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The scaling properties of the temperature structure function (SF) and temperature–
velocity cross-structure function (CSF) are investigated in turbulent Rayleigh–Bénard
convection (RBC). The measured SFs and CSFs exhibit good scaling in space and
time and the resulting SF and CSF exponents are obtained both at the centre of
the convection cell and near the sidewall. A universal relationship between the
CSF exponent and the thermal dissipation exponent is found, confirming that the
anomalous scaling of passive temperature fluctuations in turbulent RBC is indeed
caused by the spatial intermittency of the thermal dissipation field. It is also found
that the difference in the functional form of the measured SF and CSF exponents at
the two different locations in the cell is caused by the change of the geometry of
the most dissipative structures in the (inhomogeneous) temperature field from being
sheetlike at the cell centre to filament-like near the sidewall. The experiment thus
provides direct evidence showing that the universality features of turbulent cascade
are linked to the degree of anisotropy and inhomogeneity of turbulent statistics.
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1. Introduction
Fluid turbulence is often considered as a cascade process in which kinetic energy

is being transferred from large to small scales (Kolmogorov 1941; Frisch 1995). To
characterize the cascade process, one considers the longitudinal velocity structure
function (SF), Sn

u(r) = 〈|u(x + r) − u(x)|n〉x,t = 〈δun
r 〉, of the velocity increment δur

between two points separated by a distance r along the flow direction. Kolmogorov’s
refined similarity hypothesis predicted that (Kolmogorov 1962)

Sn
u(r)∼ 〈εu(r)n/3〉r n/3 ∼ rζu(n), (1.1)
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where the energy dissipation rate εu(r) = 〈εu〉r averaged over a spherical volume
of radius r is scale-dependent because of the spatial intermittency of the viscous
dissipation field. Such a non-space-filling dissipation field gives rise to the anomalous
scaling exponents ζu(n) (Frisch 1995).

Similar problems of anomalous scaling also apply to a scalar field advected
by a turbulent velocity field, such as temperature fluctuations T(x, t) in turbulent
thermal convection. In this case, one considers the temperature SF, Sn

T(r) =〈|T(x + r) − T(x)|n〉x,t = 〈δTn
r 〉, of the temperature increment δTr between two points

separated by a distance r. When the temperature is a passive scalar, one has (Obukhov
1949; Corrsin 1951)

Sn
T(r)∼ 〈εu(r)−n/6εT(r)n/2〉rn/3 ∼ rζT (n), (1.2)

where the volume-averaged thermal dissipation rate εT(r)= 〈εT〉r also becomes scale-
dependent because of the spatial intermittency of the thermal dissipation field.

The intermittency problem of passive scalars has been studied and understood in the
Kraichnan model (Kraichnan 1974, 1994), in which Kraichnan derived an analytical
expression for the reduced exponent ζT(n)/ζT(2). The ‘linear ansatz’ used in the
Kraichnan model was later called into question (Frisch, Mazzino & Vergassola 1998;
Falkovich, Gawedzki & Vergassola 2001) and Kraichnan’s prediction of ζT(n)/ζT(2)
was also known not to fit the available data (Warhaft 2000). In the past decades,
there has been a large number of theoretical (Procaccia & Zeitak 1989, 1990; She
& Orszag 1991; Sreenivasan 1991b; Grossmann & Lohse 1992; Benzi et al. 1993;
Grossmann & Lohse 1993; She & Léveque 1994; Chertkov et al. 1995; Gawȩdzki &
Kupiainen 1995; Shraiman & Siggia 1995; Cao & Chen 1997; Shraiman & Siggia
2000; Ching & Chau 2001; Ching 2007; Arnèodo et al. 2008), numerical (Cao, Chen
& Sreenvasan 1996; Kerr 1996; Calzavarini, Toschi & Tripiccione 2002; Camussi &
Verzicco 2004; Ching, Guo & Lo 2008), and experimental (Wu et al. 1990; Procaccia
et al. 1991; Tong & Shen 1992; Benzi et al. 1994; Cioni, Ciliberto & Sommeria
1995; Takeshita et al. 1996; Ashkenazi & Steinberg 1999; Zhou & Xia 2001; Skrbek
et al. 2002; Mashiko et al. 2004) studies of small-scale velocity and temperature
fluctuations in turbulent flows. Details about these studies have been reviewed by
Sreenivasan (1991a), Siggia (1994), Warhaft (2000), Biferale & Procaccia (2005),
Ishihara, Gotoh & Kaneda (2009), Lohse & Xia (2010) and Chilla & Schumacher
(2012). Many experimental studies focused on the velocity and temperature SFs,
aimed at testing the anomalous scaling. Figure 1 summarizes the main experimental
results obtained in locally homogeneous turbulent flows, such as grid turbulence
(Gylfason & Warhaft 2004; Lepore & Mydlarski 2009) and heated jet (Antonia et al.
1984) and wake (Meneveau et al. 1990; Ruiz-Chavarria, Baudet & Ciliberto 1996).
Experiments were also carried out in turbulent Rayleigh–Bénard convection (RBC),
where a thin layer of fluid is heated from below and cooled from the top (Siggia
1994; Kadanoff 2001; Lohse & Xia 2010). Recently, the space-resolved velocity and
temperature SFs were obtained in turbulent RBC at the cell centre and near the
sidewall (Sun, Zhou & Xia 2006; Kunnen et al. 2008). The convective flow in a
small-aspect-ratio cell is spatially inhomogeneous and has different characteristics at
these two locations (Qiu & Tong 2001; Xi, Lam & Xia 2004). While some of the
early data show some scatterers, the entire body of data shown in figure 1 clearly
reveal two distinct behaviours beyond the experimental uncertainties, with turbulent
RBC near the sidewall belonging to one group and the rest of the data sets being the
other group. These two different behaviours clearly demonstrate the effect of spatial
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FIGURE 1. (Colour online) Reduced scaling exponent ζT(n)/ζT(2) as a function of n
obtained in various experiments: HST13S (black solid squares, present work, RBC near
the sidewall); SZX06S (black open squares, Sun et al. (2006), RBC near the sidewall);
AHGA84 (triangles (blue online), Antonia et al. (1984), heated jet); MSKF90 (diamonds
(green online), Meneveau et al. (1990), heated wake); GW04 (black crosses, Gylfason
& Warhaft (2004), grid turbulence); SZX06C (circles (blue online), Sun et al. (2006),
RBC at the cell centre); RCBC96 (diamonds (purple online), Ruiz-Chavarria et al. (1996),
heated wake); LM09 (flakes (green online), Lepore & Mydlarski (2009), grid turbulence);
HST13C (solid circles (red online), present work, RBC at the cell centre).

inhomogeneity of turbulence on the temperature SFs. How to incorporate the spatial
inhomogeneity effect into the intermittency of passive scalars is an interesting and
open question and certainly deserve a further study.

Furthermore, to test the refined similarity ideas for anomalous scaling, one not
only needs to check the scaling properties of the velocity and temperature SFs, but
also should examine the scale-dependent statistics of the dissipation fields, in order
to verify that the observed anomalous scaling is indeed compatible with the scaling
of the dissipation fields. In contrast to the large number of experimental studies of
the velocity and temperature SFs, direct measurements of the viscous and thermal
dissipation rates in turbulent flows are rare (Warhaft 2000; Lohse & Xia 2010). This
is partially due to the fact that simultaneous measurements of all of the components
of the velocity gradient tensor or the temperature gradient vector with adequate spatial
and temporal resolutions are still challenging tasks.

More recently, we made a local temperature gradient probe consisting of four
identical thermistors and used it to measure the instantaneous thermal dissipation rate,
εT(x, t)= κ|∇T(x, t)|2, in turbulent RBC (He, Tong & Xia 2007; He & Tong 2009).
Here κ is the thermal diffusivity and ∇T(x, t) is the temperature gradient field. From
the single-point time series measurements, we constructed a locally averaged thermal
dissipation rate (He, Tong & Ching 2010b; He et al. 2011),

εT(τ )= 1
τ

∫ t+τ

t
εT(x, t′) dt′, (1.3)

and studied the τ -dependence of the moments, 〈[εT(τ )]n〉. Both at the cell centre and
near the sidewall, the measured 〈[εT(τ )]n〉 exhibit good scaling in τ , i.e.

