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We report a systematic study of colloidal diffusion over a substrate with quasicrystalline-patterned
holes. Silica spheres of diameter comparable to the hole diameter diffuse over the patterned substrate
and experience a gravitational potential U(x, y). Using optical microscopy, we track the particle
trajectories and find two distinct states: a trapped state when the particles are inside the holes and a free-
diffusion state when they are on the flat surface outside the holes. The potential U(x, y) and dynamic
properties of the diffusing particle, such as its mean dwell time, mean square displacement, and long-
time diffusion coefficient DL, are measured simultaneously. The measured DL is in good agreement
with the prediction of two theoretical models proposed for diffusion over a quasicrystal lattice. The
experiment demonstrates the applications of this newly constructed potential landscape. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4984938]

I. INTRODUCTION

Diffusion over a complex potential landscape is a common
problem, which is found in many areas of physics, chemistry,
and biology.1–3 For example, the diffusion of lithium ions
through the pores of a lithium ion battery affects the trans-
port properties of the battery, and microstructural information
of the battery is needed in order to quantify the ion transport.4

In cell biology, membrane-bounded proteins in live cells were
found to exhibit anomalous diffusion,5–9 which results from a
complex interaction landscape with the surrounding proteins
and lipids and with the underlying cytoskeleton.10–15 In the
study of protein folding, the change of protein configurations is
thought of as a diffusion in a funnel-like free energy landscape
along the reaction coordinates.16,17

Owing to its fundamental importance, there have been a
large number of theoretical studies of diffusion over regular
lattices and disordered media.1–3,15,18 Lifson and Jackson19

obtained an exact solution of long-time diffusion over a one-
dimensional (1D) periodic potential. While there is no exact
solution available for diffusion over more complex poten-
tials, various phenomenological models have been proposed
to capture certain aspects of the actual potential encountered
in the disordered media. These models include the random
trap model,20–22 random barrier model,21–23 and continuous
random walk model.24–26 In these models, the diffusion of
particles was assumed on a regular lattice, and randomness in
the spatial arrangement of the diffusion obstacles has not been
considered.

A quasicrystalline lattice lies in between regular periodic
lattices and disordered media in that, while it lacks the long-
range translational periodicity, the lattice sites in a quasicrystal
still obey certain tiling rules so that they can be classified
into groups according to their local arrangements.27,28 Several
numerical simulations have been carried out to study diffusion

through quasicrystalline traps29 and obstacles.30 In contrast to
the considerable theoretical and numerical studies, systematic
experimental investigations of diffusion in quasicrystals are
quite limited. Samavat et al. reported an experimental study
of diffusion of atoms on a quasicrystalline alloy surface.31

Guidoni et al. reported an experiment on atomic diffusion in
an optical quasicrystal.32 These experiments, however, were
not conducted at the single particle level so that information
about the particle trajectories is not available. This information
is needed in order to find a relationship between the micro-
scopic dynamics of particles and macroscopically measurable
quantities, such as the long-time diffusion coefficient of the
particles, in the theoretical predictions.

In this paper, we report a systematic experimental study
of the diffusion dynamics of a dilute monolayer of micron-
sized particles over a quasicrystalline-patterned surface. With
the techniques of optical microscopy and particle tracking,
we are able to obtain a large volume of single particle tra-
jectories and the morphology of the quasicrystalline potential
landscape that the individual particles have experienced. With
the simultaneously obtained energetics and dynamics infor-
mation, we test the theory and demonstrate the applications of
the quasicrystalline potential landscape.

The paper is organized as follows. We first introduce
two theoretical models for diffusion over a quasicrystalline-
patterned substrate in Sec. II. The experimental setup and data
analysis methods are described in Sec. III. The experimen-
tal results and discussion are given in Sec. IV. Finally, we
summarize the work in Sec. V.

II. THEORY
A. Colloidal diffusion between two states

We consider the motion of a colloidal particle over
a patterned substrate with identical holes arranged on a
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quasicrystalline lattice (see Fig. 1 for the experimental setup).
The holes on the substrate, whose size is comparable to the
particle size, serve as traps to the diffusion of the colloidal
particles. As shown in Fig. 3(b) below, the particle trajectories
undergo two distinct states: a trapped state when the parti-
cles are inside the holes and a free-diffusion state when they
are on the flat surface outside the holes. To describe the col-
loidal diffusion between the two states, we consider a two-state
diffusion model with the coupled diffusion equations given
by

∂tP1(r, t) = D1∇
2P1(r, t) − k1P1(r, t) + k0P0(r, t),

∂tP0(r, t) = D0∇
2P0(r, t) − k0P0(r, t) + k1P1(r, t),

(1)

where P1(r, t) [P0(r, t)] is the probability density function of
finding a particle in the trapped state [free-diffusion state] at
position r and time t. In the above, D1 and D0 are the diffusion
coefficients in the two states, and k1 (k0) is the transition rate
for the particles to change their state 1→ 0 (0→ 1). Here we
have assumed that colloidal diffusion between the two states is
homogeneous in space and thus all the molecular parameters
are constants independent of particle positions.

