams becomes longer than the
time for the particle to diffuse across a beam diameter
laterally, the particle will not cross the two beams in
succession, and the correlation function gys(¢) = 0. One
can slow down the Brownian motion by using large par-
ticles. For our setup with particles 0.5 um in diameter,
the limiting velocity is approximately 107 cm/s.

When compared with the early time-of-flight tech-
niques,’~!! our new two-beam two-color scheme has the
advantages of better spatial resolution and higher statis-
tical accuracy. We extended our calculation to include
the situation in which many particles are present in the
scattering volumes. By signal averaging a large number
of intensity fluctuations, the exact functional form of g.(¢)
can be obtained with high statistical accuracy. With the
ALV-5000 correlator we are able to measure fluctuat-
ing signals with a signal-to-noise ratio as low as 0.1%.
From the measured g.(¢) the probability density func-
tion P(v) can be deduced. In fact, according to Eq. (11),
P(v) can be obtained through a simple Laplace inversion.
The only assumption used in Eq. (11) is that the laser
beam has a Gaussian intensity profile. This can be di-
rectly measured with a micrometer-controlled translation
stage, a small pinhole, and a photodiode. One can also
calculate the cross-correlation function g.(¢) for other
intensity profiles.

With the two-color scheme we are able to reduce the
beam separation down to ~50 um. This improvement
of the spatial resolution allows us not just to measure ve-
locity fluctuations but also to apply the technique in dif-
ficult situations in which the laser beam wanders in the
fluids as a result of large fluctuations of the fluid refrac-
tive index. An example is turbulent Rayleigh—Bénard
convection, in which large temperature fluctuations may
cause the two defocus laser beams used in LDV to de-
focus and therefore reduce the signal-to-noise level. Be-
cause their smallest size (~1 mm) is typically much larger
than the beam diameter, the temperature fluctuations
will not affect the Gaussian-like nature of the beam profile
but may generate small fluctuations in the beam separa-
tion. These beam-separation fluctuations introduce ex-
tra broadening in the measured correlation function g.(¢),
but the measured mean velocity will remain the same.
This is because the average separation between the two
laser beams is not affected by the temperature fluctua-
tions. In the special case in which the two laser beams
coincide® (a single beam consisting of two colors), the
temperature fluctuations will have no effect in the mea-
sured g.(¢).

5. CONCLUSION

A new dynamic light-scattering technique has been de-
veloped to measure accurately the local velocity v and
its probability density function P(v). Using two paral-
lel laser beams of different colors, the method measures
the cross-correlation function of the scattered intensities
from two separate illuminating volumes. The dual-beam



1578 dJ. Opt. Soc. Am. A/Vol. 12, No. 7/July 1995

two-color scheme eliminates fast phase fluctuations of the
scattering intensities and is sensitive only to the inten-
sity fluctuations caused by a seed particle that crosses
the two beams in succession. The flow velocity is ob-
tained from the measurement of the particle transit
time. For a fixed beam orientation our technique is
capable of distinguishing v and —v, the local velocities
in the direction vertically across the two laser beams.
This is because the time delay between the intensity
fluctuations in the two scattering volumes, introduced
by a particle crossing the two laser beams, is unidirec-
tional. By changing the direction of the incident laser
beams, one can measure the local velocity in different
directions. We have devised an apparatus to rotate the
two laser beams about an axis parallel and centered be-
tween them, so that the velocity component in different
directions perpendicular to the laser beams can be eas-
ily measured. We have framed the scattering theory
so as to account for the fluctuations in the number of
particles in the two-beam scattering geometry. Our
experiment verifies the calculation and demonstrates
applications of the technique. The advantages of the
technique are its high spatial resolution and accuracy,
fast temporal response, and ease of use. In studies of
turbulent flows the method can be used to measure the
probability density functions P(v) and P(—v) simulta-
neously. We also expect this method to be useful in
studies of near-wall turbulence, sedimentation of heavy
particles, and flow phenomena in complex fluids, for
which detection of minute velocity changes is of interest.
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