〈[εT(τ )]n〉 ∼ τµ(n), (1.4)

for all values of n up to six. The obtained values of µ(n) (for integers of n) are
given in table 1. The experiment provided a solid foundation for a further study of
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the relationship between the scaling properties of the temperature SFs and thermal
dissipation field.

In this paper, we report a systematic investigation of the scaling properties of the
temperature SF Sn

T(r) and temperature–velocity cross-structure functions (CSFs) Sn
Tu(τ )

in turbulent RBC. The measured Sn
T(r) and Sn

Tu(τ ) are found to exhibit good scaling
in space r and time τ and the resulting exponents ζT(n) and ζTu(n) are obtained at
the centre of the convection cell and near the sidewall; at both locations the local
temperature fluctuations behave like a passive scalar (more discussions are given in
§ 3 below). A universal relationship between the CSF exponent ζTu(n) and the thermal
dissipation exponent µ(n) is found, confirming that the anomalous scaling of passive
temperature fluctuations in turbulent RBC is indeed caused by the spatial intermittency
of the thermal dissipation field. The experiment also demonstrates that the difference
in the functional form of the measured ζT(n) and ζTu(n) at the two different locations
in the cell is caused by the change of the geometry of the most dissipative structures
in the (inhomogeneous) temperature field from being sheetlike at the cell centre to
filament-like near the sidewall.

2. Experiment

All of the convection experiments were conducted in a upright cylindrical cell filled
with water. The inner diameter of the cell is D= 19.0 cm and its height H= 20.5 cm.
The corresponding aspect ratio of the cell is Γ = D/H ' 1. The sidewall of the cell
is made of a transparent Plexiglas ring, which is sandwiched between the top cooling
plate and bottom heating plate. The entire cell is placed inside a thermostat box,
whose temperature matches the mean temperature of the bulk fluid and is maintained
at 40± 0.3 ◦C. More details about the apparatus and experimental method have been
described elsewhere (He & Tong 2009). The control parameter of the convection
experiments is the Rayleigh number Ra, which is defined as Ra = αg1TH3/(νκ),
where g is the gravitational acceleration, 1T is the temperature difference across the
fluid layer and α, ν and κ are, respectively, the thermal expansion coefficient, the
kinematic viscosity and the thermal diffusivity of the fluid. In the experiment, Ra is
varied in the range 9 × 108 6 Ra 6 2 × 1010 and the Prandtl number, Pr = ν/κ , is
fixed at Pr' 4.3.

Two types of experimental data are used in the analysis to be described below.
The first type of data were obtained from simultaneous two-point temperature
measurements, which were made using two movable thermistors of 0.2 mm
in diameter and 15 ms in time constant at a sampling rate of 40 Hz. For the
measurements in the sidewall region, one of the thermistors was fixed at the middle
height of the cell and 2 cm away from the sidewall. The other thermistor was
placed above the fixed one with a varying vertical separation r along the downstream
direction of the large-scale circulation. The value of r was varied in the range
0–16 mm with the resolution of 1 µm. For the measurements in the central region of
the cell, one of the thermistors was fixed at the cell centre and the other (movable)
thermistor was put aside from the fixed one with a varying horizontal separation
r along the cell diameter. The horizontal separation r was varied in the range
0–90 mm with the same resolution of 1 µm. More details about the measurements
have been reported previously (He et al. 2010b, 2011). From the two-point time series
measurements, we calculate the temperature SF, Sn

T(r) = 〈δTn
r 〉, of the temperature

increment δTr with varying r. For each value of r, we collected over 10-h-long time
series data (1.4× 106 data points), which ensures an adequate convergence level for a
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temperature SF of order up to 8. Great care is taken to analyse the scaling property
of Sn

T(r) and obtain the scaling exponent ζT(n) in (1.2).
The second type of data were obtained from the simultaneous measurements of the

local temperature T(t) and vertical velocity uz(t), which is the longitudinal velocity
component near the sidewall. The velocity measurement was conducted using a
laser Doppler velocimetry (LDV) system together with an argon-ion laser. The mean
sampling rate of the velocity measurements was ∼42 Hz near the cell sidewall and
∼20 Hz at the cell centre. For each respective location, we took 33- and 14-h-long
time series data. They correspond to ∼5 × 106 and ∼106 data points, respectively,
ensuring that the statistical average of the flow properties is adequate. Simultaneous
velocity and temperature measurements were carried out using a multichannel LDV
interface module to synchronize the data acquisition. A triggering pulse from the LDV
signal processor initiates the acquisition of an analogue temperature signal. A small
movable thermistor of 0.2 mm in diameter, 15 ms in time constant and 1 mK �−1

in temperature sensitivity was used to measure T(t) at a location very close to the
LDV laser focusing spot. In the experiment, the spatial separation between the LDV
focusing spot and the thermistor tip was kept at a minimal value of 0.7 ± 0.2 mm.
The LDV focusing spot was always placed at an upstream position to further minimize
the disturbance of the thermistor to the velocity measurement. This body of data has
been used previously to study the spatial distribution and scaling property of the local
convective heat flux (Shang et al. 2003, 2004; Shang, Tong & Xia 2008).

From the single-point time series measurements of T(t) and uz(t), we calculate the
temperature–velocity CSF (Boratav & Pelz 1998),

Sn
Tu(τ )= 〈δun

τδT
2n
τ 〉t ∼ τ ζTu(n), (2.1)

with the temperature increment δTτ = |T(t+ τ)− T(t)| and velocity increment δuτ =
|uz(t + τ) − uz(t)|. Note that the temperature–velocity CSF Sn

Tu, as defined in (2.1),
requires the power index ratio between δuτ and δTτ to be 1:2. As will be shown below
(see (3.1)), the scaling property of Sn

Tu defined above is uniquely linked to that of the
thermal dissipation rate εT . In the above, we have assumed Sn

Tu(τ ) ∼ τ ζTu(n) and the
validity of this assumption will be checked below. We will study the dependence of
the CSF on delay time τ for different values of n.

3. Results and discussion
It has been shown (Qiu & Tong 2001; Sun, Xia & Tong 2005) that the velocity field

in a closed convection cell is neither homogeneous nor isotropic. In the central region,
the mean flow is zero and velocity fluctuations are approximately homogeneous.
The velocity field near the sidewall is anisotropic with a dominant mean flow in
the vertical direction. The spatial inhomogeneity and anisotropy are caused by the
non-uniform distribution of the thermal plumes in the cell. The recent temperature
(Qiu & Tong 2002), velocity (Qiu & Tong 2001; Sun et al. 2005), local heat flux
(Shang et al. 2004) and flow visualization (Xi et al. 2004) measurements have
revealed that the thermal plumes in a closed cylindrical cell organize themselves in
such a way that warm plumes accumulate on one side of the cell and cold plumes
concentrate on the opposite side of the cell. This plume distribution is clearly shown
in figure 2, which is a flow visualization image of small thermochromic liquid crystal
(TLC) spheres seeded in the convecting fluid (water). These TLC spheres change
colour from red to blue over a temperature range of 4 ◦C (29–33 ◦C). In the flow
visualization, a thin (2 mm in thickness) vertical sheet of white light was shone
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FIGURE 2. Flow visualization image of small TLC spheres taken in the Γ = 1 cell at
Ra = 3.7 × 108 and Pr = 5.3. Cold eruptions are brown; green and blue regions are
warmer. The displayed region covers the entire convection cell and its physical dimension
is approximately 10× 10 cm2.

through the middle section of the cylindrical cell. It is seen that falling cold plumes
form bundle-like structures on the right and rising warm plumes bundle together on
the left. The spatially separated warm and cold plumes exert buoyancy forces on
the fluid and drive the vertical flow near the sidewall. The central core region is
‘sheared’ by the rising and falling plumes near the sidewall, resulting in a large-scale
circulation across the cell height. This large-scale circulation provides a fast channel
along the cell periphery for the transport of heat (Shang et al. 2004). The large-scale
flow structure and plume distribution, as illustrated in figure 2, are generic features
of turbulent RBC in the Γ ' 1 cylindrical cells, which have been studied extensively
using different visualization techniques in various convecting fluids with the Rayleigh
number in the range 108 . Ra . 1010 and the Prandtl number in the range of
4 . Pr . 1000 (Shang et al. 2003; Sun et al. 2005; Xi & Xia 2008).