The motion of the particles over the quasicrystalline-
patterned substrate can be described by the mean square
displacement (MSD)

〈r2(t)〉 =
∫

r2 [P1(r, t) + P0(r, t)] dr, (2)

under the initial conditions P1(r, 0)= c1δ(r), P0(r, 0)= c0δ(r),
and c1 + c0 = 1, to let the particle start from the origin.
When the distribution of the particles in the two states reaches
equilibrium, we have

k1

∫
drP1(r, t) = k0

∫
drP0(r, t) (3)

due to the detailed balance. If the initial state is already at
equilibrium, we have c1/c0 = k0/k1. In this case, the MSD has
a simple form

〈r2(t)〉 = 4
D0k1 + D1k0

k1 + k0
t = 4(DL)At, (4)

where the overall diffusion coefficient

(DL)A = c0D0 + c1D1, (5)

which is just the average of the two diffusion coefficients
weighted by the equilibrium number fraction of the particles
in each state.

For a more general case, the MSD has the form

〈r2(t)〉 = 4
D0k1 + D1k0

k1 + k0
t + A

(
1 − e−(k1+k0)t

)
, (6)

FIG. 1. Schematic diagram of the sample cell (side view): SC, stainless steel
chamber; QW, quartz wafer; GC, glass cover slip; red layer with holes, SU8
photoresist layer with cylindrical holes arranged on a quasicrystal lattice; blue
particles, silica spheres diffusing over the quasicrystalline-patterned substrate.

where

A = 4
k1c1 − k0c0

(k1 + k0)2
(D1 − D0). (7)

When the initial condition is at equilibrium, the second term
vanishes and the MSD is reduced to Eq. (5). If it is initially not
at equilibrium, 〈r2(t)〉 will undergo a transition between two
diffusion regimes with the overall diffusion coefficient (DL)A

in Eq. (5) changed from its initial value to the final equilibrium
value satisfying the detailed balance condition in Eq. (3). The
crossover time is given by 1/(k1 + k0).

B. Colloidal diffusion on a quasicrystalline lattice

To further understand how the spatial location of the diffu-
sion traps affects the overall diffusion dynamics, we consider
the transition probability density function P(Rn, t|Rl, t0) for
a particle starting from the site (hole) Rl at time t0 = 0 to
reach the site (hole) Rn at time t. Hereafter, we drop the initial
time t0 for simplicity. The evolution of P(Rn, t|Rl, t0) can be
described by the master equation1

d
dt

P(Rn, t |Rl) =
∑

m

Γm,nP(Rm, t |Rl) −
∑

m

Γn,mP(Rn, t |Rl),

(8)

where Γn,m is the transition rate from site Rn to site Rm, and∑
m denotes a sum over all the possible transitions from the

neighbouring site m to the site n. In the Fourier (k) space,
Eq. (8) can be written as

d
dt

P(k, t) =
∑

m

P(Rm, t |Rl)e
−ik ·(Rm−Rl)

∑
n

Γm,ne−ik ·(Rn−Rm)

−
∑

n

P(Rn, t |Rl)e
−ik ·(Rn−Rl)

∑
m

Γn,m, (9)

where
P(k, t) =

∑
n

P(Rn, t |Rl)e
−ik ·(Rn−Rl) (10)

is the Fourier transform of P(Rn, t|Rl).
It is difficult to solve Eq. (9) because Γm,n depends on both

the starting site m and ending site n. For a quasicrystal, one
cannot classify the neighboring site pairs into a finite number
of groups as one does for a non-Bravais periodic lattice. To
reduce the statistical complexities of Γm,n exp[−ik ·(Rn−Rm)],
we introduce a spatial average over all the starting sites m, so
that Γm,n exp[−ik · (Rn − Rm)] becomes independent of m. In
this case, we have

Λ(k) =
∑

n

〈Γm,n[e−ik ·(Rn−Rm) − 1]〉m. (11)

In the above, the average 〈. . .〉m over the starting sites m retains
the essential symmetry of the quasicrystal but removes the
minor differences among different sites of the quasicrystal.
This average will also improve the statistics of the measure-
ment (see more discussions in Sec. IV B). With Eq. (11), Eq. (9)
is simplified to

d
dt

P(k, t) = Λ(k)P(k, t), (12)

which has a solution

P(k, t) = eΛ(k)t , (13)
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under the initial condition, P(Rn, 0|Rl) = δ(Rn −Rl), at t = 0.
The MSD can be calculated using Eqs. (10)–(13), and the

final result is given by

〈∆R2(t)〉 = −∇2
kP(k, t)|k=0 =

∑
n

〈(∆Rm,n)2
Γm,n〉mt

= 4(DL)Bt, (14)

where
(∆Rm,n)2 = (Rn − Rm)2 (15)

and

(DL)B =
1
4

∑
n

(∆Rn)2〈Γm,n〉m. (16)

In the above,∆Rn denotes all possible displacement vectors on
the quasicrystal substrate, and 〈Γm,n〉m is the averaged value of
Γm,n over all starting sites m. Because 〈Γm,n〉m is independent
of m, we find 〈(∆Rm,n)2Γm,n〉m = (∆Rn)2〈Γm,n〉m.

