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The sedimentation of hard spheres in a Newtonian solvent is studied as a function of Péclet number in the
low-concentration limit. Two functional forms for the sedimentation velocity as a function of particle concen-
tration are realized in the limit of high and low Péclet numbers. We argue that a more ordered phase occurs for
large Péclet numbers. Measurements of settling in sheared suspensions support these contentions. Recent
explanations of sedimentation in suspensions are examined in light of these results.
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I. INTRODUCTION

The sedimentation of a collection of uniformly sized
spheres in a Newtonian solvent represents one of the sim-
plest nonequilibrium processes. Sedimentation has long been
recognized as a medical diagnostic tool �1� and as an analytic
tool to determine macromolecular dimensions �2�. These
techniques typically determine macromolecular dimensions
using the Stokes velocity U0=2��ga2 / �9�� for sedimenta-
tion measurements in the limit of infinite dilution. Here a is
the sphere radius, � is the solvent viscosity, g is the accel-
eration of gravity, and �� is the particle-solvent density dif-
ference. Batchelor �3� determined the first-order concentra-
tion correction to the Stokes velocity. He assumed �i� a low
particle Reynolds number �or the neglect of inertia�, �ii� two-
body hydrodynamic interactions, �iii� a random particle dis-
tribution in space, and �iv� the system size infinite in the
direction transverse to the settling. The result is given in
terms of the particle pair correlation function g�r� and the
particle volume fraction �:

U = U0�1 − �5 + ���� ,

� = 3�
2

�

x�1 − g�x��dx +
15

4
�

2

� g�x�
x2 dx , �1�

where x=r /a with r being the interparticle separation. For a
dilute hard-sphere interaction, the integrations are readily
performed to find

U = U0�1 − 6.55� + ¯ � . �2�

Direct particle interactions influence the form of the pair dis-
tribution function g�r�. A repulsive interaction between par-
ticles decreases the sedimentation velocity U, while an at-
tractive interaction increases the sedimentation velocity
compared to the hard-sphere result given in Eq. �2�. Mazur
and van Saarloos �4� generalized the Batchelor result to
larger particle concentrations. Experimentally the concentra-
tion dependence of the sedimentation velocity for hard
spheres is known �5,6�.

Recent measurements �7� of sedimentation in dilute sus-
pensions of charged spheres produced a different functional
form from that given in Eq. �2�. The experimental results
produce the following “nonanalytic” form:

U = U0�1 − k�1/3 + ¯ � , �3�

where k�2.8. Thies-Weesie et al. explain the above nonana-
lytic form using the rescaled mean spherical approximation
�RMSA� pair distribution function for a screened Coulomb
interaction between the charged particles. While they utilize
the relationship between diffusion and sedimentation to pre-
dict sedimentation velocities, the same results can also be
obtained using the Batchelor formalism. Intuitively, the re-
pulsive charge interaction between spheres is so strong that
the spheres maintain as large a separation from one another
as possible. Under these conditions, the position of the pri-
mary maximum in the pair distribution function scales as the
mean particle separation, ��a�−1/3. This unanticipated con-
centration dependence in the pair distribution function modi-
fies the concentration dependence given in Eq. �2� to produce
the form in Eq. �3�.

While Batchelor produced the result given in Eq. �2� for a
dilute random mixture of hard spheres, the prediction for a
random array of fixed spheres gives �8–11�

U = U0�1 − k̃�1/2 + ¯ � , �4�

and for a fixed array of ordered spheres the result is identical
to Eq. �3� with the value of k depending on the crystal struc-
ture �10,12–14�. Thies-Weesie et al. �7� provided intuition
for these results: the change in concentration dependence go-
ing from Eq. �2� to Eq. �4� and to Eq. �3� “is due to the
successive switching off of Brownian motion and the posi-
tioning of spheres on an ordered array. Each step deprives
particles of possibilities to ‘screen’ each other from the back-
flow and hence increases the friction per particle.”