With this understanding of plume dynamics, we now discuss the scaling behaviour
of the temperature–velocity CSFs and temperature SFs at two representative locations
in the convection cell: at the cell centre and near the sidewall at the mid-height of the
cell and 1 cm away from the cell wall. We find that the scaling properties of Sn

Tu(τ )

and Sn
T(r) remain unchanged in the Ra range studied. Hereafter, we focus on the

results at fixed values of Ra. To determine whether temperature fluctuations at these
two locations are a passive scalar, one needs to compare the Bolgiano scale LB, above
which buoyancy becomes significant, with the system size H. In fact, because both
the viscous and thermal dissipation rates vary with the height z relative to the bottom
surface of the cell, one needs to consider the local Bolgiano scale (Benzi, Toschi
& Tripiccione 1998) LB(z) = (αg)−3/2[εu(z)]5/4[εT(z)]−3/4, where εu(z) and εT(z) are,
respectively, the energy and thermal dissipation rates averaged over the cross-section
of the cell. In a numerical simulation at moderate Ra, Calzavarini et al. (2002) found
that LB(z) is the smallest near the top and bottom plates and becomes the largest
and comparable to H at the mid-height of the cell (LB(H/2)/H ' 0.88). Thus, the
temperature behaves like a passive scalar at these two locations. This conclusion was
supported by early temperature and velocity measurements (Cioni et al. 1995;
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Belmonte & Libchaber 1996; Chavanne et al. 2001; Sun et al. 2006) and also
by recent measurements of the dissipation exponent (He et al. 2010b, 2011).

It should be noted that the scaling laws given in (1.1) and (1.2) (and their derivative
given in (3.1) below) were made for isotropic turbulence, in which there is no
preferred direction for the velocity vector u and displacement vector r. This condition
is satisfied approximately in the central region of the cell, in which the statistical
properties of the convective flow are approximately isotropic (Zhou, Sun & Xia 2008)
and the measured longitudinal velocity SF, where both u and r are along the same
direction, and the traversal velocity SF, where r is perpendicular to u, are found
to be equal (Sun et al. 2006). The convective flow near the sidewall, however, is
similar to a channel flow with a mean vertical velocity U0 and a root-mean-square
(r.m.s.) velocity σu ' 0.6U0 (Qiu & Tong 2001). For those anisotropic flows such as
turbulent channel flows and wakes and jets in wind tunnels, previous experimental
and numerical studies (Saddoughi & Veeravalli 1994; Chen et al. 1997; Grossmann,
Lohse & Reeh 1997) have shown that while the measured longitudinal and transversal
velocity SFs are different, the obtained scaling exponent ζ L

u (n) of the longitudinal SFs
agree with the prediction given in (1.1). Therefore, in the present study we choose
the axis of both r and u to be along the vertical direction, which is the longitudinal
direction near the sidewall, and study the scaling properties of the longitudinal SFs
and CSFs. Along the longitudinal direction, the effect of turbulent shear and sidewall
is minimal.

3.1. Scaling property of the temperature–velocity CSFs
The temperature–velocity CSF, Sn

Tu(τ ), is directly linked to the thermal dissipation rate
εT(r). From (1.1) and (1.2), one can show that (Boratav & Pelz 1998)

Sn
Tu(r)r

−n ∼ 〈[εT(r)]n〉. (3.1)

In the above, we used the CSF Sn
Tu(r) in the r-space. We now extend (3.1) from the

r-space to the τ -domain with r being replaced by the delay time τ . Using (1.4), one
can rewrite (3.1) in the exponent form

ζTu(n)− n=µ(n), (3.2)

where we have assumed Sn
Tu(τ ) ∼ τ ζTu(n). The validity of this assumption is checked

below.
To link the τ -scaling with the r-scaling, a relationship between space and time is

needed. Taylor’s frozen flow hypothesis (Taylor 1938) provides such a relationship, but
it requires that the mean flow velocity U0 be much larger than velocity fluctuations.
For turbulent RBC, however, the r.m.s. velocity σu is comparable with or even larger
than U0 (Qiu & Tong 2001), and thus this requirement is not met (Lohse & Xia
2010). Recently, He et al. (He & Zhang 2006; Zhao & He 2009) showed that for a
spatially homogeneous and statistically stationary turbulent flow, the first-order terms
in the Taylor series expansion of the velocity space–time correlation function Cu(r, τ )
vanish and, therefore, Cu(r, τ ) has a complete square form Cu(r, τ )=Cu(rE, 0), where
the combined space–time separation rE between the two space–time points separated
by a spatial distance r and time delay τ is given by

r2
E = (r−U0τ)

2 + V2τ 2, (3.3)
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where V is a random sweeping velocity proportional to σu. This elliptic relation
between r and τ is exact up to the second order and may also hold for larger values
of r and τ if the flow is scale-invariant. Equation (3.3) incorporates both the Taylor
hypothesis when V is small and Kraichnan’s random sweeping hypothesis (Kraichnan
1964) for an isotropic flow with U0 ' 0.

This so-called elliptic model has been experimentally verified for Cu(r, τ ) (Zhou
et al. 2011) and for the temperature space–time correlation function CT(r, τ ) (He,
He & Tong 2010a; He & Tong 2011; He et al. 2012) in turbulent RBC both at the
cell centre and near the sidewall. Because the Taylor expansion and flow similarity
assumption are quite general, the elliptic model is expected to be also valid for
the temperature–velocity space–time cross-correlation function CTu(r, τ ). There is an
intrinsic correlation between T(t) and uz(t) resulting from the local heat flux, which
will make the function form of CTu(rE, 0) somewhat different from that of CT(rE, 0)
(and Cu(rE, 0)). Because the heat flux is a local coincident event between T(t) and
uz(t) (for very small values of r and τ ), the heat-flux-induced correlation should
only affect the small-rE behaviour of CTu(rE, 0). In this paper, we are interested in
the scaling behaviour of the longitudinal SFs and CSFs in the inertial range, which
takes place in the larger values of rE (i.e. larger values of r and τ ). Therefore, the
heat-flux-induced correlation will most likely not affect the scaling exponent ζTu(n)
given in (3.2), which is verified experimentally as shown in figure 5 below.

Using (3.3) one can readily show that when r= 0 (single point measurement), one
has rE = (U2

0 + V2)1/2τ = Veff τ . This equation states that τ is statistically proportional
to r near the sidewall and at the cell centre, even when the requirement of Taylor’s
frozen flow hypothesis is not met. This explains why the scaling exponent γτ (n)
obtained from the extended self-similarity (ESS) scaling in τ has the same values as
γr(n) obtained from direct r-scaling, as shown in table 2 (see appendix A for more
details).

To verify the scaling behaviour of Sn
Tu(τ ), we use the ESS method (Benzi et al.

1993) to analyse the temperature–velocity CSFs. With ESS, one plots all of the
moments Sn

Tu(τ ) against the first moment S1
Tu(τ ) on log–log scales, which are shown

in figure 3. From (3.1), one finds that S1
Tu(r) ∼ r (or, equivalently, S1

Tu(τ ) ∼ τ )
(Yaglom 1949) and thus the plots shown in figure 3 are actually against τ (or r).
Indeed, the scaling of Sn

Tu(τ ) covers a wide range down to the dissipation time τη
('6.4× 10−2 s) associated with the Komogorov length η, as indicated by the vertical
dotted line in figure 3 (see appendix A for more details). A good power-law scaling
is found for all Sn

Tu(τ ) with n up to 4 (solid lines). For a common scaling region
as marked by the two vertical dashed lines on the right, we use the least-squares
method to fit all of the data and obtain the exponents ζTu(n) from the equation,

Sn
Tu(τ )∼ [S1

Tu(τ )]ζTu(n) ∼ τ ζTu(n), (3.4)

for all values of n up to 4. The measured values of ζTu(n) are given in table 1. Owing
to the wider scaling range in ESS, the uncertainties of the obtained ζTu(n) are smaller
than those obtained directly from the τ -scaling.