C. Connections between the two models

In the first model presented in Sec. II A, we ignored the
spatial arrangement of the trapping sites and only considered
the mixing effect of the two-state motion, which is used to cal-
culate the long-time diffusion coefficient (DL)A. In the second
model presented in Sec. II B, the long-time diffusion coef-
ficient (DL)B was derived from the local transition rates (or
connectivity) between the neighbouring sites. The connection
between the two models can be found when Eq. (4) is written
as

〈r2(t)〉 = 4
D0 t̄0 + D1 t̄1

t̄0 + t̄1
t = [〈r2

0〉 + 〈r2
1〉]NΓt, (17)

where t̄0 = 1/k0, t̄1 = 1/k1, and 〈r2
0〉 = 4D0 t̄0 and 〈r2

1〉 = 4D1 t̄1
are, respectively, the mean squared travelling distances in the
free and trapped states. In the above, Γ =

∑
n 〈Γm,n〉m is the

total transition rate for a particle to escape from a trapping site
and arrive at all possible neighbouring sites, and N is defined
by

1/Γ = N(t̄0 + t̄1). (18)

When the particle escapes from a trap, it has a certain
probability to come back to the same trap again. This escape-
and-retrapping process may repeat several times until the
particle is trapped at another site. In Eq. (18), t̄0 + t̄1 is the
average time needed for a particle to make a transition. This
time is shorter than the real transition time 1/Γ to a different
site, because t̄0 + t̄1 includes the “self-transition” (escape-and-
retrapping) events. Therefore, N in Eq. (18) represents the
mean repeated number of the (self) transition events needed
for a real transition to occur. Both N and 〈r2

0〉 depend on the
detailed arrangement of the trapping sites and trap size 〈r2

1〉.
By comparing Eq. (17) with Eq. (14), we find that the

predicted long-time diffusion coefficients, (DL)A and (DL)B,
become equal if

〈(∆Rn)2〉 ≡
∑

n

(∆Rn)2 〈Γm,n〉m

Γ
= (〈r2

0〉 + 〈r2
1〉)N . (19)

Equation (19) is a statement in space with a meaning similar
to Eq. (18). Here 〈r2

0〉 + 〈r2
1〉 is the mean squared travelling

distance needed for a particle to make a transition, which
includes the self-transition event. It needs to be repeated N

times in order to reach the value of 〈(∆Rn)2〉 for a real tran-
sition to a different site. In Sec. IV, we will compare the
experimental results with the predictions given by Eqs. (5)
and (16), which are obtained by two different statistical
approaches.

III. EXPERIMENT
A. Apparatus and sample preparation

Figure 1 shows the sample cell used in the experiment. It
has a circular stainless steel chamber (SC) with a central hole of
8 mm in diameter and 1 mm in depth, which is sealed from the
bottom by a quartz wafer (QW). A quasicrystalline-patterned
substrate is coated on the bottom quartz wafer. The central
hole is then filled with the colloidal sample and extra solvent
(water) is added to fill the entire sample cell. After filling the
fluid chamber, another glass cover (GC) slip is used to cover
the entire sample cell. In this way, both sample evaporation
and unwanted flow are minimized.

The quasicrystalline pattern is etched on a thin layer of
SU8 photoresist coated on a quartz wafer. It contains identi-
cal cylindrical holes of diameter dh, which are arranged on
a quasicrystal lattice. These cylindrical holes are made by
photolithography. The quasi-crystalline pattern is first cre-
ated using the generalized dual method33 and then transferred
onto a mask using a laser direct write system (Intertech ISI-
2808) under the bright field. A photoresist layer of 0.5 µm
in thickness (SU-8 2000.5) covered with the mask is exposed
to an UV light, and the unexposed photoresist is then dis-
solved away with an SU-8 developer. The depth of the result-
ing cylindrical holes is the same as the photoresist layer
thickness.

Figure 2(a) shows a microscopic image of the sample sur-
face. Because the resolution of photolithography is limited
to ∼1 µm, the holes on the quasicrystalline-patterned sub-
strate are not perfectly cylindrical, and variations in the hole
depth are observed over large scales across the entire area
of the wafer. By laterally moving the sample stage, we are
able to find individual patches within the view area of 100
× 75 µm2, which are uniform enough so that the experimental
results to be discussed below are not affected by the sample
imperfections.

As shown in Fig. 2(b), the quasicrystalline lattice has five-
fold symmetry and can be constructed by tiling the surface
with two kinds of rhombuses [two-dimensional (2D) Penrose
tiling]. The two rhombuses have the same length of edges
but with different diagonals. The three colored links repre-
sent the three shortest distances between the neighbouring
holes. Because of the quasicrystalline nature, each hole has
its own unique neighborhood if all the surrounding holes are
considered.

The colloidal sample preparation and image analysis pro-
cedures used in the experiment are similar to those described
in Refs. 34 and 35. Briefly, silica spheres (Bangs Laborato-
ries) are first thoroughly washed by deionized water. We then
prepare dilute suspensions of monodispersed silica spheres of
diameter dp. When the suspension is filled into the central
hole of the fluid chamber (∼50 µl in volume), the particles
settle on the quasicrystalline-patterned substrate under gravity
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FIG. 2. (a) A microscopic image of the quasicrystalline-patterned substrate
for S4 with cylindrical holes arranged on a quasicrystal lattice. (b) 2D-Penrose
tiling of the quasicrystal lattice, on which the cylindrical holes (small circles)
are arranged. The quasicrystal lattice is constructed by tiling the surface with
two kinds of rhombuses. The yellow lines show the edges of the rhombuses.
The blue lines show the shorter diagonal of the fat rhombus. The pink lines
show the shorter diagonal `h of the thin rhombus, which is used as a charac-
teristic length of the quasicrystal. The red stars indicate 12 different kinds of
vertices formed by the three colored links.