Some time ago, Oliver �15� compiled data for the sedi-
mentation velocity measured for dilute suspensions of
spheres larger than those quoted above. Remarkably these
suspensions produced the same concentration dependence as
that given in Eq. �3�. Oliver rationalized this concentration
dependence by arguing that the interparticle separation is
governed, not by the particle diameter, but again by the re-
lationship ��a�−1/3. The particles find themselves as far
away from one another as possible. But Oliver gives no
mechanism producing this order. Presumably these large par-
ticles are hard spheres with little direct interaction, as com-
pared to the charged spheres discussed above. Surely these
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dilute suspensions are not crystalline arrays but are “random”
distributions of freely moving hard spheres.

Systems composed of larger or more dense hard spheres
exhibit a variety of strange or seemingly contradictory be-
havior. Tory et al. �16� presented a variety of observations
for monodisperse particle suspensions that demonstrate this
remarkable complexity of behavior. The suspension-
supernatant interface becomes diffuse in dilute suspensions
and falls with a rate that is remarkably constant and less than
the Stokes velocity U0 �15,17–19�. The interior of the sus-
pension shows large particle velocity variation up to 4 times
faster than the mean settling velocity �15,17,20–23�. Large
clusters of spheres settle more rapidly with fluid flowing
around rather than through them �20–22�. The variance of
particle velocities increases rapidly with volume fraction in
the range from 10−3 to 10−2 �20–22,24� and as the container
to particle size ratio increases �17�. Similarly, the mean in-
ternal settling velocity increases with volume fraction and
the container to particle size ratio. The mean internal velocity
is greater than the Stokes velocity and hence is also greater
than the suspension interface velocity �17,20,21,24�. The
volume fraction of the particles evidences a gradient at the
suspension-supernatant interface. This gradient grows with
time so that the interface becomes less distinct �19�.

In addition to the study of mean settling velocities, veloc-
ity fluctuations received renewed and intense attention after
Calflisch and Luke �25� showed theoretically using the
Batchelor assumptions that the velocity fluctuations depend
on the linear dimension of the container and grow without
limit as the sample container grows to infinite size. The ve-
locity fluctuations have been studied experimentally �26–32�
and theoretically �20,33–35� and by computer simulation
�36–40�. Experiments have not yet resolved whether the ve-
locity fluctuations can reach a steady state independent of
container size �27,29� or continue to evolve �31,41�. Theo-
retically, it is recognized that horizontal boundaries at the top
and bottom of a suspension and the presence of the
suspension-supernatant boundary strongly influence the time
evolution of velocity fluctuations. From computer simula-
tions Nguyen and Ladd �42� argue that the suspension be-
comes more uniform as large-scale particle density fluctua-
tions rise or sink out of the suspension. As the density
fluctuations drain out, the velocity fluctuations decrease in
magnitude. Alternatively, Mucha et al. �43� argue that veloc-
ity fluctuations decrease in magnitude as the suspension be-
comes stratified. The stratification, however slight, stabilizes
the movement of density fluctuations and suppresses velocity
fluctuations.

In the experiment presented here, we measure the mean
sedimentation velocity of monodisperse suspensions of hard
spheres as a function of the Péclet number, which character-
izes the strength of convection to that of diffusion. When the
Péclet number is small, Brownian motion is significant and
the particle configurations are continuously randomized,
such that the Batchelor result is expected to hold. When the
Péclet number is large, convection dominates, and for rea-
sons described above the suspension becomes more uniform
or stratified as compared to a random system. This should be
evident in the mean settling velocity as well as in velocity
fluctuations. Care is taken to eliminate any direct interaction

between particles to avoid the effect of the screened Cou-
lomb potential for charged particles, as measured by Thies-
Weesie et al. �7�. To further verify the thesis that particle
ordering produces the nonanalytic concentration dependence,
new sedimentation measurements are made for suspensions
undergoing a simple shear flow, which is applied to destroy
local and global interparticle structures.