To check the accuracy of the obtained ζTu(n), we examine the convergence level of
the kernel function, [δT2

τ δuτ/(σ
2
Tσu)]nP(δT2

τ δuτ ), where σT and σu are the r.m.s. values
of δT(t) and δu(t), and P(δT2

τ δuτ ) is the probability density function of δT2
τ δuτ .

Figure 4 shows the obtained [δT2
τ δuτ/(σ

2
Tσu)]nP(δT2

τ δuτ ) at the lower end of the
scaling range, τ = 1 s for n = 2, 3, 3.5 and 4. It is seen that the kernel function
converges well at large values of δT2

τ δuτ for all values of n up to 3.5. For n= 4, the
kernel function only converges partially because of its very slow converging rate.
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FIGURE 3. ESS plots of Sn
Tu(τ ) as a function of S1

Tu(τ ) for 7 values of n from 0.5 to
4 with increments of 0.5 (top to bottom). All of the measurements were made near the
sidewall at Ra = 9.5 × 109. To display all of the curves in the same graph, the vertical
scale of those curves with n = 1.5 to 3.5 has been multiplied by a factor of 10, 10, 9,
6, 3, respectively. The two vertical dashed lines on the right indicate the scaling range
used to obtain µ(n) in He et al. (2011). The dotted line indicates the dissipation time
τη ' 6.4× 10−2 s.

0.1

0

0 50 100

0.2

FIGURE 4. (Colour online) Obtained kernel function, [δT2
τ δuτ/(σ

2
Tσu)]nP(δT2

τ δuτ ), for n=
2 (black diamonds), 3 (triangles, red online) 3.5 (squares, green online) and 4 (circles,
blue online) near the sidewall at Ra= 9.5× 109. The smallest value of τ (= 1 s) in the
scaling range is used in the calculation. The vertical scale of the three curves with n= 3,
3.5 and 4 has been divided by a factor of 10, 50 and 250, respectively.

In figure 5, we make a direct comparison between the CSF exponent, ζTu(n) − n
(left-hand side of (3.2)), and the dissipation exponent µ(n) near the sidewall
(figure 5a) and at the cell centre (figure 5b). The calculated values of ζTu(n) − n
from a direct numerical simulation (DNS) of isotropic passive-scalar turbulence
with Reλ = 141 and Pr = 1 (Boratav & Pelz 1998) are also included in figure 5(b).
To expand the range of comparison, we calculate additional values of µ(n) for
half-integers of n, which are also included in table 1. Because high-order temperature
fluctuations are used in ζTu(n) and µ(n), accurate determination of both ζTu(n) and
µ(n) is crucial for the comparison. While the kernel function with n = 4 only
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FIGURE 5. (Colour online) (a) Comparison between the exponents ζTu(n) − n (black
circles) and µ(n) (triangles, red online) as a function of n near the sidewall. Error bars
are shown for black circles. The solid line is a plot of (3.5) with c= 2 and β = 2/3. The
dashed line is a replot of the solid line in (b) for comparison. (b) Comparison between
ζTu(n) − n (black circles) and µ(n) (triangles, red online) at the cell centre. Error bars
are shown for black circles. The squares (blue online) are the calculated ζTu(n)− n from
a DNS study (Boratav & Pelz 1998). The solid line is a plot of (3.5) with c = 1 and
β = 1/3.

converges partially as shown in figure 4, we nonetheless include that data point in
figure 5, which fits the curve smoothly but with a bigger error bar. Figure 5 reveals
a good agreement between the exponents ζTu(n)− n and µ(n) and thus demonstrates
that the anomalous scaling in the temperature–velocity CSF is indeed caused by the
spatial intermittency of the dissipation field.

Most phenomenological models on anomalous scaling were proposed for isotropic
passive-scalar turbulence and thus they have no parameter to describe different
local-flow properties of a spatially inhomogeneous flow (Lohse & Xia 2010). The
model by She & Léveque (1994), however, has a unique feature that a geometric
measure, namely the (fractal) dimension Dε , is used to characterize the most
dissipative structures in the flow. For a flow with spatial inhomogeneity, its most
dissipative structures may have different values of Dε at different locations. By
assuming 〈[εT(τ )]n〉 has a hierarchical structure of She–Léveque form (She & Léveque
1994), Ching et al. (Ching & Kwok 2000; He et al. 2010b, 2011) showed that the
dissipation exponent µ(n) for passive scalars has the form

µ(n)= c(1− βn)− 2n
3
, (3.5)

where 0<β < 1 is a parameter to be determined by the condition c(1− β)− 2/3= 0,
and c = 3 − Dε is interpreted as the codimension of the most dissipative structures
in the flow. The solid line in figure 5(a) is a plot of (3.5) with c = 2 and β = 2/3,
suggesting the most dissipative structures near the sidewall are filament-like (Dε = 1).
The solid line in figure 5(b) is a plot of (3.5) with c = 1 and β = 1/3, suggesting
the most dissipative structures at the cell centre are sheetlike (Dε = 2). The data are
described adequately by the two solid lines without any adjustable parameter. From
the flow visualization, such as those shown in figure 2 and in Shang et al. (2003)
and Xi & Xia (2008), one finds that the thermal plumes form bundle-like structures
near the sidewall and they are fully mixed in the central region of the cell. Such a
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characteristic change in the plume structures coincides with the geometry change of
the most dissipative structures as discussed above. Figure 5 thus confirms that the
geometry of the most dissipative structures at the cell centre differs from that near
the sidewall, which explains the different functional form of the CSF exponents in
the two regions.

3.2. Scaling property of the temperature SFs
Such a change in the geometry of the most dissipative structures may also be used
to explain the two distinct behaviours of the reduced scaling exponent ζT(n)/ζT(2),
as shown in figure 1. To further verify the effect of spatial inhomogeneity on the
temperature SFs, we conduct a systematic study of the scaling properties of Sn

T(r) in
turbulent RBC near the sidewall and at the cell centre. Details about this study are
described in appendices A and B. Table 2 in appendix A summarizes the obtained
values of the SF exponent ζT(n) near the sidewall and at the cell centre. From the
obtained values of ζT(n), we calculate the reduced exponent ζT(n)/ζT(2) and the final
results are given in table 1. The solid squares (black) and solid circles (red online) in
figure 1 show the values of the obtained ζT(n)/ζT(2) near the sidewall and at the cell
centre, respectively. The two new sets of data agree with those obtained previously
(Sun et al. 2006) and the difference between them is clearly beyond the experimental
uncertainties. The value of ζT(2) used in figure 1 varies from 0.55 near the sidewall
to 0.6 at the cell centre. Previous experiments (Gylfason & Warhaft 2004) showed
that ζT(2) varied in the range 0.45–0.68 for different turbulent flows. The use of the
reduced exponent ζT(n)/ζT(2) helps to reduce systematic errors in the experiment.