and form a monolayer with area fraction nA, which is defined
as the ratio of the occupied area by the particles to the total
area. In the experiment, nA is in the range of 0.015-0.040,
in which the interactions between the silica spheres can be
ignored.34,35

The silica spheres diffuse over a rugged surface of the
quasicrystalline-patterned substrate and experience a gravita-
tional potential U(x, y). The values of U(x, y) are determined
by both the size dp of the diffusing particles and the hole
diameter dh.34 There is a small gap between the silica spheres
and substrate, which affects both the diffusion dynamics of
the particles and the potential field U(x, y). To obtain con-
sistent experimental results, we add 2 mM sodium dodecyl

sulfate (0.8 mM for sample S2) into the solution to prevent the
particles from sticking to the substrate and to control the Debye
screening length of the silica spheres so that the gap distance
maintains constant. To vary U(x, y), we change the size dp of
the silica spheres and the parameters of the quasicrystal struc-
ture, such as the hole diameter dh and shorter diagonal `h of
the thin rhombus. Five samples are used in the experiment, and
their properties are given in Table I.

B. Image processing

The sample cell is placed on the stage of an inverted
microscope (Olympus IX71). The motion of the particles over
the (transparent) quasicrystalline-patterned substrate is viewed
from below using bright field microscopy and recorded by
a CMOS camera (acA1920-155um, Basler). A typical frame
rate used is 10 frames per second (fps). The recorded images
have a spatial resolution of 1920 × 1080 pixels and 256 gray
scales.

Figure 3(a) shows the silica spheres (bright dots) of sam-
ple S4 diffusing over the quasicrystalline-patterned substrate.
Because the substrate is slightly off focus, the image of the
holes on the substrate appears as dark rings. The intensity pro-
file of the diffusing particles is not always uniform due to
the optical interference with the bottom holes. By applying a
standard Gaussian filter to the original image, one can recover
the uniform Gaussian-like intensity profile for each diffusing
particle.34 The center of this intensity profile is defined as
the position of the particle. A homemade program based on
the standard tracking algorithm36 is used to find the trajec-
tory of the diffusing particles from consecutive images. With
this program, we are able to obtain a tracking accuracy of
1 pixel ' 97.6 nm. By adding all the images in the same movie
together, we average out the individual image of the randomly
positioned particles and obtain a clear picture of the sub-
strate, from which we identify the position of the holes on the
substrate.

Figure 3(b) shows three representative trajectories of the
diffusing particles over the quasicrystalline-patterned sub-
strate for sample S4. The particle’s trajectories show two
distinct states: a trapped state when the particles are inside
the holes and a free-diffusion state when they are on the flat
substrate outside the holes. Thus the particle trajectories are
divided into trapped segments and free-diffusion segments.
From the center of the holes on the substrate, we define a
trap diameter dtr for each sample, which is about the same
as the hole diameter dh. All the particle trajectories inside the

TABLE I. Five samples used in the experiment with different particle diameters dp and area fractions nA on a quasicrystalline substrate with different hole
diameters dh and shortest distances `h between the holes. Also shown are the measured quantities from the particle trajectories, including the free diffusion
coefficient D0, trap radius r1, mean dwell time t̄1 in the trapped state, mean dwell time t̄0 in the free-diffusion state, particle number ratio n0/n1 between the free
diffusion and trapped states, potential barrier Eb/kBT of the traps, and long-time diffusion coefficient DL .

Sample dp (µm) dh (µm) `h (µm) nA D0 (µm2/s) r1 (µm) t̄1 (s) t̄0 (s) n0/n1 Eb/kBT DL (µm2/s)

S1 2.01 2.4 3 0.039 0.120 1.058 3.76 10.23 2.498 1.1 0.110
S2 2.49 2.4 3 0.028 0.091 1.155 7.38 7.74 1.049 2.1 0.067
S3 2.49 2.4 3 0.018 0.119 0.732 12.03 5.63 0.561 3.2 0.051
S4 2.49 3.2 4 0.021 0.089 1.013 45.02 10.67 0.254 4.2 0.023
S5 2.49 3.6 4 0.015 0.117 1.134 123.3 7.55 0.057 5.8 0.012
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FIG. 3. (a) Microscopic image of sample S4. Bright dots are the diffusing
particles. The dark rings arranged as a quasicrystalline lattice are the holes on
the substrate, which are slightly below the focal plane. (b) Three representative
particle trajectories (red, blue, and green) over a time period of 1.94 h for
sample S4. Brighter dots are the cylindrical holes on the substrate.

traps of diameter dtr are labelled as trapped segments, and the
other segments of the trajectories are labelled as free-diffusion
segments. The value of dtr is slightly adjusted to minimize the
number of short trajectories resulting from rapid crossings of
the trap boundary due to thermal fluctuations.

