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Measured Thermal Dissipation Field in Turbulent Rayleigh-Bénard Convection
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The time-averaged local thermal dissipation rate €y(r) in turbulent convection is obtained from direct
measurements of the temperature gradient vector in a cylindrical cell filled with water. It is found that
€y(r) contains two contributions. One is generated by thermal plumes, present mainly in the plume-
dominated bulk region, and decreases with increasing Rayleigh number Ra. The other contribution comes
from the mean temperature gradient, being concentrated in the thermal boundary layers, and increases
with Ra. The experiment thus provides a new physical picture about the thermal dissipation field in

turbulent convection.
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Turbulent Rayleigh-Bénard convection in a fluid layer
confined between two horizontal plates of separation H
occurs when the Rayleigh number Ra becomes sufficiently
large. Here Ra is defined as Ra = agATH?/(vk), where g
is the gravitational acceleration, AT is the temperature
difference between the lower heated and upper cooled
plates, and @, v, and k are, respectively, the thermal
expansion coefficient, the kinematic viscosity, and the
thermal diffusivity of the convecting fluid. An important
issue that has been under intensive experimental and theo-
retical scrutiny in recent years is to understand how heat is
transported vertically through the convection cell [1,2]. A
large number of heat transport measurements have been
carried out in various convecting fluids with wide parame-
ter range and great precision [3]. These measurements shed
new light on the mechanism of heat transport and have
stimulated considerable theoretical efforts, aimed at ex-
plaining the functional form of the measured Nusselt num-
ber Nu(Ra, Pr) (normalized heat flux) as a function of two
experimental control parameters: Ra and the Prandtl num-
ber Pr= v/k.

An quantity that is closely connected to Nu(Ra, Pr) is the
thermal dissipation field e;(r, 1) = x | VT(r, t) |> , where
VT(r, 1) is the temperature gradient field. The determina-
tion of er(r, ) involves simultaneous measurement of
three components of VT(r, r). Experimental studies of
scalar dissipation fields have been carried out in turbulent
flows [4], in which temperature (or concentration of a
contaminant) is a passive scalar. In this case, e;(r, f) mea-
sures a mixing rate, at which fluctuations of T (or T?) are
destroyed. For thermal convection, however, temperature
is an active scalar which drives the convective flow. In this
case, €7(r, 1) is directly linked to the local dynamics of the
flow and one finds [2] {(ey(r, 7))y, = Nu(Ra, Pr), where
ey(r, t) = e7(r, 1) /[K(AT/H)?] is the normalized thermal
dissipation field, and ...)y , represents averages over the
fluid volume V and time r.

The theory by Grossmann and Lohse (GL) [2,5] explains
the scaling behavior of Nu(Ra, Pr) by a decomposition of
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en(r) = (en(r, 1)), into two parts. In one scenario [2],
eyn(r) is decomposed into the boundary-layer and bulk
contributions, which have different scaling behavior with
varying Ra and Pr. More recently, a second scenario was
proposed [5] with €,(r) being decomposed into two differ-
ent contributions: thermal plumes (including the boundary
layers) and turbulent background. While the two scenarios
involve different physical pictures about the local dynam-
ics of turbulent convection, the calculated Nu(Ra, Pr) using
the two different models turns out to be of the same scaling
form. This suggests that while the GL theory is capable of
providing a correct functional form of Nu(Ra, Pr) for a
large number of transport measurements [3], the micro-
scopic mechanism of heat transport and its connection to
the local dynamics of turbulent convection still remain
illusive.