As shown in (3.1), the temperature–velocity CSF, Sn
Tu(τ ), is uniquely determined

by the scaling property of the thermal dissipation εT(r), which is well described by
the hierarchical model as shown in (3.5). This equation is fully supported by the
experimental data as shown in figure 5. Similarly, the velocity SF, Sn

u(r), is uniquely
determined by the scaling property of the viscous dissipation εu(r), as shown in (1.1).
By assuming 〈[εu(r)]n〉 has a hierarchical structure, She & Léveque (1994) showed
that the viscous dissipation exponent ν(n) in the equation,

〈[εu(r)]n〉 ∼ rν(n), (3.6)

has the same form as shown in (3.5). By further assuming that the most dissipative
structures in the velocity field are filament-like (c = 2), She & Léveque (1994)
predicted

ν(n)= 2
[
1− ( 2

3

)n]− 2
3 n, (3.7)

for positive values of n. From (1.1) and (3.7), one finds

ζu(n)= ν(n/3)+ n
3
= 2

[
1−

(
2
3

)n/3
]
+ n

9
. (3.8)

Equation (3.8) was verified with the measured velocity SF exponent in a turbulent
grid flow and a turbulent jet in a wind tunnel (Benzi et al. 1993). For turbulent
RBC, both our single-point time series data and previous space-resolved particle-
image-velocimetry (PIV) data obtained by Sun et al. (2006) reveal that the reduced
exponent ζu(n)/ζu(2) at the cell centre remains the same as that near the sidewall
and both sets of data can be well described by (3.8) (see figure 12 in appendix C for
more details). These results thus suggest that the most dissipative structures of the
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velocity field in turbulent RBC are filament-like (cu = 2) and they remain the same
across the convection cell.

Unlike the velocity SF and temperature–velocity CSF, the temperature SF is
determined by the scaling properties of both the viscous dissipation εu(r) and thermal
dissipation εT(r), as shown in (1.2). Owing to the correlation between the two
dissipation fields, those proposals that assume the temperature SF, Sn

T(r), has a
unform hierarchical structure (Ruiz-Chavarria et al. 1996) need a further physical
justification, in order to address the coupling effect between the two dissipation
fields. Up to now, we do not have an analytical theory or direct experimental
evidence to estimate how important the higher-order dissipation correlations are.
Nevertheless, attempts were made to develop approximate models for Sn

T(r) (Lohse &
Xia 2010). While various functional forms have been used to fit the reduced exponent
ζT(n)/ζT(2) (Ruiz-Chavarria et al. 1996; Gylfason & Warhaft 2004), herein we focus
our discussion on those phenomenological models, which directly involved with the
scaling properties of both εu(r) and εT(r). In the above, we have thoroughly tested
the scaling properties of εu(r) and εT(r), and now we compare the model predictions
made under different approximations with the experiment.

(a) When the correlation between the two dissipation fields is weak, one may
assume 〈εu(r)−n/6εT(r)n/2〉 ∼ 〈εu(r)−n/6〉〈εT(r)n/2〉. Attempt has been made to test this
weak correlation assumption (Ruiz-Chavarria et al. 1996). To calculate the scaling
property of 〈εu(r)−n/6〉, Cao & Chen (1997) extended the calculation of ν(+n) in
(3.7) and obtained an expression for ν(−n) with n> 0:

ν(−n)= 2
[
1− ( 4

3

)−n
]
+ 2

3(−n). (3.9)

Putting (1.2), (3.5) and (3.9) together, we find

ζ A
T (n) = ν(−n/6)+µ(n/2)+ n

3

= 2

[
1−

(
4
3

)−n/6
]
+ c

[
1−

(
1− 2

3c

)n/2
]
− n

9
. (3.10)

(b) Similarly, if the correlation between the velocity and temperature fields is weak,
one may assume Sn

Tu(r) ∼ S2n
T (r)S

n
u(r). Using the simultaneously taken data of the

vertical velocity uz(t) and local temperature T(t), we examine the correlation between
uz(t) and T(t) in the time domain. The final results are presented in appendix C.
Putting (1.1), (1.2), (3.5) and (3.9) together, we find

ζ B
T (n) = −ν(n/6)+µ(n/2)+

n
3

= −2

[
1−

(
2
3

)n/6
]
+ c

[
1−

(
1− 2

3c

)n/2
]
+ n

9
. (3.11)

Equations (3.10) and (3.11) reveal the effect of the double intermittency corrections
on the SF exponent ζT(n).

Figure 6 shows a comparison between the experimental data and various model
predictions. For clarity, we plot only two sets of the measured scaling exponents
ζT(n)/ζT(2), which are obtained in the present experiment on turbulent RBC near the
sidewall (open squares, black) and at the cell centre (open circles, red online). They
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FIGURE 6. (Colour online) Reduced scaling exponent ζT(n)/ζT(2) as a function of n
obtained in turbulent RBC near the sidewall (HST13S, open squares, black) and at the
cell centre (HST13C, open circles, red online). The dot–dashed (green online) line is the
classical Obukhov–Corrsin scaling, ζT(n)= n/3, without any intermittency correction. The
lower solid and dashed (red online) lines are, respectively, the plots of (3.10) [ζ A

T (n)] and
(3.11) [ζ B

T (n)] with c= 1. The upper solid and dashed lines (black) are, respectively, the
plots of (3.10) [ζ A

T (n)] and (3.11) [ζ B
T (n)] with c= 2. The upper dotted (black) line and

lower dotted (red online) line are the plots of (3.13) [ζC
T (n)] with c= 2, γ = 1.5 and c= 1,

γ = 1.8, respectively. The black crosses and red triangles are the plots of (3.16) [ζD
T (n)]

near the sidewall and at the cell centre, respectively.

are chosen to represent the two distinct behaviours of the measured ζT(n)/ζT(2),
as shown in figure 1. The (green online) dot–dashed line shows the classical
Obukhov–Corrsin scaling, ζT(n)= n/3, without any intermittency correction (Obukhov
1949; Corrsin 1951). It is seen that the measured ζT(n) is not a linear function of n,
as predicted by the Obukhov–Corrsin scaling. Instead, it curves down at large values
of n, which was attributed to the spatial intermittency of the dissipation fields (Lohse
& Xia 2010). The solid and dashed lines are, respectively, the plots of (3.10) [ζ A

T (n)]
and (3.11) [ζ B

T (n)] with c = 1 (lower curves, red online) and c = 2 (upper curves,
black). It is seen that while both (3.10) and (3.11) can fit the data at small values
of n (. 3), deviations between the model predictions and experimental data become
larger with increasing values of n. In particular, the solution ζ A

T (n) of (3.10) with
c= 1 (lower solid line, red online) shows the largest deviation when compared with
the data at the cell centre. On the other hand, the solution ζ B

T (n) of (3.11) with c= 2
(upper dashed line, black) fits the sidewall data well. A main difference between
ζ A

T (n) and ζ B
T (n) is that for large values of n, ζ A

T (n)→−n/9 whereas ζ B
T (n)→+n/9.

As shown in figure 6, the measured ζT(n)/ζT(2) keeps increasing with n even at large
values of n, which explains why (3.11) fits the data better than (3.10) in general.

(c) We now consider the correlation effect between the viscous dissipation εu(r) and
thermal dissipation εT(r). This issue has been considered previously by Cao & Chen
(1997) and He, Chen & Doolen (1998). Assuming that

〈εu(r)−n/6εT(r)n/2〉 = 〈εu(r)−n/6〉〈εT(r)n/2〉rθ(−n/6,n/2), (3.12)

and using (3.10), we find a new solution for the temperature SF exponent ζC
T (n) with

a correlation correction,

ζC
T (n)= ζ A

T (n)+ θ(−n/6, n/2), (3.13)
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where

θ(−n/6, n/2)= γ
[

1−
(

4
3

)−n/6

−
(

2
3c

)n/2

+
(

4
3

)−n/6 ( 2
3c

)n/2
]
. (3.14)

Equation (3.14) was derived by assuming the correlation between εu(r) and εT(r)
obeys a joint Poisson distribution (Cao & Chen 1997; He et al. 1998). In (3.14), γ is
a free parameter and is chosen to best fit the data. The upper dotted (black online) line
and lower dotted (red online) line shown in figure 6 are the plots of (3.13) with c= 2,
γ = 1.5 and c= 1, γ = 1.8, respectively. The corresponding values of θ(−n/6, n/2)
are listed in table 1. With a free fitting parameter, the correlation-corrected solution
ζC

T (n) can give a better fit than ζ A
T (n). In fact, the obtained ζC

T (n) curve with c= 2 is
very close to ζ B

T (n); both can fit the data well. For c= 1, however, small deviations
between the calculated ζC

T (n) and the experimental data are observed for large values
of n (&6). This is partially caused by the fact that at the large n limit, ζC

T (n)→−n/9,
a trend which is inconsistent with the data shown in figure 6.