II. EXPERIMENT

A. Measurement of the mean settling velocity

Five polystyrene particle samples of different sizes are
used in the experiment. They were purchased from Bangs
Laboratories Inc. �Dynaspheres� and are suspended in water.
In Table I we give the values of the radius a and the Péclet
number Pe of each particle sample. The values of a are pro-
vided by the manufacturer. The polydispersity �ratio of the
standard deviation to the mean size� of each sample is 2% or
less. The Péclet number is given by Pe=aU0 /D0
= �4� /3���ga4 / �kBT�, where D0=kBT / �6��a� is the Stokes-
Einstein diffusion constant for individual particles. The Pé-
clet number measures the importance of convection com-
pared to diffusion. Because the particles as received are
charge stabilized against aggregation by added surfactant,
aliquots of different volume fraction particles are prepared
using Barnsted de-ionized water �10 M	� with added so-
dium chloride �NaCl� to screen the interparticle charge inter-
actions and sodium dodecylsulphate �SDS, 0.05% by weight�
to maintain charge stabilization, albeit at very small screen-
ing lengths.

The suspension settling velocity was measured, and a
known amount of salt was added. The settling velocity was
remeasured, correcting for changes in the solvent density.
The process was repeated until the measured settling rates
saturated. For salt concentrations 0.1 M and greater, the mea-
sured sedimentation velocities for a given particle size satu-
rated to the values reported here. We conclude that under this
condition the ionic screening is sufficiently great that the
only direct interaction between the particles is well repre-
sented by the hard-sphere interaction potential.

The samples fill 1.5-ml or 5-ml screw-top vials, where the
sample heights are 3.5 cm or 4.5 cm, respectively. Even with
these small volumes the ratio of the smallest cell dimension
to the particle radius is greater than 350. The effect of con-

TABLE I. Particle samples used in the present experiment and
in literature data.

Sample a �
m� Pe Manufacturer and reference

PS1 20.94±0.42 9.8�104 Bangs Laboratories

PS2 10.15±0.2 5.4�103 Bangs Laboratories

PS3 7.45±0.15 1.6�103 Bangs Laboratories

PS4 2.55±0.05 2.1�101 Bangs Laboratories

PS5 1.05±0.02 6.8�10−1 Bangs Laboratories

CP1 0.38±0.01 4.8�10−2 Ref. �50�
PMMA 80.5�103 8.5�107 Ref.�15�
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tainer boundaries on the settling velocity of a sphere at the
center of a spherical volume, having a radius 350 times the
sphere radius, is less than 1% different from the velocity for
an infinite volume �18�. In Bruneau et al. �44�, Eq. �A5�
provides a correction for wall effects by integrating over the
container dimension. The magnitude of this correction is less
than 2% for the largest particles we used and much less than
that for the rest.

The samples are mixed in the sealed vials by slow tum-
bling end over end using a mechanical mixer. They are also
tumbled by hand prior to measurement. After mixing, these
vials are placed in a well stirred water bath to control tem-
perature to 20±0.1 °C, but more importantly to eliminate
temperature gradients �45�. Each particle size series has
samples with volume fraction � in the range from 5�10−5 to
5�10−2. The sedimentation velocity of each sample is deter-
mined by measuring the settling speed of the particle-
supernatant interface, which is measured to within 10 
m
using a cathetometer. Typically five measurements are taken
per sample over a period up to a few hours. All height versus
time measurements show linear dependence �R2�0.99� with
typical precision of �5% for the fitted slope from the re-
peated measurements.

