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We report a combined experimental and numerical study of the effect of boundary
layer (BL) fluctuations on the scaling properties of the mean temperature profile θ(z)
and temperature variance profile η(z) in turbulent Rayleigh–Bénard convection in a
thin disk cell and an upright cylinder of aspect ratio unity. Two scaling regions are
found with increasing distance z away from the bottom conducting plate. In the BL
region, the measured θ(z) and η(z) are found to have the scaling forms θ(z/δ) and
η(z/δ), respectively, with varying thermal BL thickness δ. The functional forms of the
measured θ(z/δ) and η(z/δ) in the two convection cells agree well with the recently
derived BL equations by Shishkina et al. (Phys. Rev. Lett., vol. 114, 2015, 114302)
and by Wang et al. (Phys. Rev. Fluids, vol. 1, 2016, 082301). In the mixing zone
outside the BL region, the measured θ(z) remains approximately constant, whereas
the measured η(z) is found to scale with the cell height H in the two convection cells
and follows a power law, η(z) ∼ (z/H)ε , with the obtained values of ε being close
to −1. Based on the experimental and numerical findings, we derive a new equation
for η(z) in the mixing zone, which has a power-law solution in good agreement with
the experimental and numerical results. Our work demonstrates that the effect of
BL fluctuations can be adequately described by the velocity–temperature correlation
functions and the new BL equations capture the essential physics.

Key words: Bénard convection, boundary layer structure, turbulence modelling

1. Introduction
The boundary layer (BL) is an important concept in science and engineering, which

was introduced more than 100 years ago by Prandtl (1904) and has had a profound

† Email address for correspondence: penger@ust.hk
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Boundary layer fluctuations in turbulent Rayleigh–Bénard convection 409

impact in fluid physics, aerodynamics and applied mathematics (Anderson 2005). It
also has a close connection to many practical engineering problems ranging from skin
friction drag to mass and heat transfer near a solid surface. Our current theoretical
understanding of BL dynamics is limited to two flow regimes. At the low velocity
limit, where the fluid flow is laminar, one can solve the BL equations and obtain the
well-known Prandtl–Blasius–Pohlhausen (PBP) solution (Landau & Lifshitz 1987) as
one example of a class of similarity solutions (Schlichting & Gersten 2000). At the
high velocity limit, where the nonlinear effect becomes dominant, the BL is turbulent
and extends into the bulk region of the flow. In this case, a logarithmic velocity (or
temperature) profile was predicted (Kraichnan 1962; Spiegel 1971; Shraiman & Siggia
1990; Grossmann & Lohse 2011). In fact, there is a large class of BL flows remaining
between the two limiting cases.

The thermal BL in turbulent Rayleigh–Bénard convection (RBC) with the Rayleigh
number (dimensionless buoyancy) Ra < 1014 is an example in which the BL is
not fully turbulent but there are significant fluctuations resulting from intermittent
eruption of thermal plumes from the BL. In the laboratory, RBC is realized in a
confined fluid layer of height H, which is heated from below and cooled from the
top with a vertical temperature gradient parallel to gravity. When the temperature
difference 1T across the fluid layer is large enough, the bulk fluid becomes turbulent
and heat is transported predominantly by convection. As a wall-bounded flow, RBC
has temperature and velocity BLs adjacent to the upper and lower conducting plates.
The structure and dynamics of the temperature BL are of great importance, as they
determine the global heat transport of the system (Kadanoff 2001; Ahlers, Grossmann
& Lohse 2009).

Recently, Shishkina et al. (2015) considered the effect of BL fluctuations in
RBC and included the velocity–temperature correlation function, 〈v′T ′〉, in the
two-dimensional (2-D) BL equation for the normalized mean temperature profile
θ(z) (with z being the distance away from the solid surface), where T ′ and v′ are,
respectively, the local temperature and vertical velocity fluctuations, and 〈· · ·〉 denotes
an average over time t. Under the assumptions that the thermal BL is nested inside
the velocity BL, that

〈v′T ′〉 =−(aξ 3κ)∂z〈T〉, (1.1)

and that a turbulent thermal diffusivity is given by

κt = aξ 3κ, (1.2)

with κ being the molecular thermal diffusivity of the convecting fluid and a a
numerical constant, Shishkina et al. (2015) obtained an analytical expression for the
mean temperature profile. It is given by

θ(ξ ; c)≡
Tb − 〈T(ξ)〉

∆b
=

∫ ξ

0
(1+ aη3)−c dη. (1.3)

Here, ∆b≡ Tb− T0 is the temperature difference across the BL with Tb and T0 being,
respectively, the temperature of the bottom plate and at the cell centre, and ξ ≡ z/δ
is the vertical distance from the conducting plate normalized by the thermal BL
thickness δ. Hereafter, ξ is used directly in all equations to simplify the notation and
z/δ is used in the presentation of the experimental and numerical data to indicate
that they are actually measured as a function of z. In the above, the constant a is a
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FIGURE 1. (Colour online) Sketch of the experimental set-up for the measurement of the
local temperature profiles near the lower conducting plate in the vertical thin disk (a) and
in the Γ =1 upright cylinder (b). The black arrows indicate the direction of the large-scale
circulation with speed U0. The red arrows indicate the velocity components and spatial
coordinates used in the experiment.

dimensionless measure of turbulent diffusivity and is related to the constant c (>1)
by the requirement θ(∞)= 1. This condition gives

a=
(
Γ (1/3)Γ (c− 1/3)

3Γ (c)

)3

, (1.4)

where Γ (x) is the gamma function. Numerically, a is a monotonic decreasing function
of c, with a' 1.77 at c= 1 and a' 0.21 at c= 4. The value of a for larger values of
c slowly decays to zero as c→∞. In this limit, θ(ξ ; ∞) approaches the PBP form
for laminar BLs without BL fluctuations.

Equation (1.3) was tested in a recent convection experiment (Wang, He & Tong
2016), which was conducted in a vertical thin disk with its circular cross-section
aligned parallel to gravity (see figure 1(a) for more details). This is a specially
designed quasi-2-D cell for RBC without any corner in order to prevent secondary
flows. The large-scale flow in the circular cross-section of the cell has a fly-wheel-like
structure with a mean rotating speed U0 along a fixed orientation. Because the flow is
confined in a thin circular disk, no other flow modes can be excited in this quasi-2-D
system. Compared with the large-scale flow in a conventional upright cylinder, this
quasi-2-D flow has a better geometry satisfying the assumption of the BL theory
for a 2-D flow over an infinite horizontal plane. These simplifications allow us to
have a stringent test of the theory. It was found that the measured θ(z) has a scaling
form θ(z/δ) in the Ra range studied, which is well described by (1.3) and the value
of the fitting parameter c was found to change sensitively with the Prandtl number
Pr= ν/κ , where ν is the kinematic viscosity of the convecting fluid. The experiment
was performed with Ra varied in the range 1.5× 109 . Ra . 1.3× 1010 and Pr was
fixed. Two working fluids were used; one was distilled water (with Pr= 4.4) and the
other was a 20 wt.% aqueous solution of glycerine (Pr= 7.6).