(d) Similarly, we consider the correction to ζ B
T (n) due to the correlation between

δun
r and δT2n

r . Assuming that

〈δun
rδT

2n
r 〉 = 〈δun

r 〉〈δT2n
r 〉rφ(n,2n), (3.15)

and using (3.1) and (3.11), we find a new solution for the SF exponent ζD
T (n) with a

correlation correction,
ζD

T (n)= ζ B
T (n)− φ(n/2, n). (3.16)

In appendix C, we calculate the numerical values of φ(n, 2n) using the simultaneously
taken time series data of the vertical velocity uz(t) and local temperature T(t). The
final results are given in table 1. It is found that the correlation between the velocity
moments δun

τ and temperature moments δT2n
τ is weak near the sidewall, and the

obtained values of φ(n, 2n) are very small (close to zero) for all values of n up to 4.
The correlation becomes stronger at the cell centre and the obtained value of φ(n, 2n)
increases with n. The black crosses in figure 6 show the values of ζD

T (n) obtained
using (3.16) with the values of φ(n, 2n) near the sidewall given in table 1. It is seen
that the solution ζD

T (n) is in excellent agreement with the sidewall data. Because the
values of φ(n, 2n) are very small, the correlation correction to ζ B

T (n) is also small.
This explains why the solution ζ B

T (n) in (3.11) with c= 2 (upper dashed line, black)
also fits the sidewall data well. The triangles (red online) in figure 6 show the values
of ζD

T (n) obtained using (3.16) with the values of φ(n, 2n) at the cell centre given
in table 1. It is seen that the obtained values of ζD

T (n) also agree well with the
experimental data at the cell centre. Because the values of φ(n, 2n) are all negative,
the final correlation correction to ζ B

T (n) is positive. Figure 6 thus suggests that among
the solutions (a)–(d) predicted by different phenomenological models, the solution
ζD

T (n) in (3.16) gives a more accurate description of the measured temperature SF
exponent with a minimum number of input parameters or presumptions.

4. Summary
Over the past decades, continuing efforts have been made to understand the

scaling properties of temperature and velocity fluctuations in turbulent RBC. Many
experiments focused on the power spectra and SFs of local temperature and velocity
fluctuations. The interpretation of the experimental results, however, are often
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complicated by other effects in the convective flow, such as flow anisotropy and
inhomogeneity, determination of the Bolgiano scale, the validity of using Taylor’s
frozen flow hypothesis to analyse the single-point measurements, and lack of spatial
separation of the relevant length scales for the flow in a closed convection cell (Lohse
& Xia 2010). More recently, with a concerted effort of DNS (Calzavarini et al. 2002;
Kunnen et al. 2008) and space-resolved measurements of temperature and velocity
SFs (Sun et al. 2006), space–time cross-correlation functions (He et al. 2010a; He &
Tong 2011), and local thermal dissipation rate (He et al. 2010b, 2011), many of the
experimental complications have been resolved.

Based on this collective understanding, we have carried out a careful analysis on the
scaling properties of the temperature SF Sn

T(r) and temperature–velocity CSF Sn
Tu(τ ).

The measured Sn
T(r) and Sn

Tu(τ ) are found to exhibit good scaling in space r and
time τ and the resulting exponents ζT(n) and ζTu(n) are obtained at the cell centre
and near the sidewall; at both locations the temperature behaves like a passive scalar.
With the aid of the previously measured scaling exponent µ(n) of the local thermal
dissipation rate (He et al. 2010b, 2011), we make a direct comparison between the
CSF exponent ζTu(n) − n and the dissipation exponent µ(n) via (3.2). An excellent
agreement between the measured ζTu(n) − n and µ(n) is observed both at the cell
centre and near the sidewall, as shown in figure 5. The experiment thus demonstrates
for the first time that the anomalous scaling of passive temperature fluctuations is
indeed caused by the scale-dependent statistics of the dissipation field. It is also found
that the difference in the functional form of the measured ζTu(n) at the two different
locations in the convection cell is caused by the change of the geometry of the most
dissipative structures in the (inhomogeneous) temperature field from being sheetlike
(cT = 1) at the cell centre to filament-like (cT = 2) near the sidewall.

With these new findings, we conduct a detailed comparison between the measured
ζT(n) in turbulent RBC and those obtained in other locally homogeneous turbulent
flows, such as grid turbulence (Gylfason & Warhaft 2004; Lepore & Mydlarski 2009)
and heated jet (Antonia et al. 1984) and wake (Meneveau et al. 1990; Ruiz-Chavarria
et al. 1996). The whole body of data as shown in figure 1 clearly reveal two distinct
behaviours of ζT(n), with turbulent RBC near the sidewall belonging to one group
and the rest of the data sets being the other group. These two different behaviours,
which clearly demonstrate the effect of spatial inhomogeneity of turbulence on the
temperature SFs, are explained by a phenomenological model given in (3.16). A
good agreement between the model prediction and the measured ζT(n) is observed,
when the codimension cT of the most dissipative structures in the temperature field
is assumed to be changed from sheetlike (cT = 1) at the cell centre to filament-like
(cT = 2) near the sidewall. The experiment thus provides direct evidence showing that
the universality features of turbulent cascade are linked to the degree of anisotropy
and inhomogeneity of turbulent statistics (Biferale & Procaccia 2005; Arnèodo et al.
2008).

By comparing different phenomenological models on the anomalous scaling of
passive scalars, we find that (3.16) gives a more accurate description of the measured
ζT(n) with a minimum number of input parameters or presumptions. It is interesting
to note that at the cell centre, the codimension cu of the most dissipative structures in
the velocity field is the same as that of the temperature field cT , both of them being
sheetlike-like (cu = cT = 1), and a strong correlation between the velocity moments
δun

τ and temperature moments δT2n
τ is observed. This correlation is found to increase

with the order n of the moments. Near the sidewall, however, the most dissipative
structures in the velocity field remain to be sheetlike (cu= 2) but the most dissipative
structures in the temperature field becomes filament-like (cT = 1). In this case, the
correlation between δun

τ and δT2n
τ is found to be very weak.
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Appendix A. Temperature SFs near the sidewall

Figure 7(a) shows the compensated plot of the temperature SFs, Sn
T(r)/r

ζT (n), as a
function of r/η for n = 3, 5 and 8 (bottom to top). In the plot, r is scaled by the
Kolmogorov dissipation length, η = HPr1/2/[NuRa]1/4 (Cioni et al. 1995), where Nu
is the Nusselt number (normalized heat flux). Using the measured Nu= 0.17Ra0.29 in a
similar convection system (Du & Tong 2000), we find η' 0.35 mm at Ra= 1.4× 1010

(He et al. 2011). The flat region of Sn
T(r)/r

ζT (n) reveals the good power-law scaling for
all Sn

T(r)/r
ζT (n) with n up to 8 (solid lines). The scaling range in r is slightly over a

decade long between 4η and 50η. For a common scaling region in r, we use the least-
squares method to fit all of the data and obtain ζT(n) for different values of n up to 8.
The measured values of ζT(n) are given in table 2.