In this Letter, we report direct measurements of ey(r, )
over varying Rayleigh numbers and spatial positions r
across the convection cell. Four identical thermistors are
used to make a small local temperature gradient probe. One
of the thermistors is placed at the origin, labeled as T|,, and
the other three are arranged along the x, y, and z axes,
respectively. By simultaneously measuring the four tem-
perature signals, we obtain the three temperature gradient
components 87;/8¢€, where 8T, =T; — Ty (i = x, y, z) is
the temperature difference between a pair of the thermis-
tors with separation 6¢. Two temperature gradient probes
are used in the experiment. One consists of four preas-
sembled thermistors with 0.17 mm in diameter and 6¢ =
0.8 = 0.1 mm. This probe is used to measure the spatial
distribution of ey(r) at fixed values of Ra and its spatial
resolution 6¢ is comparable to the thermal boundary-layer
thickness & (=~ 0.8 mm at Ra = 3.6 X 10°), which is the
smallest length scale in turbulent convection. The second
probe is made of four smaller thermistor beads of 0.11 mm
in diameter and is assembled in our own lab. It has a higher
spatial resolution with 6¢ = 0.25 = 0.1 mm. This probe is
used to measure the Ra dependence of ey(r). All the
thermistors are calibrated individually with an accuracy
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of ~5 mK for o7;. Each thermistor is connected to an ac
bridge as a resistance arm and four identical lock-in am-
plifiers are used, each operating at a slightly different
reference frequency f, = 1 = 0.2 kHz to avoid cross-talks
between the four signals. The sampling rate is set at 40 Hz.
Typically, we take 2—7 h long time series (~5 X 10° data
points) at each location, ensuring that the statistical aver-
age is adequate. The experiment is conducted in an upright
cylindrical cell filled with water. The inner diameter of the
cell is D = 19 cm and height is H = 20 cm. Other details
about the cell can be found in [6]. The mean temperature of
the bulk fluid is kept at ~30 °C and thus Pr= 5.4.

We first discuss the measurements of ey(r) along the
cell diameter at the midheight of the cell (x axis) and along
the central vertical axis of the cell (z axis), both are in the
rotation plane of the large-scale circulation. From the
definition of ey(r), one finds that ey(r) contains three
contributions, €}/(r) (i = x, y, z), resulting from the three
components of the temperature gradient. Each contribution
can be further decomposed into two terms: €ly(r) =
€,(r) + €4(r), with €, (r) resulting from the mean tem-
perature gradient and 6?(1’) coming from the fluctuations.
As a result, the total dissipation can be written as €y(r) =
€,(r) + €/(r). The inset of Fig. 1(a) shows the measured
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FIG. 1. (a) Measured horizontal profile ef(x) as a function of
x/D. The solid line shows the fitted function, €/(x)=
a+ b(x/D —0.5)* with a =0.56 and b = 74.4. The inset
compares €(x) (diamonds) with €,,(x) (squares) at Ra = 2.7 X
10°. (b) Vertical profile €/(z) as a function of z/H. The inset
shows the same data as a function of z/8. The measurements in
(a) and (b) are made at Ra = 9.2 X 108 (triangles), 2.7 X 10°
(diamonds), and 6.6 X 10° (circles).

€,,(x) (squares) and €(x) (diamonds) as a function of the
normalized horizontal position x/D (x/D = 0.5 at the cell
center). It is seen that €,(x) is negligibly small when
compared with €,(x). The conclusion that €y(r) = €/(r)
is found to be true for all the measurements in the bulk
region outside the thermal boundary layer. Inside the ther-
mal boundary layer, we find €y(r) = €,,(r) [€4(r) is less
than 1.5% of €,,(r)].

Figure 1(a) shows the horizontal profiles of Ef(x) for
three different values of Ra. The measured €/(x) is sym-
metric about the central axis with a minimum value at the
cell center and increases sharply in the sidewall region, in
which both the local velocity and local convective heat flux
reach maximum [7,8]. The value of €(x) near the sidewall
is ~10 times larger than that at the cell center. The ampli-
tude of the horizontal profile €,(x) decreases slightly with
increasing Ra, but its general shape remains unchanged in
the Ra range studied.

Figure 1(b) shows €/(z) as a function of the normalized
vertical position z/H for three different values of Ra.
Similar to the horizontal scan, the measured €,(z) has a
minimal value at the cell center (z/H = 0.5) and reaches
maximum near the lower conducting plate. When com-
pared with Fig. 1(a), we find that €/(z) increases more
rapidly near the conducting plate. As shown in the inset,
the rise of €(z) takes place mainly in the 1 < z/6 =< 10
region, where 8 = 425 Ra%?% mm [9]. The maximal
value of €,(z) at z/8 =~ 1 is ~140 times larger than the
minimal value at the cell center. Another important feature
shown in the inset is that the rise of €/(z) near the con-
ducting plate scales with &.