In addition to the mean temperature profile θ(z), Wang et al. (2016) also measured
the temperature variance profile η(z)≡ 〈[T(z, t)− 〈T(z)〉]2〉, which is a direct measure
of BL fluctuations and is absent in laminar BLs without fluctuations. It was found that
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the measured η(z) has a scaling form η(ξ) only in the near-wall region with ξ .2. For
ξ > 2, the measured η(z) for different values of Ra scales with z/D, where D is the
diameter of the cell. This result suggests that a new characteristic length takes over
the dynamics in this region. Based on the experimental findings, Wang et al. (2016)
derived a new BL equation for η(ξ) with Pr> 1,

βξ 2 dΩ(ξ)
dξ︸ ︷︷ ︸

mean convection

+ dξ 3 d2Ω(ξ)

dξ 2
+ 3dξ 2 dΩ(ξ)

dξ︸ ︷︷ ︸
turbulent convection

+ 2
∆2

b

η0

aξ 3

(1+ aξ 3)2c︸ ︷︷ ︸
production

+
d2Ω(ξ)

dξ 2︸ ︷︷ ︸
diffusion

−
1

2Ω(ξ)

[
dΩ(ξ)

dξ

]2

− 2αΩ(ξ)︸ ︷︷ ︸
thermal dissipation

= 0, (1.5)

where Ω ≡ η/η0 is the normalized temperature variance with η0 being the maximal
value of η, and β = 3a(c − 1) is a positive constant. The seven terms in (1.5)
result from five contributions in the equation of motion: mean convection, turbulent
convection, production, diffusion and thermal dissipation, which are marked in
(1.5). Equation (1.5) is an ordinary differential equation, which can be numerically
solved using the Runge–Kutta method under the initial conditions Ω(ξ0) = 1
and dΩ(ξ0)/dξ = 0, where ξ0 is the peak position of Ω(ξ). The final solution
Ω(ξ ; c, ∆2

b/η0, d, α) contains four parameters. The parameter c can be obtained
separately from the fitting of (1.3) to the measured θ(z). The parameter ∆2

b/η0 is a
measurable quantity, which is directly determined from the experiment. There remain
two adjustable parameters only, d and α, which are used to best fit the measured
η(z)/η0. The parameter d results from the modelling of

〈v′T ′2〉 =−(dξ 3κ)∂zη, (1.6)

where
κf = dξ 3κ (1.7)

is the turbulent thermal diffusivity for the temperature variance and d is a numerical
constant describing the effect of BL fluctuations on Ω . The parameter α ≡ δ2/`2

where ` is the mean Taylor microscale defined as 1/`2
≡ 2(1/`2

x + 1/`2
z ). Here `x and

`z are, respectively, the Taylor microscales obtained from the two-point temperature
correlation function along the x and z directions (Wang et al. 2016). The numerical
solution Ω(ξ ; c, ∆2

b/η0, d, α) of (1.5) was found to be in good agreement with the
experimental results. This work thus provided a common theoretical framework for
understanding the effect of BL fluctuations.

In this paper, we report a combined experimental and numerical study of BL
fluctuations in RBC. The main aim of our work is twofold. First, we conduct
systematic measurements and direct numerical simulation of the mean temperature
profile θ(z) and temperature variance profile η(z) in a thin disk cell and an upright
cylinder of aspect ratio unity and compare the results in the two convection cells
with the prediction of the BL equations (1.3) and (1.5). Second, we extend the 2-D
BL theory to the mixing zone outside the BL region, in which the measured η(z)
is found to scale with the cell height H and follows a power law, η(z) ∼ (z/H)ε ,
with the exponent ε being very close to −1. The newly derived equation for η(z) in
the mixing zone has a power-law solution in good agreement with the experimental
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412 Y. Wang and others

and direct numerical simulation (DNS) results. Our work thus provides a common
framework for understanding the effect of BL fluctuations on the scaling properties
of the mean and variance temperature profiles in RBC.

The remainder of the paper is organized as follows. We first describe the
experimental methods and numerical set-up in § 2. Experimental and DNS results
are presented in § 3. Further theoretical analyses are given in § 4. Finally, the work
is summarized in § 5.

2. Experiment and direct numerical simulation (DNS)
2.1. Experimental set-up

The experimental apparatus and procedures used in this experiment are similar to those
described previously (He & Tong 2009; Wang et al. 2016), and here we only mention
some key points. The experiment is conducted in two different convection cells. The
first is a vertical thin disk with its circular cross-section aligned parallel to gravity, as
shown in figure 1(a). The cell has a diameter D=188 mm and a thickness L=20 mm,
and thus the corresponding aspect ratio Γ ≡L/D'0.1. The top and bottom 1/3 of the
circular side wall are made of copper of 8 mm thickness. The surface of the copper
plates in contact with the convecting fluid is electroplated with a thin layer of nickel.
The remaining 1/3 of the side wall on both sides are made of transparent Plexiglas of
18 mm thickness. The two flat end walls of the cell are also made of the same type of
Plexiglas. Two silicon rubber film heaters connected in parallel are sandwiched on the
back side of the bottom conducting plate to provide constant and uniform heating. The
top copper plate is in contact with a cooling chamber consisting of two water channels.
The temperature of the top plate is maintained by a temperature-controlled circulator
(NESLAB, RTE740), which circulates cooling water with a temperature stability of 10
mK. The temperature of the top and bottom plates is measured at a rate of 2 Hz by
calibrated thermistors with an accuracy of 5 mK. They are embedded in each plate
at a distance of 1 mm away from the surface of the conducting plate. This cell was
used in the previous convection experiments (Song, Villermaux & Tong 2011; Wang
et al. 2016).

The second cell is an upright cylinder, as shown in figure 1(b). The inner diameter
of the cell is Dup = 19.0 cm and its height H = 19.0 cm. The corresponding aspect
ratio of the cell is Γ ≡Dup/H= 1. The side wall of the cell is made of a transparent
Plexiglas ring with a wall thickness of 6 mm. The top and bottom plates are made
of brass and their surfaces are electroplated with a thin layer of gold. The thickness
of the top plate is 10 mm and that of the bottom plate is 8.5 mm. The Plexiglas
ring is sandwiched between the two plates and is sealed to the top and bottom plates
via two rubber O rings. Except for the difference in shape, all other aspects of the
cell, such as the heating of the bottom plate, cooling of the top plate and temperature
measurement of the conducting plates, remain the same as those for the vertical thin
disk. The temperature stability of the top and bottom plates is found to be within
0.1 ◦C in standard deviation, which is less than 2 % of the minimum 1T used in the
experiment. This cell was also used in the previous convection experiments (He &
Tong 2009; He, Ching & Tong 2011).

In the experiment, the entire convection cell is placed inside a square thermostat
box, whose temperature matches the mean temperature of the bulk fluid (maintained
at 40±0.1 ◦C), in order to prevent heat exchange between the convecting fluid and the
surroundings. The Rayleigh number for the thin disk is defined as Ra≡ψg1TD3/(νκ),
where g is the gravitational acceleration, 1T is the temperature difference across the
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Boundary layer fluctuations in turbulent Rayleigh–Bénard convection 413

cell and ψ is the thermal expansion coefficient of the working fluid. For the upright
cylinder, the cell height H is used to replace D. Two working fluids are used in the
experiment, one is distilled water with Pr= 4.4 and the other is a 20 wt.% aqueous
solution of glycerine with Pr= 7.6. In the experiment, Ra is varied in the range 8×
108 . Ra . 1.3× 1010, and the Prandtl numbers are fixed.