IV. EXPERIMENTAL RESULTS
A. Diffusion dynamics between two states

From the particle trajectory, we obtain the probability den-
sity function (PDF) P(x, y) of finding a particle at location (x,
y) inside a trap, which is related to the trap potential U(x, y) by
the Boltzmann distribution, U(x, y)/kBT = − ln P(x, y). Here
P(x, y) is normalized in such a way that U(x, y) = 0 at the
flat surface of the substrate. Figure 4 shows a 3D plot of the
obtained trap potential, U(x, y)/kBT, for sample S3. The shape
and symmetry of the measured U(x, y) reflect the topographic
variation of the cylindrical holes explored by the particles with
a finite radius. It is seen that the potential barrier Eb of the traps
for sample S3 is Eb ' 3.2 kBT .

The duration of a trapped segment of the particle trajectory
gives the dwell time t1 (also called “escape time”). Figure 5
shows the measured histogram H(t1) of the dwell time t1 (black
curve) for sample S3. It has a long tail, which is well described
by a simple exponential function, H(t1) = 0.0692 exp(−t1/t̄1)
with t̄1 ' 12 s (red dashed line). This result suggests that
the escape events from the holes occur randomly in time and
can be described by a Poisson process with a constant escape
rate k1 = 1/t̄1.37 Similarly, we measure the dwell time t0 for

FIG. 4. 3D plot of the obtained trap potential, U(x, y)/kBT = −ln P(x, y),
for sample S3. Approximately 500 trapped trajectories are used to compute
P(x, y).

the particles in the free-diffusion state. The green curve in
Fig. 5 shows its normalized histogram H(t0). The measured
H(t0) is not a simple exponential function, indicating that the
transition rate k0 = 1/t̄0 out of the free-diffusion state is not
a constant. This is because when a particle diffuses over the
flat surface of the substrate, there is no characteristic time for
the particle to reach the holes. The value of t0 depends on
the initial position of the particle and the local arrangement
of the holes. In the above, the mean value of t0 is defined as
t̄0 =

∑
t0H(t0)/

∑
H(t0). The measured H(t1) [and H(t0)] near

the origin shows a slight curve-up, which is caused by the
experimental uncertainties in determining the actual location
of the trap boundaries, as mentioned above.

As discussed in Sec. II A, when the distribution of the
particles in the two states reaches equilibrium, one has

t̄1
t̄0
=

n1

n0
(20)

due to the detailed balance. Here n1/n0 is the number ratio
of the particles in the two states, which can be independently
measured from the particle trajectories. Figure 6 shows the
measured ratio t̄1/t̄0 of the two mean dwell times as a function
of number ratio n1/n0. The data are well described by Eq. (20)
(solid line), suggesting that the distribution of the particles in
the two states has already reached equilibrium.

FIG. 5. Measured histograms H(t1) of the dwell time t1 in the trapped
state (black curve) and H(t0) of the dwell time t0 in the free-diffusion
state (green curve) for sample S3. The red dashed line is an exponential fit,
H(t1) = 0.0692 exp(−t1/12 s), to the tail part of the measured H(t1).
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FIG. 6. Measured ratio t̄1/t̄0 of the two mean dwell times as a function of
number ratio n1/n0 of the particles in the two states. The error bars show the
standard deviation of the measured t̄1/t̄0. The solid line is a plot of Eq. (20)
with a slope of unity.

From the particle trajectories, we calculate the MSD
〈∆r2(τ)〉 as a function of delay time τ, where ∆r = r(t + τ)
− r(t). Figure 7 shows the measured MSD 〈∆r2(τ)〉 as a func-
tion of τ for sample S5. The MSD curves are obtained under
different sampling conditions. The red curve is obtained from
the free diffusion segments. Indeed, the red curve is a typical
MSD for free Brownian diffusion with a linear dependence
on τ over the entire range of delay times sampled. From the
intercept of this log-log plot of the MSD curve, we obtain the
free diffusion coefficient D0 for sample S5. The blue curve is
obtained from the trapped segments. It is a linear function of
τ for small delay times with τ < τc and then reaches a plateau
value r2

1 , which characterizes the size of the trap. This is a
typical MSD curve for confined diffusion with the crossover
time τc ' r2

1/(4D′0) (left arrow). Here D′0 is the short-time
diffusion coefficient inside the trap, which is slightly smaller
than D0 in the free-diffusion state (see the intercept of the blue
curve).

The black curve in Fig. 7 is obtained from the full tra-
jectories of sample S5. This MSD curve can be generally

FIG. 7. Log-log plots of the measured MSD 〈∆r2(τ)〉 as a function of delay
time τ for sample S5. The MSD curves are obtained under different sampling
conditions: (i) from the free diffusion segments (red curve), (ii) from the full
trajectories (black curve), and (iii) from the trapped segments (blue curve).
The black dashed lines indicate the relationship 〈∆r2(τ)〉 ∼ τ with a slope of
unity in the log-log plot. The horizontal blue dashed line indicates the plateau
value r2

1 of the blue curve. The two arrows point to the locations of τc (left
arrow) and t̄1 (right arrow), respectively.

described by15,18

〈∆r2(τ)〉 ∼ τγ, (21)

where the exponent γ is used to classify the particle’s motion
as normal diffusion (γ = 1), sub-diffusion (γ < 1), or super-
diffusion (γ > 1). It is found that for short delay times with
τ < τc, the motion of the particles (in both states) is diffusive
with γ = 1 (lower left dashed line) and the overall diffusion
coefficient is just the average of the diffusion coefficients in
the two states weighted by the equilibrium number fraction of
the particles in each state. At long delay times with τ > t̄1
(right arrow), the particles have escaped from the traps, and
their motion becomes diffusive again with γ = 1 (upper right
dashed line). In this case, we find