Figure 2 shows the measured horizontal profiles e}(x) as
a function of x/D. In the sidewall region, €%(x) is approxi-
mately twice larger than €}(x) and ejyf(x). By carefully
examining the time series data of the local temperature
and temperature gradient, we find that the large value of
ej;(x) comes from fluctuations of the temperature gradient
produced by the rising (or falling) thermal plumes.
Similarly, the vertical scan (not shown) reveals that the
dominant contribution to €(z) is from €%(z), which is
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FIG. 2. Horizontal profiles ej;(x) (squares), e}f'(x) (circles), and
€7(x) (triangles) as a function of x/D at Ra = 2.7 X 10°.
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approximately twice larger than e}‘-(z) and ejc(z) near the
boundary layer.

We now discuss the Ra dependence of ey(r) at several
representative locations in the convection cell. Figure 3(a)
shows € f(r) as a function of Ra at the cell center (circles),
near the sidewall (triangles), and near the lower conducting
plate (diamonds). Because of the large differences in am-
plitude, the values of the circles and triangles are multi-
plied by 200 and 25, respectively, in order to display them
in the same graph. The measured €(r) at the cell center
and near the sidewall is well described by a power law
€7(r) = aRa™# (solid lines) with 8= 0.33 =0.03 for both
sets of the data. The power-law amplitude « for the circles
is 1.9 X 10% and that for the triangles is 1.05 X 10*. The
measured €y(r) near the lower conducting plate first in-
creases with Ra for small values of Ra and then decreases
at larger values of Ra. This is because the measuring
position at small values of Ra is located inside the thermal
boundary layer. As the value of Ra increases, the boundary-
layer thickness decreases and the measuring position
moves outside the boundary layer. The large-Ra portion
of the data can be described by the same power law with
a=2.05X10°> and B8=0.33 (solid line). To obtain the
Ra dependence of €,,(r) inside the boundary layer, we
place the temperature gradient probe even closer to the
lower conduction plate (~0.2 mm above the bottom plate)
and the result is shown in Fig. 3(b). The solid line is a
power-law fit, €,, = 1.1 X 10 2Ra?, with y = 0.63 * 0.05.

Because of finite heat capacity of the conducting plates
and finite spatial resolution of the temperature gradient
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FIG. 3. (a) €/(r) as a function of Ra at the cell center (circles),
near the sidewall (triangles), and near the lower conducting plate
at distance ~1 mm above the bottom plate (diamonds). The
values of the circles and triangles have been multiplied by 200
and 25, respectively. The solid lines show the power-law fits.
(b) Ra dependence of €,(r) inside the thermal boundary layer
(~ 0.2 mm above the bottom plate). The solid line is a power-
law fit, €, = 1.1 X 1072 Ra%%. The dashed line shows
(H/28)* = 5.54 X 1072 Ra%7 (see text).

probe, the obtained value of y may have relatively larger
uncertainties. However, the following physical picture
about the thermal dissipation field in turbulent convection,
which is derived from the above measurements, will not be
affected by these experimental uncertainties. First, the
thermal dissipation field can be divided into two regions.
(i) In the bulk region outside the boundary layers, the
dominant contribution to €y(r) comes from fluctuations
of the local temperature gradient. The dissipation field
€4(r) is generated by the detached thermal plumes and
occupies mainly in the plume-dominated bulk region
near the sidewall and the boundary layers (z/6 > 1).
(ii) Inside the thermal boundary layers (z/6 < 1), the
dominant contribution to €y(r) comes from the mean
temperature gradient in the direction perpendicular to the
conducting surfaces.

While the spatial decomposition ey(r) = €/(r) + €,,(r)
is consistent with the first scenario of the GL theory [2], the
measured Ra dependence of €/(r) and €,,(r) does not agree
with this scenario. It is found that € /(r) throughout the bulk
region scales as Ra~%33, whereas €,,(r) inside the bound-
ary layers scales with Ra differently (e, (r) ~ Ra®%%3). This
Ra dependence has two important implications. First, the
volume average ratio (€(r))y /(€,,(r))y will decrease with
increasing Ra, a trend which agrees with the recent nu-
merical results [10] but is opposite to that given by the first
scenario of the GL theory [2,5]. Second, the measurements
clearly reveal two competing effects of turbulence. On one
hand, temperature fluctuations are destroyed in the bulk
region and their contributions to €y(r) decrease with in-
creasing Ra. On the other hand, the temperature gradient
(and hence the thermal dissipation) is enhanced near the
conducting plates, because of the thinning of the boundary
layers with increasing Ra. These two competing effects
thus suggest that thermal plumes and the boundary layers
are two different dynamic structures and cannot be treated
equally, as suggested by the second scenario of the GL
theory [2,5].