Figure 1 also shows the coordinate system used in this paper. The black arrows
show the direction of the large-scale circulation (LSC), which has a mean wind speed
U0 outside the thermal BL region. The origin of the coordinate system is chosen to
be at the centre of the lower conducting plate. The x and z axes are in the rotation
plane of the LSC, with the x-axis being along the wind direction and the z-axis
being perpendicular to and away from the lower conducting plate. To pin down the
azimuthal motion of the LSC in the upright cylinder, the cylindrical cell is tilted
slightly at a small angle (<1◦) by adjusting the levelling plate of the cell. It has been
shown (Ahlers, Brown & Nikolaenko 2006) that such a small tilt does not affect the
convective flow very much for a similar system.

The local fluid temperature is measured using two glass-encapsulated thermistors of
diameter 0.17 mm with an accuracy of 5 mK (AB6E3-B05KA202R). Details about the
temperature calibration and measurements have been reported elsewhere (He & Tong
2009). To guide the two thermistors into the thin disk, we install a horizontal and
vertical stainless steel tubes on the side wall, as shown in figure 1(a). The horizontal
tube is fixed to measure the mean temperature T0 at the cell centre. The vertical
tube is used to measure the vertical temperature profile T(z) and is mounted on a
translational stage, which is controlled by a stepping motor with position resolution
50 µm. The measurements of T0 and T(z) are made, respectively, at the rates of 2 and
15 Hz. Typically, we take 1-h-long time series data (5.4 × 104 data points) at each
location for the measurement of T(z). The measurement of the temperature profiles
in the upright cylinder is performed in a similar way, except that a vertical tube is
installed to measure T0, as shown in figure 1(b).

2.2. Direct numerical simulation set-up
The governing equations of RBC are the incompressible Navier–Stokes equations and
convective heat transfer equation under the Boussinesq approximation. They have the
following non-dimensional form:

∇̂ · û= 0, (2.1)

ût̂ + (û · ∇̂)û=−∇p̂+
1

√
Ra/Pr

∇̂
2û+ T̂, (2.2)

T̂t̂ + (û · ∇̂)T̂ =
1

√
RaPr

∇̂
2T̂, (2.3)

where the length, time and temperature are normalized, respectively, by the cell
diameter D, free-fall time

√
D/(gα1T) and temperature difference 1T across the

cell.
We numerically solve (2.1)–(2.3) using the open-source code Nek5000 (Fischer

1997), which uses a spectral element method to accurately resolve the gradients in
the velocity field û(r, t) and temperature field T̂(r, t). In Nek5000, the time-derivative
terms are discretized by the third-order backward differentiation formula (BDF3),
the nonlinear convective terms are treated explicitly by the third-order extrapolation
(EXT3) and the linear terms are approximated implicitly. This scheme leads to a
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Y X

Z

X Y

Z

Y X

Z(a) (b)

FIGURE 2. (a) Left: primary mesh on the vertical circular cross-section. There are in
total 2700 primary elements on the cross-section. Right: primary mesh along the thickness
direction. There are 6 primary mesh elements along the thickness direction. (b) A quarter
section of the vertical circular cross-section. There are 8× 8× 8 secondary nodes within
each primary mesh for our DNS with polynomial order of 7.

Poisson equation for pressure and Helmholtz equations for velocity components and
temperature. These equations are rewritten in a weak formulation and discretized by
the Galerkin method using the Nth-order Lagrangian interpolation polynomials as
the basis functions on Gauss–Lobatto–Legendre (GLL) collocation points (Deville,
Fischer & Mund 2002). More details of the numerical scheme and appropriate grid
resolutions can be found in Fischer (1997), Deville et al. (2002) and Scheel, Emran
& Schumacher (2013).

The DNS is carried out in a vertical thin disk, which has the same geometry
and dimensions as those used in the experiment. The corresponding non-dimensional
boundary conditions are

û|walls = 0, (2.4)
n · ∇T̂|non-conducting walls = 0, (2.5)

T̂|bottom = 0.5, (2.6)
T̂|top =−0.5. (2.7)

The control parameters are fixed at Ra= 5× 109, Pr= 4.4 and Γ = 0.1. As shown in
figure 2, we use a flexible unstructured mesh on the vertical circular cross-section to
adapt to the convective flow.

The minimum primary mesh size near the solid boundary is set to be 0.00387D,
which is approximately the measured thermal BL thickness δ in the corresponding
experiment. The polynomial order within each mesh element is set to N=7 so that we
have 8 grid points to resolve the thermal BLs with the minimum secondary mesh size
of 0.000261D. In total, there are 16 200 primary mesh elements and approximately 8.3
million grid points. Additional DNS tests are conducted to verify that with this spatial
solution the Grötzbach criterion (Grötzbach 1983) is satisfied across the whole body
of the flow, and the statistical properties of the convective flow, such as the thermal
dissipation rate and kinetic energy dissipation rate, converge at N = 7.

Adaptive time steps are used to ensure the Courant number is below 0.5. During the
simulation, the variable time step is approximately 0.0017 times the free-fall time. The
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Y

X

Z

FIGURE 3. A thin column surrounding the vertical z-axis used to calculate the
time-averaged properties of the flow as a function of z. The horizontal cross-section of
the thin column has 4 primary elements and 256 nodes. Among the 256 nodes, the 24
closest nodes surrounding the z-axis, which form a small area of 2.67 × 10−4 thickness
square, are used to calculate the time-averaged properties of the flow.

DNS is run for 2600 free-fall times to reach a steady state, followed by a continuing
evolution of another 5200 free-fall times in order to obtain the time series data of
the velocity and temperature fields. The time-averaged properties of the flow along
the vertical z-axis, which will be presented below, are obtained in a narrow column
surrounding the z-axis, as shown in figure 3.

3. Numerical and experimental results
3.1. Direct numerical simulation results in the thin disk

Figure 4 shows the numerically calculated mean temperature profile θ(z) (green solid
circles) as a function of z/δ for Pr= 4.4. Here the BL thickness δ is defined as the
distance at which the linear extrapolation of the mean temperature gradient at the
bottom boundary intersects the mean temperature T0 at the cell centre (Wang et al.
2016). The DNS results agree well with the experimental data (red open circles)
obtained in the thin disk with Pr = 4.4 (water). It has been shown (Wang et al.
2016) that the measured θ(z/δ) has a scaling form independent of Ra in the Ra
range 1.5× 109 . Ra. 1.3× 1010. The two sets of data can be well described by the
analytical solution (1.3) with the fitting parameter c= 1.72 (solid line). The c= 1.72
curve lies in between the c = 1 curve (dotted line), which is the lowest value of c
allowed in the theory (Shishkina et al. 2015), and the PBP profile for a laminar BL
(with c→∞, dashed line). The deviation of the c= 1.72 curve from the PBP profile
is clearly visible in the region 1< z/δ < 2 with a smaller mean temperature gradient.
As the total vertical heat flux in the system is a conserved quantity, a smaller mean
temperature gradient corresponds to a larger convective heat flux (Ching, Dung &
Shishkina 2017). This finding thus suggests that BL fluctuations can enhance the
convective heat transport.
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0 1 2 3 4

0.5

1.0

FIGURE 4. (Colour online) Numerically calculated mean temperature profile θ(z) (green
solid circles) as a function of z/δ in the thin disk. Red open circles show the experimental
data obtained at Ra= 4.23× 109 and Pr= 4.4 (water). The error bars indicate the size of
the thermistor bead used in the experiment. The solid and dotted lines are, respectively,
the calculated θ(ξ ; c) using (1.3) with c= 1.72 and c= 1. The dashed line shows the PBP
profile for Pr= 4.4.