Because the scaling range in r is short, the obtained ζT(n) is known to have
relatively large uncertainties. In the present experiment, great care was taken to
properly align the two thermistors and to vary r with a high spatial resolution. To
check the accuracy of the obtained ζT(n), we examine the convergence level of the
kernel function, (δTr/σT)

nP(δTr), where the temperature increment δTr is normalized
by its r.m.s. value σT and P(δTr) is the probability density function of δTr. Figure 7(b)
shows the obtained (δTr/σT)

nP(δTr) at the lower end of the scaling range, r=1.1 mm,
for n= 4, 6 and 8. It is seen that the kernel function converges well at large absolute
values of δTr/σT for all values of n up to 8. Because the measured P(δTr) near the
sidewall is asymmetric with a long tail in the δTr < 0 region, the convergence of
(δTr/σT)

nP(δTr) in the δTr < 0 region is slower than that in the δTr > 0 region.
To further verify the scaling behaviour of Sn

T(r), we use the ESS method (Benzi
et al. 1993) to analyse the temperature SFs. With ESS, one plots all of the moments
Sn

T(r) against the second moment S2
T(r) on log–log scales, which are shown in

figure 8(a). Indeed, the scaling of Sn
T(r) covers a wider range down to the Komogorov

length η (vertical dashed line). From the slope of the ESS plots, we obtain the
exponent γr(n) from the equation,

Sn
T(r)= [S2

T(r)]γr(n) ∼ rζT (2)γr(n). (A 1)

The measured values of γr(n) are given in table 2. By comparing (A 1) with (1.2),
one immediately finds ζT(n)= ζT(2)γr(n). Owing to the wider scaling range in ESS,
the uncertainties of the obtained γr(n) are smaller than those for ζT(n).

Similar to the SF in space, one can also defined a temperature SF in the time
domain (Ching & Kwok 2000), Sn

T(τ ) = 〈[T(t + τ) − T(t)]n〉t = 〈δTn
τ 〉, where δTτ

is obtained from the single-point time series measurement. Figure 8(b) shows the
compensated ESS plots of the measured Sn

T(τ )/[S2
T(τ )]γτ (n) as a function of S2

T(τ ) for
n=3, 4, 6 and 8 (bottom to top). The flat region of Sn

T(τ )/[S2
T(τ )]γτ (n) reveals the good

power-law scaling against S2
T(τ ) for all values of n up to 8. It is found that the scaling

range of Sn
T(τ )/[S2

T(τ )]γτ (n) in the ESS plots starts at τ ' 6.4τη (left) and ends at
τ ' 19.1τη (right), which are marked by the two vertical dashed (blue online) lines
in figure 8(b). Here τη is the dissipation time associated with the Kolmogorov
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FIGURE 7. (Colour online) (a) Compensated plots, Sn
T(r)/r

ζT (n), as a function of r/η for
n= 3, 5 and 8 (bottom to top). To display all of the curves in the same graph, the vertical
scales for n= 5 and n= 8 have been reduced by a factor of 10 and 102, respectively. (b)
Obtained kernel function, (δTr/σT)

nP(δTr), for n= 4 (diamonds, black), 6 (triangles, red
online) and 8 (circles, green online). The smallest value of r (= 1.1 mm) in the scaling
range is used in the calculation. The vertical scales for n= 4 and n= 6 have been reduced
by a factor of 50 and 5000, respectively. Both of the data in (a) and (b) were obtained
near the sidewall at Ra= 1.4× 1010.
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FIGURE 8. (Colour online) (a) ESS plots of Sn
T(r) as a function of S2

T(r) for n = 3, 4,
6 and 8 (bottom to top). The vertical scales for n= 4, 6 and 8 have been multiplied by
a factor of 10, 102 and 103, respectively. The vertical dashed line indicates the estimated
Kolmogorov length η' 0.35 mm. (b) Compensated ESS plots of Sn

T(τ )/
[
S2

T(τ )
]γτ (n) as a

function of S2
T(τ ) for n= 3, 4, 6 and 8 (bottom to top). The vertical scales for n= 4, 6

and 8 have been reduced by a factor of 1.2, 3 and 12, respectively. The vertical dashed
(blue online) lines indicate the scaling range from τ = 6.4τη (left) to τ = 19.1τη (right)
with the estimated Kolmogorov time τη ' 4.7 × 10−2 s. All of the measurements were
conducted near the sidewall with Ra= 1.4× 1010.

length η, which can be estimated as τη ' τ0η/H (Ching et al. 2003), where
τ0 = 4H2/(1.1Ra0.45κ) is the turnover time of the large-scale circulation observed
in a similar system (Qiu & Tong 2001). For Ra = 1.4 × 1010, we find τ0 = 27.3 s
and τη = 4.7 × 10−2 s. From the slope of the ESS plots, we obtain the power-law
exponent γτ (n) from the equation,

Sn
T(τ )= [S2

T(τ )]γτ (n) ∼ τ ζT (2)γτ (n). (A 2)
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FIGURE 9. (Colour online) Reduced scaling exponent ζT(n)/ζT(2) as a function of n near
the sidewall at Ra' 1.4× 1010. The values of ζT(n)/ζT(2) are obtained by direct r-scaling
(solid circles, red online), ESS scaling in r (solid triangles, green online) and ESS scaling
in τ (solid diamonds, black). Error bars are shown for (red online) solid circles. For
comparison, the results by Sun et al. (2006) (black open circles) and by Skrbek et al.
(2002) (black open diamonds) are also included.

The measured values of γτ (n) are given in table 2. From table 2 we find that within
the experimental uncertainties γτ (n)' γr(n) for all values of n up to 8.

Figure 9 shows the reduced scaling exponent ζT(n)/ζT(2) obtained in three different
ways: direct r-scaling (solid circles, red online), ESS scaling in r (solid triangles,
green online) and ESS scaling in τ (solid diamonds, black). In the latter two cases,
we used γr(n) and γτ (n) as the reduced scaling exponent. It is seen that the three
sets of data superimpose very well. For comparison, we also include, in figure 9,
the measured ζT(n)/ζT(2) near the sidewall from two previous experiments. One was
carried out in low-temperature helium gas and γτ (n) was obtained by Skrbek et al.
(2002). The other experiment was conducted in water and the values of ζT(n) were
obtained from direct r-scaling (Sun et al. 2006). The five sets of data agree with each
other very well for n 6 5. For n > 6, the measured ζT(n)/ζT(2) by Sun et al. (2006)
become increasingly larger than the other measurements. Such a deviation may result
from the experimental uncertainties in the direct r-scaling, which are magnified at
large values of n. Other systematic errors were also found for the scaling exponents in
several known multiplicative cascade processes (Lashermes, Abry & Chainais 2004),
which indicates that the asymptotic behaviour of ζT(n) at very large values of n needs
to be dealt with care. Figure 9 clearly reveals that the measured ζT(n) is not a linear
function of n, which was attributed to the spatial intermittency of the dissipation field
(Lohse & Xia 2010).

Appendix B. Temperature SFs at the cell centre
Similarly, we apply the same procedures and rigor to analyse the temperature SFs at

the cell centre. Figure 10(a) shows the compensated plots, Sn
T(r)/r

ζT (n), as a function
of r/η for n = 3, 5 and 8 (bottom to top). The obtained Sn

T(r)/r
ζT (n) reveals a good

power-law scaling in r, as indicated by the plateau region in the plot (solid lines).
The scaling range is slightly over a decade long ranging from ∼4η to 60η. Using
the least-squares fitting method, we obtain the scaling exponent ζT(n) for different n.
The measured values of ζT(n) are given in table 2. Figure 10(b) shows the ESS plots
of Sn

T(r) as a function of S2
T(r) for n= 3, 4, 6 and 8 (bottom to top). Similar to the

situation near the sidewall, the measured Sn
T(r) at the cell centre also reveals good ESS



124 X. He, X.-D. Shang and P. Tong

100

100

100

101 102

102

10–4 10–4

10–3

10–2

10–2

10–1

10–110–2

(a)

n = 3

n = 5

n = 8

n = 3

n = 8

(b)

FIGURE 10. (a) Compensated plots, Sn
T(r)/r

ζT (n) versus r/η for n = 3, 5 and 8 (bottom
to top). The vertical scales for n = 5 and n = 8 have been reduced by a factor of 10
and 102, respectively. (b) ESS plots of Sn

T(r) as a function of S2
T(r) for n= 3, 4, 6 and 8

(bottom to top). The vertical scales for n= 4, 6 and 8 have been multiplied by a factor of
20, 200 and 2000, respectively. The vertical dashed line indicates the Kolmogorov length
η ' 0.33 mm. All the measurements were made at the cell centre with Ra ' 1.7 × 1010.
The solid lines indicate the power-law region.
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FIGURE 11. (Colour online) Reduced scaling exponent ζT(n)/ζT(2) as a function of n at
the cell centre with Ra= 1.7× 1010. The values of ζT(n) are obtained by direct r-scaling
(solid circles, red online) and ESS scaling in r (solid triangles, green online). Error bars
are shown for (red online) solid circles. For comparison, the results by Sun et al. (2006)
(open circles, black) are also included.

scaling, which covers a wider range down to the dissipation length η (vertical dashed
line). The increase in the scaling range reduces the uncertainties of the measured γr(n).
The values of γr(n) are given in table 2.