We determine the density of polystyrene particles by mea-
suring the sedimentation velocity of dilute samples in known
mixtures of D2O and H2O, the former having a density
greater than the particles and the latter a density less than the
particles. For a mixture of solvents corresponding to density
match with the particles, the sedimentation velocity is zero.
From the sedimentation measurements in mixtures of differ-
ent D2O mass fraction, we find that the density match occurs
at the D2O mass fraction of 0.5066 and corresponds to a
particle density �p=1.052 g/cm3, assuming volume conser-
vation on mixing the two forms of water. This value of �p
agrees well with the literature value for polystyrene latex
spheres. Pyncometer measurements give the densities of
various salt, soap, and water mixtures used in the experi-
ment. These values are used in the calculation of the Péclet
numbers shown in Table I.

B. Measurement of the mean settling velocity under a shear

Polystyrene particles having a radius a=10.15 
m �PS2
in Table I� are suspended at the volume fraction �=5
�10−3 in water with added NaCl and SDS as described
above. The suspension is contained in a Couette shear cell
�46�. The shear cell is composed of two concentric cylinders.
The outer radius of the inner cylinder is R1=1.45 cm, and the
gap between the cylinders is h=0.58 cm. The height of the
sample is 4.5 cm. The inner cylinder is powered by a step-
ping motor having 200 steps per revolution with the pulse
rate under software control. The rotation is smooth for large
angular frequencies, but is a pulsed motion at low rates of
rotation. Therefore, data at selected low rotation rates are
reproduced with a continuously driven dc motor. The shear
rate varies across the gap, and we give the rate at the inner
cylinder wall. Because the inner wall is moving, the suspen-
sion is subject to the Taylor-Couette instability �47�. The
critical rotation rate for the onset of the instability is 	c

=41.3 / �h3/2R2
1/2�, where h=R2−R1 and  is the kinematic

viscosity of the fluid. For our cell with inner radius R1
=1.45 cm and outer radius R2=2.03 cm, we have 	c
=0.67 rad/s. We do in fact observe the onset of this instabil-
ity at the predicted value of 	c. The interface between the
settling suspension and clear supernatant above tips either
towards the inner or outer cylinder as it passes through dif-
ferent portions of the convective rolls. But for sufficiently
small rotation rates, the interface remains flat, albeit a sensi-
tive indicator of convective motion.

The inner cylinder rests on a liquid mercury seal to ex-
clude the suspension from the region beneath the inner cyl-
inder. The mercury seal allows free rotation of the inner cyl-
inder. Without the mercury seal, the suspension becomes
unstable while settling. As the particles settle away from the
bottom of the inner cylinder, a solvent bubble develops in
contact with the cylinder end. The bubble eventually creeps
up the vertical cylinder walls and makes the suspension un-
stable. The whole shear cell is immersed in a well stirred
water bath to eliminate convection due to temperature gradi-
ents. The temperature is controlled to within 0.1 °C for the
duration of the measurements. Samples in the shear cell are
mixed by raising the inner cylinder out from the sample and
lowering back into the sample several times prior to mea-
surement. Convection and turbulence mix the sample. The
suspension height is monitored as a function of time to
within 10 
m using a cathetometer.

The interface between the sedimenting suspension and su-
pernatant becomes more diffuse with increasing hydrody-
namic diffusion and polydispersity. The interface also be-
comes more diffuse in time with hydrodynamic diffusion
being more dominant at early times �19�. The reduced hydro-

dynamic diffusion constant D̂=Dh / �U0a� depends on the
volume fraction and has a value typically greater than unity
and less than 15. For volume fractions less than 0.01 it is
essentially unity �19�. As a result the diffusion constant in the

dimensionless diffusion equation becomes D̂a /H0 or a /H0 at
small volume fractions. The interface spreading increases
with increasing particle radius at fixed sample height H0.

In determining the settling velocity of the samples, we
made direct visual observations of the interface rather than
light transmission measurements �19,48�. However, we re-
stricted our measurements to the initial settling process in the
upper quarter of the sample containers. Observation times
were adjusted to account for the different settling rates. In
this region the interface is the least diffuse and our measure-
ments produce linear plots of interface height versus time to
a high degree of precision. Numerically integrating the di-
mensionless drift-diffusion equation, using unity for the re-
duced hydrodynamic diffusion constant, indicates insignifi-
cant interface spreading �less than a few percent of the
height� for all but the largest Pe value sample measured.