The error bar of the experimental data points results mainly from the bead size
of the thermistor used for the temperature measurement. The thermistor bead has a
diameter of 0.17 mm and is coated with a thin layer of glass sealant. It is seen that,
within the experimental uncertainties, the measured θ(z/δ) agrees well with the DNS
results, suggesting that the small thermistor has a negligible effect on the measured
mean temperature profile. We believe that the main effect of the thermistor size is to
introduce a (spatial) running average over the measured θ(z/δ), which only averages
out small-scale fluctuations (comparable to the thermistor size) but does not affect the
functional form of the smooth mean temperature profile.

While the deviations of the measured/calculated θ(z) from the PBP form are clearly
visible, they are nonetheless small and are only shown in the region 0.6 . ξ . 2
(Wang et al. 2016). The temperature variance profile η(z), on the other hand, is
a direct measure of BL fluctuations and is absent in laminar BLs. Figure 5(a)
shows a comparison between the numerically calculated temperature variance profile
η(z)/η0 (green solid circles) and the experimental data (open red circles) in a
double-logarithmic plot. The two profiles collapse well in the region z/δ. ξc (vertical
line) with ξc' 1.6 being a transition distance, beyond which the measured η(z)/η0 at
different values of Ra do not scale with the BL thickness δ any more (Wang et al.
2016). This value of ξc is very close to the ratio of the viscous BL thickness δν to
the thermal BL thickness δ for a laminar BL, i.e. ξc ∼ δν/δ = 0.982Pr1/3 for Pr > 3
(Stevens, Lohse & Verzicco 2011; Shishkina, Horn & Wagner 2013).

To compare the DNS and experimental results more clearly, we plot, in figure 5(b),
the same data as in figure 5(a) but on a linear scale with ξ 6 3. In the region ξ . 1.5,
the DNS and experimental results show good agreement. The solid line in figure 5(b)
shows the numerical solution Ω(ξ ; c = 1.72, ∆2

b/η0 = 46.3, d = 1.4, α = 1.15) of
(1.5), which is in excellent agreement with the DNS data. The horizontal error bar
of the experimental data points is the same as that shown in figure 4, and the vertical
error bar shows the experimental uncertainty of the measurement. Because temperature
variance is a second-order quantity, it has relatively large experimental uncertainties.
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FIGURE 5. (Colour online) (a) Numerically calculated temperature variance profile η(z)/η0
(green solid circles) as a function of z/δ in the thin disk in a double-logarithmic plot.
Red open circles show the experimental data obtained at Ra = 4.23 × 109. The vertical
line indicates the transition distance ξc ' 1.6. (b) Same data as in (a) but plotted
on a linear scale for a clearer view of the fitting. The vertical error bars show the
experimental uncertainties of the measurement. The solid curve is numerical solution
Ω(ξ ; c= 1.72, ∆2

b/η0 = 46.3, d= 1.4, α = 1.15) of (1.5) with ξ0 = 0.816.

It is seen that there exist some differences between the experimental and DNS results
for ξ & 1.5. One possible cause for the small deviations is that in the experiment the
(bottom) conducting plate has small temperature fluctuations, which are absent in the
DNS data. While the temperature variance of the bottom conducting plate has been
subtracted out from the experimental data, it may still have some correlated influence
on the bulk temperature fluctuations.

In addition to the comparison with the experimental data, the DNS results can also
be used to directly check the assumptions made in the theoretical model, which are
often difficult to obtain in the experiment. For example, from the DNS data one can
calculate the cross-correlation functions 〈v′T ′〉 and 〈v′T ′2〉 and test the validity of (1.2)
and (1.7). Figure 6(a) shows the numerically calculated turbulent diffusivity κt/κ for
the mean temperature as a function of z/δ. The solid line shows a power-law fit
κt/κ=0.8ξ 3 to the DNS data in the region ξ .2 and thus (1.2) is confirmed within the
thermal BL. Figure 6(b) shows the numerically calculated turbulent diffusivity κf /κ

for the temperature variance as a function of z/δ. The solid line shows a power-law
fit κf /κ = 1.0ξ 3 to the DNS data in the region z/δ . 3. There is a discontinuity at
the peak position ξ0' 0.8, at which ∂zη(ξ0)= 0, so that the error bar of the resulting
κf increases significantly due to the lack of adequate grid points near this position.
Except in this region, the DNS data can be well described by (1.7). In a recent DNS
study, Shishkina et al. (2015) calculated the turbulent diffusivity profile κt/κ for the
Γ = 1 upright cylinder. While the two DNS studies were conducted under different
conditions (thin disk versus upright cylinder and local profile versus cross-section-
averaged profile), we find that in both convection systems the profile κt/κ scales with
ξ 3 and the proportionality constant a for the cylinder (a = 1.76) is larger than that
for the thin disk (a= 0.8). This is expected as the large-scale 3-D flow modes in the
upright cylinder have more fluctuations outside the BL region and give rise to a larger
value of a, compared to the quasi-2-D flow in the thin disk (see more discussions on
table 1 below).
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FIGURE 6. (a) Numerically calculated turbulent diffusivity κt/κ for the mean temperature
as a function of z/δ in the thin disk. The solid line shows a power-law fit κt/κ=0.8ξ 3. (b)
Numerically calculated turbulent diffusivity κf /κ for the temperature variance as a function
of z/δ in the thin disk. The solid line shows a power-law fit κf /κ = 1.0ξ 3.

Samples Pr c a ∆2
b/η0 d α ξ0 ξc ε

Disk(DNS) 4.4 1.72 0.656 46.3 1.40 1.15 0.816± 0.05 — −0.98± 0.1
Disk 4.4 1.8 0.612 62.0 3.35 1.35 0.78± 0.05 1.6± 0.2 −0.9± 0.1
Disk 7.6 2.1 0.489 68.0 2.20 1.00 0.78± 0.05 2.0± 0.2 −0.9± 0.1
Cylinder 4.4 1.2 1.215 25.4 2.10 0.90 0.85± 0.1 4.0± 0.5 −1.1± 0.1
Cylinder 7.6 1.3 1.047 30.0 1.55 1.30 0.85± 0.1 5.0± 0.5 −1.15± 0.1

TABLE 1. Fitted values of the parameters c in (1.3) and d and α in the numerical solution
Ω(ξ ; c, ∆2

b/η0, d, α) of (1.5). The values of a are calculated using (1.4) and fitted values
of c. The values of the peak position ξ0, transition distance ξc, mixing zone exponent ε
and the parameter ∆2

b/η0 are obtained directly from the experimental and DNS data.