〈∆r2(τ)〉 = 4DLτ, (22)

where DL is the long-time diffusion coefficient, which is
smaller than D0. In the crossover region τc . τ . t̄1, the
particle’s motion becomes heterogeneous and undergoes sub-
diffusion with γ < 1. Such a crossover behavior of MSD has
been observed previously for colloidal diffusion over the peri-
odic and random potentials34,38,39 and in dense fluid systems,
such as colloidal diffusion near its glass transition40,41 and
in entangled actin filament networks.42 Membrane proteins in
live cells were also found to exhibit anomalous subdiffusion.5,9

As shown in Fig. 8, the crossover regime of the obtained
MSD curves from the full particle trajectory becomes less
prominent when the traps are weaker. The energy barrier asso-
ciated with the traps varies among different samples, as the
effective depth that a particle can fall into the hole varies with
both the hole diameter dh and particle diameter dp. For the
particles with dp > dh, the larger the hole diameter is, the
deeper the particles can fall into the holes. As a result, the sam-
ples with a larger hole diameter generally have a stronger trap
in this experiment. By comparing the measured MSD curves
from different samples, we find that the anomalous subdif-
fusion becomes more pronounced for the colloidal samples
with stronger traps. The range of the crossover regime is also
increased for the samples with stronger traps. The values of
the measured free diffusion coefficient D0, trap radius r1, mean
dwell times t̄1 and t̄0, particle number ratio n0/n1, potential bar-
rier Eb/kBT, and long-time diffusion coefficient DL for all five

FIG. 8. Log-log plots of the measured MSD 〈∆r2(τ)〉 as a function of delay
time τ for five colloidal samples. The MSD curves are obtained from the full
trajectory of the particles. The black dashed lines indicate the relationship
〈∆r2(τ)〉 ∼ τ with a slope of unity in the log-log plot.
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samples are given in Table I. Note that the measured values of
DL for the quasi-crystalline substrate here are in general larger
than those for the periodic substrate with similar values of Eb

in Ref. 34. This is because there is a significant fraction of flat
regions on the quasi-crystalline substrate, on which the parti-
cle diffuses freely, whereas the periodic potential in Ref. 34
is made by a close-packed colloidal substrate, on which the
particle does not experience free diffusion.

We now compare the measured long-time diffusion coef-
ficient DL with the theoretical prediction given in Eq. (5). With
the measured quantities given in Table I, we rewrite Eq. (5) as

(DL)A = c0 [D0 + (c1/c0)D1] =
n0

n1 + n0

*
,
D0 +

n1

n0

r2
1

4t̄1
+
-

, (23)

where n0 and n1 are, respectively, the (equilibrium) numbers
of the particles in the free-diffusion and trapped states, which
are measured directly from the particle trajectories. The effec-
tive diffusion coefficient D1 in the trapped state is estimated
as D1 = r2

1/(4t̄1). Figure 9 shows a comparison between the
measured DL and calculated (DL)A using Eq. (23) for five col-
loidal samples. It is seen that the calculated (DL)A agrees well
with the measured DL, indicating that the two-state diffusion
model discussed in Sec. II A catches the essential physics for
the long-time behaviour of colloidal diffusion in the system.

B. Diffusion dynamics on a quasicrystalline lattice

To further understand how the spatial location of the holes
on the quasicrystalline lattice affects the overall diffusion of
the particles, we consider the probability density function
P(∆r(τ)|Rm) for a particle to move a distance ∆r over a time
period τ when it starts from Rm (the center of the mth trap).
As mentioned in Sec. II B, P(∆r(τ)|Rm) depends on both the
starting site Rm and displacement vector∆r(τ) for a quasicrys-
tal. To reduce the statistical complexities of P(∆r(τ)|Rm) and
improve the measurement statistics, we introduce a spatial
average to P(∆r(τ)|Rm) over all the starting sites Rm,

P(∆r(τ)|R0) ≡
1
M

M∑
m

P(∆r(τ)|Rm), (24)

where R0 denotes a generic starting position at the center of
the traps, and thus P(∆r(τ)|R0) becomes independent of m.

FIG. 9. Comparison between the measured long-time diffusion coefficient
DL and calculated (DL)A using Eq. (23) for five colloidal samples. The error
bars show the standard deviation of the measured DL . The solid line shows
the equation DL = (DL)A.

Figure 10(a) shows the measured P(∆r(τ)|R0) for sample
S4. The measurements are made at a long delay time τ = 350 s,
which is about 7 times larger than the mean dwell time t̄1 in the
trapped state. The measured P(∆r(τ)|R0) reveals high prob-
ability spots, which coincide with the position of the neigh-
bouring traps and have a 10-fold rotational symmetry. This
10-fold rotational symmetry can be explained by the fivefold
rotational symmetry of the underlying quasicrystalline sub-
strate together with a reflection symmetry between R0 and�R0

for the neighbouring pair of traps. Figure 10(a) thus confirms
that the measured P(∆r(τ)|R0) retains the essential symmetry
of the quasicrystal and removes the minor differences among
different sites of the quasicrystal.