The dashed line in Fig. 3(b) shows the measured
(H/28)* = 5.54 X 1072 Ra®’ [9], which has a larger am-
plitude but smaller exponent when compared with the
measured €, (r). The two curves intersect at Ra, =~ 1.68 X
10!, above which one expects that €y(r) will be domi-
nated by the boundary-layer contributions. Indeed, using
the simple boundary-layer scaling [2,5], one finds that
€,,(r) = (H/28)? [which is an upper bound for €,,(r) with-
out taking fluctuations into account] and thus (e, (r))y =
(H/28)*(26/H) =~ Nu (i.e., the boundary layers account
for all the contributions to Nu). In fact, the recent heat
transport measurements [3] have shown that Nu ~ Ra'/?
for Ra = Ra,, which is a classical scaling based on a
simple boundary-layer argument [1,2]. The Ra depen-
dence of €/(r) and ¢,(r) thus provides a microscopic
explanation to this boundary-layer dominance transition
at Ra = Ra,.

The above boundary-layer scaling arguments, however,
neglect fluctuations of the boundary layer due to the de-
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FIG. 4. Histograms H(e;)/H, as a function of €,/c, at the
cell center. The values of Ra are 9.6 X 10® (squares), 2.8 X 10°
(triangles), and 8.2 X 10° (circles). The solid line shows the
fitted function, H(e;)/Ho = exp[—c(es/o )], with ¢ = 3.9
and d = 0.35. The inset shows the same data as a function of
In(e;/o). The solid line is a fit to the triangles with the log-
normal distribution, H(es)/Hy = Cexp{—[In(e;/0o.) —
m]*/2n%}, where € =0.5, m = —1.4 (mean) and n = 1.37
(standard deviation).

tachment of thermal plumes, which can cause a (momen-
tary) increase of the boundary-layer thickness (mostly
occurring in the corner region of the convection cell
[7,9]), resulting in a slight decrease of the thermal dissipa-
tion inside the boundary layers. The detached thermal
plumes are then transported to and dissipated in the bulk
region by the large-scale flow. As an estimate, we calculate
the spatially averaged value (e/(r)),. By assuming
€¢(r)dr = [ey(x)ey(z)/ €y(0)]2mxdxdz is axially symmet-
ric, we find (e/(r))y = 8.1 at Ra = 2.7 X 10°. This ac-
counts for ~9.7% of the measured Nu at this Ra [9].
Because ef(r) decreases with increasing Ra, the onset of
the Nu ~ Ra'/? scaling at Ra = Ra, may be viewed as a
manifestation of diminishing contribution of ef(r) to the
total dissipation rate.

In addition to the time-averaged properties, we also
study the statistical properties of dissipation fluctuations
€(r, 1). Figure 4 shows the histograms H(e;) at the cell
center. The histograms obtained at different Ra can all be
brought into coincidence, once H(e,) is normalized by its
maximum value H, and € is scaled by its rms value o.
Plots of H(e;)/H, vs €;/0, remain unchanged in the Ra
range studied and only o, changes with Ra. The histo-
grams have a universal form, which can be described by a
stretched exponential function over an amplitude range of
almost five decades (solid curve). The inset shows that
H(e;)/H, can also be described by a log-normal distribu-

tion for fluctuations of In(e;/o) larger than their mean
value m = —1.4 (solid curve). The measured H(e;) near
the sidewall (not shown) is of the same form. Log-normal
distributions have been used to describe the intermittent
nature of viscous dissipation fluctuations [11]. In fact, the
cascade picture for the viscous dissipation field with rare
localized regions of strong and/or weak energy dissipations
may also apply to the thermal dissipation field in turbulent
convection. Such localized regions in thermal convection
can be naturally identified as thermal plumes, as evidenced
by our finding that €/(r) is dominated by contributions
from the plumes. It was also shown recently [12] that both
the size and the “‘heat content” of thermal plumes exhibit
log-normal distributions.
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