Figure 11 shows the reduced scaling exponent ζT(n)/ζT(2) at the cell centre
obtained in two different ways: direct r-scaling (solid circles, red online) and ESS
scaling in r (solid triangles, green online). In the latter case, we used γr(n) as the
reduced scaling exponent. It is seen that the two sets of data superimpose very well.
For comparison, we also include the measured ζT(n)/ζT(2) at the cell centre from a
previous convection experiment (Sun et al. 2006). The three sets of data agree well
with each other within the experimental uncertainties. Note that there is a small but
systematic deviation between the measured ζT(n) in the present experiment and that
by Sun et al. (2006) (see table 2). The use of the reduced exponent ζT(n)/ζT(2) helps
to reduce the systematic errors in the experiments.
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FIGURE 12. (Colour online) (a) Reduced scaling exponent ζu(n)/ζu(2) as a function of n
near the sidewall at Ra= 9.5× 109. (b) Measured ζu(n)/ζu(2) as a function of n at the
cell centre with Ra = 1.4 × 1010. The values of ζu(n) used in (a) and (b) are obtained
by ESS scaling in τ (circles, red online). For comparison, the space-resolved PIV data by
Sun et al. (2006) are also included (triangles, black). The solid lines are the plot of (3.8).

Appendix C. Correlations between the temperature and velocity SFs
Using the simultaneously taken time series data of the vertical velocity uz(t) and

local temperature T(t) at the cell centre and near the sidewall, one can study the
scaling properties of the temperature SF 〈δTn

τ 〉, velocity SF 〈δun
τ 〉 and their CSF

〈δun
τδT

2n
τ 〉 individually. We first study the τ -scaling of 〈δTn

τ 〉 and 〈δun
τ 〉. Following the

same procedure as discussed in appendix A, we use the ESS method (Benzi et al.
1993) to analyse the temperature and velocity SFs. With ESS, we plot all of the
moments Sn

T(τ ) (and Sn
u(τ )) against the second moment S2

T(τ ) (or S2
u(τ )) on log–log

scales, and find a good scaling range of Sn
T(τ ) (and Sn

u(τ )) for all cases. From the
slope of the ESS plots, we obtain the exponent γτ (n)= ζT(n)/ζT(2) from (A 2). The
obtained values of γτ (n) are found to be the same as those discussed in appendices A
and B, indicating that the temperature statistics of this set of data remain the same
as those discussed in appendices A and B.

Similarly, we obtain the velocity SF exponent γ u
τ (n)= ζu(n)/ζu(2) and its numerical

values are given in table 2. Figure 12(a) shows the reduced exponent ζu(n)/ζu(2)
near the sidewall (circles, red online). For comparison, we also include the obtained
ζT(n)/ζT(2) near the sidewall from a previous experiment (Sun et al. 2006). In
that experiment, the space-resolved PIV data were used to calculate the longitudinal
velocity SFs. The two sets of data superimpose with each other and are well described
by (3.8) (solid line). Owing to the limited statistics of the velocity data, we are only
able to obtain the scaling exponent γ u

τ (n) reliably up to n= 4.
Figure 12(b) shows the reduced exponent ζu(n)/ζu(2) at the cell centre (circles, red

online). For comparison, the space-resolved PIV data by Sun et al. (2006) (triangles,
black) are also included. It is seen that the two sets of data obtained from different
experiments and by different methods agree well within the experimental uncertainties.
Similar to the situation near the sidewall, the use of the reduced exponent ζu(n)/ζu(2)
helps to reduce systematic errors in the experiment. The value of ζu(2) was found to
vary from 0.68 at the cell centre to 0.78 near the sidewall (Sun et al. 2006). Because
the velocity sampling rate at the cell centre was even lower than that near the sidewall,
we are only able to obtain γ u

τ (n) reliably up to n= 2.5. The measured ζu(n)/ζu(2) at
the cell centre can also be well described by (3.8) (solid line). Figure 12 thus suggests
that the most dissipative structures of the velocity field in turbulent RBC remain the
same across the convection cell and they are filament-like (cu = 2).
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FIGURE 13. (Colour online) (a) Measured correlation function ρn
Tu(τ ) versus delay time

τ near the sidewall at Ra = 9.5 × 109. From the bottom to the top, the values of n is
increased from n = 0.5 to n = 4 with an increment of 0.5. (b) Measured ρn

Tu(τ ) as a
function of τ at the cell centre with Ra = 1.4 × 1010. From the bottom to the top, the
values of n is increased from n = 0.5 to n = 2.5 with an increment of 0.5. In (a) and
(b), the solid lines (red online) show the power-law fits to the data in a common scaling
range in τ as marked by the two vertical dashed lines. The dotted lines represent 10τη
calculated for the two values of Ra.

We now discuss the correlation function ρn
Tu(τ ) between the velocity moments δun

τ

and temperature moments δT2n
τ , which is defined as

ρn
Tu(τ )≡

〈δun(τ )δT2n(τ )〉
〈δun(τ )〉〈δT2n(τ )〉 ∼ τ

φ(n,2n). (C 1)

Figure 13(a) shows the measured correlation function ρn
Tu(τ ) near the sidewall at Ra=

9.5× 109 for different values of n from 0.5 to 4 with an increment of 0.5 (bottom to
top). In the plot, the dotted line represents 10τη with the dissipation time τη ' 6.4×
10−2 s associated with the Komogorov length η (see appendix A). In a common range
of τ as marked by the two vertical dashed lines in figure 13(a), the measured ρn

Tu(τ )
reveals a good power-law scaling for all values of n up to 4 (solid lines, red online).
The scaling range in τ is slightly over a half-decade long between 47τη and 157τη.
For the common scaling region in τ , we use the least-squares method to fit all the
data and obtain φ(n, 2n) for different values of n up to 4. In the calculation of ρn

Tu(τ )
near the sidewall, 5 × 106 data points are used to ensure that the resulting φ(n, 2n)
is accurate up to n = 4. The obtained values of φ(n, 2n) are given in table 1. It is
found that the τ -dependence of the measured ρn

Tu(τ ) is weak and the obtained values
of φ(n, 2n) are very small (close to zero) for all values of n up to 4. Figure 13(a)
thus suggests that the correlation between the velocity moments δun

τ and temperature
moments δT2n

τ is very weak near the sidewall.
Figure 13(b) shows the measured ρn

Tu(τ ) as a function of τ at the cell centre for
different values of n from 0.5 to 2.5 with an increment of 0.5 (bottom to top). In the
plot, the dotted line represents 10τη with τη' 4.7× 10−2 s at Ra= 1.4× 1010. Similar
to the situation near the sidewall, the measured ρn

Tu(τ ) reveals a good power-law
scaling (solid lines, red online) in a common range of τ as marked by the two
vertical dashed lines in figure 13(b). The scaling range in τ is close to a decade long
between 64τη and 425τη. Owing to the low-velocity sampling rate at the cell centre,
there were only ∼106 data points available. Thus, we are only able to obtain φ(n, 2n)
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accurately up to n = 2.5. The obtained values of φ(n, 2n) are given in table 1. It
is seen that the τ -dependence of the measured ρn

Tu(τ ) at the cell centre is much
stronger than that near the sidewall and this correlation increases with n. Figure 13(b)
thus suggests that the correlation between the velocity moments δun

τ and temperature
moments δT2n

τ is stronger at the cell centre and increases with the order n of the
moments.
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