With the DNS data one can also calculate the five individual contributions to the
total variance (also called the budget terms), as marked in (1.5), using the original
convective thermal equation for η/η0:

−(〈u〉∂xη+ 〈v〉∂zη)︸ ︷︷ ︸
mean convection

turbulent convection︷ ︸︸ ︷
−∂z〈v

′T ′2〉 −2〈v′T ′〉∂z〈T〉︸ ︷︷ ︸
production

+

diffusion︷︸︸︷
κ∂2

z η −2κ〈(∇T ′)2〉︸ ︷︷ ︸
thermal dissipation

= 0, (3.1)

where 〈u〉 and 〈v〉 are the mean horizontal and vertical velocities. In addition, ∇ =
ex∂x + ez∂z is the 2-D gradient operator. Figure 7 shows a comparison between the
calculated budget terms using the DNS data in the thin disk (open symbols) and those
obtained using the solution Ω(ξ ; 1.72, 46.3, 1.4, 1.15) of (1.5) with ξ0 = 0.816 (solid
lines). Excellent agreement between the DNS data and theoretical model given in (1.5)
is observed. Note that from the thermal dissipation term in (1.5), one can readily find
that its first-order derivative equals to zero at ξ0=0.816. Indeed, the open circles show
a local maximum at the peak position ξ0. These numerical results thus further confirm
that our model shown in (1.5) captures the essential physics.
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FIGURE 7. (Colour online) Comparison between the calculated budget terms using the
DNS data in the thin disk (open symbols) and those obtained using the solution Ω(ξ ; c=
1.72, ∆2

b/η0 = 46.3, d = 1.4, α = 1.15) of (1.5) with maximum position ξ0 = 0.816 (solid
lines). All the budget terms are normalized by κη0/δ

2.

0 1 2 3 4

0.5

1.0

0 1 2 3 4

0.5

1.0(b)

FIGURE 8. (Colour online) (a) Measured mean temperature profile θ(z) as a function
of z/δ for different values of Ra and at fixed Pr = 4.4 (water) in the upright cylinder.
The measurements are made along the central axis of the cell near its bottom plate. The
error bars indicate the size of the thermistor bead used. The solid and dotted lines are,
respectively, the calculated θ(ξ ; c) using (1.3) with c = 1.2 and c = 1. The dashed line
shows the PBP profile for Pr= 4.4. (b) Measured θ(z) as a function of z/δ for different
values of Ra and at fixed Pr= 7.6 (20 wt.% aqueous solution of glycerine). The solid and
dotted lines are, respectively, the calculated θ(ξ ; c) using (1.3) with c= 1.3 and c= 1. The
dashed line shows the PBP profile for Pr= 7.6.

3.2. Experimental results in the upright cylinder
We now examine the measured mean temperature profile θ(z) and normalized
temperature variance profile η(z)/η0 in the upright cylinder, in which the flow field
has complex 3-D structures (Scheel & Schumacher 2014). Figure 8(a) shows the
measured θ(z) as a function of z/δ for different values of Ra and at fixed Pr = 4.4
(water). All of the measured θ(z/δ) curves in the Ra range studied collapse onto
a single master curve, which can be well described by the calculated θ(ξ ; c) using
(1.3) with the fitting parameter c = 1.2 (solid line). Similarly, figure 8(b) shows the
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109
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FIGURE 9. (Colour online) Measured thermal BL thickness δ as a function of Ra in the
thin disk (black squares) and Γ = 1 upright cylinder (red circles) at a fixed value of Pr=
4.4 (water). The error bars show the experimental uncertainties of the measurement. The
solid and dashed lines are the power-law fits, δ = ARaτ , to the data with A = 510 mm,
τ =−0.31± 0.03 (solid line) and A= 440 mm, τ =−0.29± 0.03 (dashed line).

measured θ(z) as a function of z/δ for different values of Ra and at fixed Pr = 7.6
(20 wt.% aqueous solution of glycerine). The measured θ(z/δ) is also found to be
well described by (1.3) with the fitting parameter c= 1.3 (solid line), which deviates
from the PBP form (dashed line) in the region 0.6. ξ . 3. Such deviations from the
PBP form have been reported previously in the experiments for both Pr > 1 (Lui &
Xia 1998; Du & Tong 2000) and Pr < 1 (Du Puits, Resagk & Thess 2013) and in
the DNS studies (Shishkina & Thess 2009; Scheel, Kim & White 2012; Shi, Emran
& Schumacher 2012; Stevens et al. 2012).

It is seen from figure 8 that plots of θ(z) versus z/δ remain unchanged in the
Ra range studied and only δ changes with Ra. Figure 9 shows the measured δ as
a function of Ra in the thin disk (black squares) and Γ = 1 upright cylinder (red
circles). Here δ is determined by the distance at which the tangent of the measured
mean temperature profile 〈T(z)〉 near the conducting plate intersects the bulk fluid
temperature (Wang et al. 2016). The data in the two convection cells can be well
described by a power law, δ ∼ Raτ , with τ = −0.31 ± 0.03 for the thin disk (solid
line) and τ =−0.29± 0.03 for the upright cylinder (dashed line). The obtained value
of τ for the upright cylinder agrees with the previous measurement by Lui & Xia
(1998). In the thin disk, we also measured the Nusselt number Nu (dimensionless heat
flux) as a function of Ra for water (Pr = 4.4) and found that the measured Nu is
well described by the power law Nu ∼ Ra0.275±0.03 (Wang et al. 2016; Wang 2017).
As Nu∼D/2δ (Castaing et al. 1989), the obtained value of τ in the thin disk is thus
consistent with the measured power-law exponent for Nu.

Note that the Ra-scaling of the measured θ(z/δ), as shown in figure 8, is obtained
in a fixed Γ = 1 cylindrical cell for the Pr> 1 fluids in the Ra range, 8× 108 .Ra.
1.3 × 1010. Such a Ra-scaling was also observed in a fixed vertical thin disk under
similar conditions (Wang et al. 2016). As shown in (1.3), the measured θ(z/δ) in
figure 8 is normalized by the actual temperature difference ∆b≡Tb−T0 across the BL,
instead of one half of the temperature difference 1T/2 across the entire cell. It was
found by Wu & Libchaber (1991), Zhang, Childress & Libchaber (1997) and Ahlers
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et al. (2006) that the ratio 2∆b/1T is not equal to unity and the deviation increases
with 1T for (most) fluids with the non-Boussinesq effect. We find that the Ra-scaling
of the measured θ(z/δ) is no longer valid if 1T/2 is used for normalization. The
theoretical prediction given in (1.3) was obtained by assuming that the thermal BL
is nested inside the velocity BL, so that it only applies to the Pr> 1 fluids. For the
Pr< 1 fluids, the velocity BL is thinner than the thermal BL, which will introduce a
new length scale to the problem in addition to the thermal BL thickness δ. As a result,
the thermal BL becomes very sensitive to the large-scale flow inside the convection
cell. Recent DNS studies (Shi et al. 2012; Scheel et al. 2012; Stevens et al. 2012;
Schumacher, Götzfried & Scheel 2015) showed that the LSC changes sensitively with
Pr when Pr < 1. Indeed, the measured and numerically calculated mean temperature
profiles θ(z/δ) for the Pr< 1 fluids revealed larger deviations from the PBP form and
the data do not always collapse onto a single master curve over a wider range of Ra
(see also Belmonte, Tilgner & Libchaber 1993; Scheel et al. 2012; Shi et al. 2012;
Stevens et al. 2012; Du Puits et al. 2013; Shishkina et al. 2017).