For comparison, we also measure the probability density
function P(∆r(τ)) for a particle to move a distance ∆r over a
time period τ without specifying the starting position R0. This
is equivalent to take a spatial average over all possible starting
positions r on the substrate,

P(∆r(τ)) ≡
∫

P(∆r(τ)|r) f (r)dr, (25)

where f (r) is the (equilibrium) probability distribution of find-
ing a particle at position r on the substrate. Figure 10(b) shows
the measured P(∆r(τ)) for sample S4. The average over the

FIG. 10. (a) Measured probability density function P(∆r(τ) |R0) for sample
S4. The measurements are made with the starting position R0 being set at the
trap center and delay time τ = 350 s. The color bar is shown in log scale.
(b) Measured P(∆r(τ)) for sample S4. The measurements are made without
specifying the starting position R0 and with delay time τ = 350 s. The color
bar is shown in log scale.
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starting points results in a smeared image of P(∆r(τ)|R0) with
the local probability peaks broadened and peak height reduced.
Nevertheless, the measured P(∆r(τ)) still retains the 10-fold
symmetric pattern with a Gaussian-like envelope. Figure 10(b)
thus demonstrates that the measured P(∆r(τ)) is still sensitive
to the quasicrystalline structure of the underlying substrate.

To compare the measured DL with the theoretical predic-
tion given in Eq. (16), we first measure the distribution of the
distance ∆Rn between the trapping sites, which is defined in
Eq. (15). This is accomplished by counting how many trajec-
tory segments which are directly linked by two trapping sites
for any delay time τ. Because of the 10-fold azimuthal sym-
metry of the measured P(∆r(τ)|R0) as shown in Fig. 10(a),
we measure the azimuthally averaged ∆Rn ≡ |∆Rn | with n
indicating the radial position of the nth shell of neighbouring
sites away from the trap center. Figure 11 shows the measured
histogram H(∆Rn) for sample S4. Note that the histogram
here records the actual transition path distances of the diffus-
ing particle, which is different from the structural distribution
of distances of the quasi-crystalline substrate.43 Among the
observable probability peaks pointed by the arrows, the first
three marked peaks contain most of the transition events. These
peak locations correspond to the distances, ∆R1 through ∆R3,
to the first three nearest neighbours. The transition to the far-
ther sites is not forbidden but is found to have much smaller
probabilities.

The transition rate between a pair of neighbouring sites is
obtained using the equation

Γm,n =
Mm,n

Mm
Γm, (26)

where Γm =
∑

n Γm,n is the total transition rate for a particle to
escape from the mth site and arrive at all possible neighbouring
sites, Mm ,n is the number of transitions from the mth site to the
nth site, and Mm =

∑
n Mm,n is the total number of transitions

out of the mth site. The mean transition rate 〈Γm,n〉m in Eq. (16)
is given by

〈Γm,n〉m =



∑
m(Mm,nΓ

−1
m,n)Γm,n∑

m(Mm,nΓ
−1
m,n)



Sn

S
≡ Γn

Sn

S
, (27)

FIG. 11. Measured histogram H(∆Rn) of the distance ∆Rn between the trap-
ping sites for sample S4. The arrows point to the probability peaks observed.
The first three peaks marked are associated with the distances, ∆R1 through
∆R3, to the first three nearest neighbours.

where Γ−1
m,n is the mean transition time for the particle to move

from the mth site to the nth site, which is used as a weight-
ing factor to account for the likelihood of occurrence of such
transitions with different starting sites m. The time averaged
transition rate Γn refers to the transition to a particular kind of
neighbouring sites n with the same distance and orientation.
As each individual starting site m does not have all the neigh-
bouring sites with a 10-fold symmetry, as shown in Fig. 10,
the time averaged transition rate is multiplied by a numerical
factor Sn/S to account for the probability of finding a starting
site to have the nth kind of neighbours. Here Sn is the num-
ber of sites having the nth kind of neighbours and S is the total
number of sites. The quantities in Eqs. (26) and (27), including
Mm ,n, Mm, Γm, Sn, and S, can all be measured directly from
the particle trajectories.

The detailed transition dynamics is investigated by exam-
ining the local transition rates of the top six most abundant
local structural configurations on the quasi-crystalline sub-
strate. Figure 12 shows the six vertex configurations and their
transition rates to the neighbouring sites. The mean transition

time (Γn)
−1

is related to the distance∆Rn between the traps. As
the energy barrier Eb for sample S1 is rather small ('1 kBT ), the
transition time is determined primarily by the travelling time
between the two traps. A further travelling distance results in
a longer transition time because the particle needs a longer
time to diffuse to a further distance, which suggests that the
transition time goes as ∆R2

n. In addition, the traps have a finite
size, so that the angle of coverage of a targeting trap is pro-
portional to ∆R−1

n , which gives rise to a smaller probability
for the particle to arrive at a further targeting trap. Combin-

ing these two effects, we find the mean transition time (Γn)
−1

to be proportional to ∆R3
n. The transition times (Γn)

−1
shown

in Fig. 12 are measured via Eq. (26) and averaged over all
the rotational or/and mirroring symmetric vertices. Within the

experimental uncertainties of .14%, the measured (Γn)
−1

is
approximately the same for all the transitions with the same
distance regardless of their detailed configurations. For the
three nearest transitions among the six most abundant vertices
as shown in Fig. 12, their transition distances are, respectively,