An important consideration when choosing the vertical thin disk and slightly tilted
Γ = 1 cylindrical cell in the experiment is that the LSC in the two cells is stable and
can provide a simple uniform shear flow to the thermal BL in the Ra range studied
(Qiu & Tong 2001; Ahlers et al. 2006; Song et al. 2014). This condition on the LSC
is presumed in the theoretical modelling of the thermal BL. For turbulent convection
in upright cylinders with Γ 6= 1 and with different cell shapes, such as cubic and
rectangular cells, the LSC does not fit the convection cell well and the secondary
flow in the cell may affect the BL dynamics. In fact, it was found that the measured
mean temperature profiles θ(z/δ) for different values of Ra do not collapse onto a
single master curve even for the Pr > 1 fluids in cubic and rectangular cells (Wang
& Xia 2003; Zhou & Xia 2013) and in Γ 6= 1 upright cylinders (Lui & Xia 1998).
We speculate that the mismatch between the LSC and cell geometry and the resulting
secondary flows may play an important role in the absence of scaling behaviour of
the measured mean temperature profiles with Ra. Evidently, the absence of scaling
behaviour of the measured θ(z/δ) in the larger parameter space not covered in the
present experiment is an unsettled issue and further study is needed.

Figure 10(a) shows the measured η(z) as a function of distance z for different
values of Ra and at fixed Pr= 4.4 (water) in the upright cylinder. In the plot, η(z) is
normalized by its maximal value η0 and z is normalized by δ. In the region ξ . ξc' 4,
all the measured η(z)/η0 curves collapse onto a single master curve, which has a
single peak at ξ0 ' 0.85. A similar single peaked η(z) was also found previously in
the upright cylinders (Belmonte et al. 1993; Belmonte, Tilgner & Libchaber 1994; Lui
& Xia 1998; Du & Tong 2000; Du Puits et al. 2013) and rectangular cells (Zhou &
Xia 2013). Beyond ξ & ξc, the measured η(z)/η0 no longer scales with z/δ. Instead,
it scales with z/H as shown in figure 13 below. To show the theoretical fitting more
clearly, we plot, in figure 10(b), the same data as in figure 10(a) but on a linear scale
with ξ 6 4. The solid line shows the numerical solution Ω(ξ ; 1.2, 25.4, 2.1, 0.91) of
(1.5) with ξ0 = 0.85, which is in excellent agreement with the experimental data.

Similarly, figure 11(a) shows the measured η(z)/η0 as a function of z/δ for
Pr = 7.6 (20 wt.% glycerine solution) in the upright cylinder. It is seen that the
scaling behaviour of the temperature variance profiles remains only up to ξ 6 ξc ' 5
along the cell axis and there is a sharp transition to a new scaling regime (mixing
zone) at ξc ' 5, beyond which a different model is needed to describe the mean
and variance temperature profiles (Castaing et al. 1989; Adrian 1996). The value
of ξc is found to increase with Pr, a trend which is also found in the thin disk
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FIGURE 10. (Colour online) (a) Measured temperature variance profile η(z)/η0 as a
function of z/δ in a double-logarithmic plot. The measurements are taken in the upright
cylinder at different values of Ra and at fixed Pr= 4.4 (water). The vertical line indicates
the transition distance ξc = 4. (b) Same data as in (a) but plotted on a linear scale for
a clearer view of the fitting. The error bars show the experimental uncertainties of the
measurement. The solid curve is the numerical solution Ω(ξ ; 1.2, 25.4, 2.1, 0.91) of (1.5)
with ξ0 = 0.85.
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FIGURE 11. (Colour online) (a) Measured temperature variance profile η(z)/η0 as a
function of z/δ in a double-logarithmic plot. The measurements are made in the upright
cylinder at different values of Ra and at fixed Pr= 7.6 (20 wt.% glycerine solution). The
vertical line indicates the transition distance ξc = 5. (b) Same data as in (a) but plotted
on a linear scale. The error bars show the experimental uncertainties of the measurement.
The solid curve is the numerical solution Ω(ξ ; 1.3, 30, 1.55, 1.28) of (1.5) with ξ0= 0.85.

(Wang et al. 2016). Figure 11(b) shows a comparison between the numerical solution
Ω(ξ ; 1.3, 30, 1.55, 1.28) of (1.5) with ξ0 = 0.85 (solid line) and the measured
η(z)/η0 in the range ξ . 5. Fairly good agreement is obtained between the theory
and experimental data.

An important feature of (1.5) is that the temperature variance profile η(z) is
inherently connected to the thermal dissipation profile εT(z) ≡ κ〈(∇T ′)2〉, as (1.5)
serves as an energy-budget-like equation. Experimentally, η(z) is relatively easier to
measure compared to εT(z) and thus one can use (1.5) to calculate εT(ξ) once Ω(ξ)
is determined from the measured η(z). Figure 12 shows a comparison between the
calculated εT(z) using the numerical solution Ω(ξ ; 1.2, 25.4, 2.1, 0.91) for Pr = 4.4
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10−1 100
0

1

2

3

4

FIGURE 12. Measured thermal dissipation rate εT(z)δ2/(κη0) (squares) as a function of
z/δ. The measurements were made at Ra = 3.9 × 109 and Pr = 5.5 in a Γ = 1 upright
cylinder (He & Tong 2009). The solid curve shows the calculated dissipation profile using
the numerical solution Ω(ξ ; 1.2, 25.4, 2.1, 0.9) of (1.5) with ξ0 = 0.85 for Pr= 4.4.
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FIGURE 13. (Colour online) Measured temperature variance profile η(z)/η0 as a function
of z/H for different values of Ra in the upright cylinder. The measurements are made at
a fixed value of (a) Pr= 4.4 (water) and (b) Pr= 7.6 (20 wt.% glycerine solution). The
data are the same as those shown in figures 10(a) and 11(a). The vertical lines indicate
the transition distances (a) zc/H ' 0.04 and (b) zc/H ' 0.06. The solid lines show the
power-law fits, η/η0 ∼ (z/H)ε , with (a) ε =−1.1 and (b) ε =−1.15.

and the previously measured εT(z) in a Γ = 1 upright cylinder with Pr = 5.4 (He
& Tong 2009). In the plot, εT(ξ) is normalized by δ2/(κη0). Good agreement is
obtained between the theory and experimental data in the BL region. The solid line
in figure 12 has a plateau region near ξ = ξ0, which marks the position above which
the contribution of the bulk flow to the thermal dissipation rate becomes dominant
over the BL contribution (Wang et al. 2016). Figure 12 thus further confirms that
(1.3) and (1.5) can be applied to other thermal BLs with different flow geometries.

Table 1 gives a summary of the fitted values of the parameters used in the solution
of the mean temperature and temperature variance profiles. To explain the variations
of the fitting parameter c in a straightforward way, we convert the values of c to
the corresponding values of the dimensionless turbulent diffusivity coefficient a using
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(1.4). The fitting results reveal a general trend that in the same convection cell, the
level of BL fluctuations, as described by the turbulent diffusivity coefficients a and d
and by the measured maximal value η0 of the temperature variance (which is inversely
proportional to the measured ∆2

b/η0), decreases with increasing Pr. This is because the
enhanced viscous effect suppresses fluctuations of the thermal BL, which is nested
underneath the viscous BL. Compared to the quasi-2-D flow in the thin disk, the 3-D
large-scale flow in the upright cylinder has more fluctuations outside the BL region,
resulting in larger BL fluctuations in the cylinder. On the other hand, the peak position
ξ0 of the temperature variance profiles is found to be a constant ξ0 ' 0.80 ± 0.05,
which does not change much with Pr and cell shape. In table 1, the error bars for
ξ0 indicate the experimental uncertainties. For the DNS data, the error bar is one half
of the mesh size. A similar value of ξ0 was also obtained previously in a cubic cell
filled with water (Wang & Xia 2003; Zhou & Xia 2013). Similarly, the mean Taylor
microscale ` in the thermal BL is determined primarily by the BL thickness δ, so that
the ratio α = δ2/`2 is found to be a constant close to unity. Table 1 shows that the
measured ξc increases with Pr, and it appears to scale with the ratio of the viscous
BL thickness δν to the thermal BL thickness δ for a laminar BL, i.e. ξc∼ δν/δ∼Pr1/3

for Pr> 3 (Stevens et al. 2011; Shishkina et al. 2013).

3.3. Turbulent temperature fluctuations in the mixing zone
As mentioned above, when ξ > ξc, the measured η(z)/η0 does not scale with z/δ
any more. We now examine the scaling behaviour of the temperature variance profile
η(z) in this region. Figure 13 shows the measured η(z)/η0 as a function of z/H for
different values of Ra in the upright cylinder. It is seen that for both working fluids,
the measured η(z)/η0 remains approximately unchanged with Ra and scales with z/H
in the region 0.06 . z/H . 0.5. In particular, in the region 0.06 . z/H . 0.4, the
measured η(z)/η0 can be described by a power law, η/η0∼ (z/H)ε with ε=−1.1±0.1
for Pr = 4.4 (water) and ε =−1.15± 0.1 for Pr = 7.6 (20 wt.% glycerine solution).
Here we call this region the mixing zone (Castaing et al. 1989).

Similar scaling behaviour in the mixing zone is also found in the thin disk (Wang
et al. 2016). Figure 14 shows the measured η(z)/η0 (open symbols) as a function of
z/D for different values of Ra and at fixed Pr= 4.4 (water) in the thin disk. It is seen
that the measured η(z)/η0 remains approximately unchanged Ra and scales with z/D
in the region 0.01. z/D. 0.1. Similar scaling behaviour was also reported for the 20
wt.% glycerine solution (Pr= 7.6) in the thin disk (Wang et al. 2016). In contrast to
the upright cylinder, the upper bound of the mixing zone in the thin disk is limited to
z/D' 0.1, beyond which the measured η(z)/η0 do not scale with z/D any more. This
is because the convective flow in the mixing zone is truncated by the cell thickness
L/D' 0.1. Similar to the upright cylinder, the measured η(z)/η0 in the mixing zone
of the thin disk can also be well described by the power law, η/η0 ∼ (z/D)ε with
ε =−0.9± 0.1 for both Pr = 4.4 (water) and Pr = 7.6 (20 wt.% glycerine solution),
and ε =−0.98± 0.1 for the DNS data.

4. Further theoretical analysis
We first discuss the relative magnitude of each budget term in (3.1) in the mixing

zone. Figure 15(a) shows the five budget terms as a function of z/D along the
central axis of the thin disk. The calculation is conducted using the DNS data and
is averaged across the cell thickness L. In the region 0.025 . z/D . 0.1, there
are only two dominant terms remaining, namely, the turbulent convection term
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FIGURE 14. (Colour online) Measured temperature variance profile η(z)/η0 (open
symbols) as a function of z/D for different values of Ra and at fixed Pr= 4.4 in the thin
disk (Wang et al. 2016). Green solid circles show the calculated η(z)/η0 using the DNS
data along the central axis. The vertical line indicates the transition distance zc/D' 0.01.
The solid and dashed lines show the power-law fits, η/η0 ∼ (z/D)ε with ε = −0.9 and
ε =−0.98, respectively.
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FIGURE 15. (Colour online) (a) Calculated budget terms in (3.1) as a function of z/D in
the thin disk. The vertical line indicates the transition distance zc/D'0.025. (b) Calculated
ratio −∂z〈v

′T ′2〉/2εT as a function of z/D in the thin disk. The horizontal lines indicate
the condition −∂z〈v

′T ′2〉/2εT =1±0.1. The calculations in (a) and (b) are conducted using
the DNS data and are averaged across the cell thickness L.

−∂z〈v
′T ′2〉 is balanced by the thermal dissipation term 2εT , and the other three terms

become negligibly small. To see this balance more clearly, we plot, in figure 15(b),
the ratio of the two terms, −∂z〈v

′T ′2〉/2εT , as a function of z/D. It is seen that
−∂z〈v

′T ′2〉/2εT = 1 ± 0.1 in the region 0.25 . z/D . 0.1, and thus the two terms
maintain balance in this region.

Based on the above experimental and numerical findings, we now derive the
equation of motion in the mixing zone. By taking Reynolds decomposition on the
convective thermal equation, one finds (Wang et al. 2016)

〈V〉 · ∇η+ 2〈V′T ′〉 · ∇〈T〉 +∇ · 〈V′T ′2〉 = κ∇2η− 2εT, (4.1)
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where V = u(x, z)ex + v(x, z)ez is the velocity field (see figure 1 for the coordinate
system used) and V′ ≡ V − 〈V〉 is its fluctuation. To obtain (4.1), we have assumed
∂tη = 0 for a steady-state flow and ∇ · V = ∇ · V′ = 0 for an incompressible fluid.
The five terms in (4.1) have the same meaning as those marked in (3.1). After taking
an average across the cell thickness L, the remaining large-scale flow inside the cell
has a dominant circular component in the circular cross-section of the thin disk. This
implies that the mean velocity 〈V〉 only has an x-component along the central axis.
In addition, due to the rotational symmetry of the LSC, the velocity and temperature
fields along the central axis have a much weaker x-dependence than the z-dependence.
Combining these two characteristics, one has ∂x ' 0, ∂2

x ' 0 and 〈u〉∂x + 〈v〉∂z '

0. Similar approximations were also made for turbulent channel flows (Pope 2000).
Under these approximations and noting that the mean temperature 〈T〉 in the mixing
zone has a much weaker z-dependence (see figure 4), we find (4.1) can be reduced
to

∂z〈v
′T ′2〉 ' κ∂2

z η− 2εT, (4.2)

where the thermal dissipation rate takes the form (Wang et al. 2016)

εT ' κ

[
1
4
(∂zη)

2

η
+
η

`2

]
, (4.3)

with `(z) being the Taylor microscale.
As shown in figures 10(a), 11(a) and 13, the characteristic length in the mixing

zone is no longer the BL thickness δ, instead, the measured η(z)/η0 is found to scale
with the cell height H (for the upright cylinder) or the cell thickness L (for the thin
disk). As a result, we expect ∂z . 1/L. On the other hand, table 1 shows that the fitted
values of α ≡ δ2/`2

' 1, indicating that the Taylor microscale `' δ. This is because
even in the mixing zone, the spatial correlation of temperature fluctuations is produced
primarily by the thermal plumes, which have a characteristic length comparable to δ.
Because the length ratios (L/δ)2 ' 400 (for the thin disk) and (H/δ)2 ' 40 000 (for
the upright cylinder), the terms κ∂2

z η in (4.2) and κ(∂zη)
2/(4η) in (4.3) are negligibly

small. Therefore, equations (4.2) and (4.3) can be further reduced to

∂z〈v
′T ′2〉 =−2εT, (4.4)

with εT ' κη/`
2. Equation (4.4) thus provides a clearer picture of the dynamics in

the mixing zone compared with the previous models (Castaing et al. 1989; Adrian
1996) and is fully supported by the DNS results as shown in figure 15(a). A close
analogy to (4.4) is the kinetic energy equation for turbulent channel flows, in which
the production and dissipation of the kinetic energy are in balance (Pope 2000).