`h, 1.618`h, and 1.902`h. The measured transition times (Γn)
−1

FIG. 12. Measured mean transition times (Γn)
−1

(numbers marked in sec-
onds) of a selected set of paths in sample S1. The six vertices listed here have
the largest population among the 12 vertices as shown in Fig. 2(b).
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FIG. 13. Comparison between the calculated long-time diffusion coefficients,
(DL)B using Eq. (16) and (DL)A using Eq. (23), for five colloidal samples. The
error bars show the experimental uncertainties in determining the values of
(DL)B. The solid line shows the equation (DL)B = (DL)A.

for these three distances are around 110 s, 388 s, and 677 s,
respectively, which agree approximately with the relation,

(Γn)
−1
∝ ∆R3

n, as discussed above.
With the measured ∆Rn and 〈Γm,n〉m, we now can use

Eq. (16) to calculate (DL)B. Because the azimuthally symmet-
ric neighbours have the same transition distance, they can be
counted together without changing the final result of Eq. (16).
Therefore, we carry out the summation over n in Eq. (16) first
along the azimuthal direction, which leads to a summation of
〈Γm,n〉m over the nth shell of the nearest neighbours with the
same distance ∆Rn, followed by a sum over all the distances
∆Rn, which are shown in Fig. 11. Figure 13 shows a compar-
ison between the calculated long-time diffusion coefficients,
(DL)B using Eq. (16) and (DL)A using Eq. (23), for five col-
loidal samples. It is seen that the calculated (DL)B is in good
agreement with (DL)A.

V. SUMMARY

In this work, we have studied how an array of quasicrys-
talline traps affect the diffusive motion of non-interacting silica
spheres. We obtained a large volume of single particle trajec-
tories for five samples with different particle diameters dp and
different quasicrystalline substrates with varying hole diame-
ters dh and shortest distances `h between the holes (see Table I).
The particle trajectories show two distinct states: a trapped
state when the particles are inside the holes and a free-diffusion
state when they are outside the holes. From the measured par-
ticle trajectories, we also obtained the potential U(x, y) of the
trapping holes felt by the particles and the barrier height Eb of
the traps is found to be in the range 1-6 kBT.

To describe the colloidal diffusion between the two states,
we measured the histograms, H(t1) of the dwell time t1 in
the trapped state and H(t0) of the dwell time t0 in the free-
diffusion state, and the mean squared displacement (MSD)
〈∆r2(τ)〉 in the two states, from which we obtained the free
diffusion coefficient D0 and trap size r1. The measured MSD
curves of the full trajectories for different samples exhibit a
dual-crossover behaviour with an initial short-time diffusion
followed by a crossover to the subdiffusion regime caused
by temporary trapping of the particles by the holes on the
substrate. When the delay time τ becomes longer than the

dwell time t1, the particles on average have escaped from
the potential traps and their motion is changed back to dif-
fusion again with the measured MSD curves being linear in
τ, from which we obtained the long-time diffusion coefficient
DL.

Two theoretical models were developed to describe the
long-time diffusion of the colloidal particles. The first model
considers the particle motion in the two states as two diffu-
sion processes with different diffusion coefficients, and the
spatial arrangement of the traps is ignored by assuming that
the transition rates between the two states are constant over
the entire space. By solving the coupled diffusion equations,
we obtained an analytical solution of the long-time diffusion
coefficient (DL)A [given in Eq. (23)], which is found in good
agreement with the measured DL.

The second model considers the particle motion as a hop-
ping on a quasicrystalline network. Because every site in a
quasicrystal is different from each other,27 it is difficult to
have an exact solution for this model. Nonetheless, we find
that by taking an average over all the starting sites, the mea-
sured transition probability density function P(∆r(τ)|R0) has
10-fold rotational symmetry [Fig. 10(a)], which is directly
linked to the quasicrystalline structure of the substrate. By
applying this averaging approach to the transition rate Γm,n, we
obtained an analytical solution of the long-time diffusion coef-
ficient (DL)B [given in Eq. (16)], which is in good agreement
with both the calculated (DL)A based on the first model and
measured DL.

Both models are valid in the long-time regime when the
particles travel a distance longer than the mean separation
between the nearest traps, so that their dynamics becomes sta-
tistically homogeneous. Under this circumstance, our coarse-
grained approach provides a useful way to describe the long-
time diffusion using the characteristic local properties of the
diffusing particles, such as their local diffusion coefficients
or transition rates, which can be accurately measured in the
experiment. These two models can also be generalized to the
situations with periodic or even randomly distributed traps,
so long as the distribution of the traps is homogeneous. But
in general one of the models may work better than the other.
For example, in the situation with densely packed traps, such
as atom diffusion on a solid surface, the traps are contigu-
ous and thus the first model might not be applicable since
there is no clearly free-diffusion state between the traps. At
the other limit of sparse traps, such as diffusion in a homo-
geneous material with a few trapping defects, the transitions
between traps may not be easily quantified as simple Pois-
son jumps with a constant transition rate. In this case, the first
model is more suitable than the second model. Overall, this
study provides new insights into our general understanding
and analysis techniques for colloidal diffusion over complex
potential landscapes.
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