To solve (4.4), we assume that in the mixing zone the thermal plumes have a typical
temperature fluctuation Tc ∼ η

1/2(z) and a typical free-fall velocity uc ∼ (αgTc`c)
1/2

at a distance `c ∼ z, which is the size of the largest eddy that the flow can excite
(Townsend 1976). In this case, one has ∂zη ' −η/`c, 〈v′T ′

2
〉 ' ucη and ∂z〈v

′T ′2〉 '
−ucη/lc, where the minus sign is introduced to indicate that the temperature variance
is a decaying function of z/D. With these equations, we find

κf ' uc`c ' a1(αg)1/2z3/2η1/4, (4.5)

where a1 is a scaling constant of order unity. Figure 16(a) shows the calculated a1≡

κf /
√
αgz3/2η1/4 as a function of z/D using the DNS data. In the region 0.02. z/D.

0.07, a1 remains approximately constant and does not change very much with z/D.
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FIGURE 16. (a) Calculated a1 ≡ κf /
√
αgz3/2η1/4 as a function of z/D in the thin disk.

The two vertical lines indicate the region 0.02 . z/D . 0.07, in which a1 remains
approximately constant, as shown by the dashed line with a1 = 0.7. (b) Calculated a2 ≡

(αg)1/2η1/4`2/(2κz1/2) as a function of z/D in the thin disk. The two vertical lines indicate
the region 0.03. z/D. 0.1, in which a2 remains approximately constant, as shown by the
dashed line with a2 = 1.55. The calculations in (a) and (b) are conducted using the DNS
data and are averaged across the cell thickness L.

The dashed line shows the fitting result a1= 0.7. Figure 16(a) thus confirms that (4.5)
holds in the mixing zone.

Using the same scaling arguments, we also find from (4.4) that

uc

`c
' 2a2

κ

`2
, (4.6)

where a2 is another scaling constant of order unity. Equation (4.6) states that in
the mixing zone the stirring frequency uc/lc of the largest eddy is equal to the
diffusion frequency κ/`2 at ` (Tennekes & Lumley 1972). This suggests that turbulent
mixing occurs in a spectrum of time scales from the largest eddy turnover time
to the smallest Kolmogorov dissipation time. Figure 16(b) shows the calculated
a2 ≡ [(αg)1/2/2κ]η1/4`2z−1/2 as a function of z/D using the DNS data. In the region
0.03 . z/D . 0.1, a2 remains approximately constant and the dashed line shows the
fitting result a2 = 1.55. Figure 16(b) thus confirms that (4.6) holds in the mixing
zone.

Substituting (4.5) and (4.6) into (4.4), we find

∂z(z3/2η1/4∂zη)=
1

a1a2
z−1/2η5/4. (4.7)

Equation (4.7) has a power-law solution η/η0 ∼ (z/D)ε with

ε =−
1
5

[
1+

(
1+

20
a1a2

)1/2
]
. (4.8)

In the above, we took the negative solution, as the positive solution ε = [(1 +
20/a1a2)

1/2
− 1]/5 is not physical. The temperature variance is a decaying function

of z. Using (4.8) together with the calculated values of a1 = 0.7 and a2 = 1.55,
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we obtain ε ' −1.08. Without the DNS data as shown in figure 16, we will not
be able to obtain the exact values of a1 and a2 as given above. In this case, we
may assume a1 ' 1 and a2 ' 1 (and hence a1a2 ' 1) and obtain an estimated value
of ε = −(1 +

√
21)/5 ' −1.1 using (4.8). The predicted values of ε are in good

agreement with the experimental results as shown in table 1. The above analysis
thus provides a useful framework to describe the essential dynamics of temperature
fluctuations in the mixing zone.

5. Summary

We have carried out a systematic study of the mean and variance temperature
profiles in turbulent Rayleigh–Bénard convection in a thin disk cell and an upright
cylinder of aspect ratio unity. The temperature measurements were conducted along
the central axis of the cell with varying Rayleigh numbers in the range between
9 × 108 and 1 × 1010 and at two fixed Prandtl numbers Pr = 4.4 and Pr = 7.6.
Direct numerical simulation was performed in the same thin disk at Ra = 5 × 109

and Pr = 4.4. Two distinct regions are identified. In the boundary layer (BL) region
where the distance z/δ to the bottom conducting plate normalized by the thermal
BL thickness δ is smaller than a critical value ξc, the normalized mean temperature
profile θ(z) is found to have a scaling form θ(z/δ) in both convection cells, and
its functional form agrees well with the 2-D BL equation proposed by Shishkina
et al. (2015). Similarly, the measured temperature variance profile η(z) is also found
to have a scaling form η(z/δ) with varying values of δ, and its functional form is
well described by the recently derived 2-D BL equation by Wang et al. (2016). This
equation further predicts the relative contributions of the five budget terms in (3.1),
which are in good agreement with the DNS results.

In the mixing zone outside the BL region (z/δ > ξc), the measured θ(z) remains
approximately constant, whereas the measured η(z) is found to scale with the cell
height H in both convection cells and follows a power law, η(z) ∼ (z/H)ε with
the obtained values of the exponent ε being close to −1. The DNS data reveal
that in the mixing zone the turbulent convection term in (3.1) is balanced primarily
by the thermal dissipation term, and the other three terms are negligibly small.
Based on these experimental and numerical findings, we derive a new equation for
η(z) in the mixing zone. This equation has a power-law solution and the obtained
power-law exponent ε is in good agreement with the experimental and DNS results.
Our experimental observation is consistent with a recent experiment (Wei & Ahlers
2016), which reported that the measured η(z) has a power law dependence for a
liquid with Pr= 12.3 and becomes a logarithmic dependence for a gas with Pr' 0.8.
It was suggested that this change in the functional form of η(z) may result from
the Pr-dependence, namely, fluids with Pr > 1 favour the power law and those with
Pr< 1 favour the log law.

Our work thus provides a common framework for understanding the effect of BL
fluctuations on the scaling properties of the mean and variance temperature profiles in
RBC. Such an understanding is also relevant to many practical applications in wall-
bounded turbulent flows. A further interesting extension of this work would be a study
in gases or gas mixtures even with Prandtl numbers lower than those of air. In such
fluids some basic assumptions of the underlying theory will no longer be valid and
the scaling behaviour of the temperature and its fluctuations are expected to change.
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