III. EXPERIMENTAL RESULTS

Figure 1 presents the measured sedimentation velocity U
normalized by the Stokes velocity U0. The solvent density is
corrected for the amount of added salt using standard tables

SEDIMENTATION, PECLET NUMBER, AND… PHYSICAL REVIEW E 76, 056302 �2007�

056302-3



�49�. In addition, literature data are included for the lowest
�50� and highest �15� Péclet numbers. The lowest Pe system
�Pe=4.8�10−2� is a suspension of 0.38-
m-radius hard
spheres made of a copolymer core of methylmethacrylate
and trifluoroethylacrylate stabilized by a poly-12-
hydroxystearic acid coating and suspended in cis-decaline.
The largest Pe sample �Pe=8.5�107� is comprised of Kal-
lodoc �polymethylmethacrylate� spheres with a mean radius
a=80.5 mm in mixtures of glycerol and water. The large Pe
particles settle more slowly compared to the smaller Pe par-
ticles. In the data presented here, the salt concentration is
order 0.1 M, giving a Debye screening length less than
10 nm. The polystyrene particles, though charged to prevent
coagulation, are highly screened and should behave effec-
tively as hard spheres. Evidently the data shown in Fig. 1
separate into two different curves. For data with Pe�1, the
approximation U /U0= �1−��6.55 �solid line� represents the
data well and reduces to the Batchelor prediction U /U0�1
−6.55� at small volume fractions. �We notice that the ap-
proximation U /U0= �1−��5.55 fits the high-� portion of the
data slightly better and was also used in the literature �51�.�
On the other hand, for Pe�1 the form U /U0=1−1.2�1/3

gives a better fit to the data at small values of �.
To test the possibility that ordering influences the settling

rate for large Pe suspensions, we perform sedimentation
measurements on selected suspensions subjected to a shear
flow. A shear directed perpendicular to the direction of set-
tling will advect the particles along streamlines perpendicu-
lar to the direction of settling, moving some particles closer
together �along the direction of compression� and pulling
other particles further apart �along the direction of exten-
sion�. In general, a horizontal shear flow should only influ-
ence the interparticle ordering, but not mix the suspension
vertically; any stratification in the suspension should remain.

Figure 2 shows the measured sedimentation velocity
U /U0 as a function of cylinder rotation rate �or shear rate� 	

at fixed �=5�10−3. It is seen that the measured U /U0 for
the PS2 particles increases with increasing shear rate 	. The
lower curve for the unscreened particle suspension indicates
that there are significant direct repulsions between the par-
ticles. However, adding NaCl to obtain a 0.06-M concentra-
tion produces results which have saturated and change no
further when the salt concentration is increased to 0.12 M.
With Debye screening length less than 10 nm, the particles
are well screened and act as hard spheres. The measured
U /U0 increases from the stationary suspension value �at 	
=0� to nearly the value predicted by Batchelor for low-Pe
suspensions. This transition is consistent with the hypothesis
that the particle ordering during the sedimentation in high-Pe
suspensions is not random. Presumably the shear flow pro-
duces a more random structure to obtain nearly the Batchelor
result. This is achieved when the shear rate 	 becomes larger
than the relaxation rate 1 /� of the system to the nonrandom
quiescent suspension structure. The value of the relaxation
time � is determined by fitting the data in Fig. 2 to the ex-
ponential form, U /U0=��1−� exp�−�	��, giving �=12 s
�solid curve�. This time is comparable to that taken for a
suspended particle to settle on the order of an interparticle
spacing �, a sufficient distance to induce some degree of
collective ordering in the absence of diffusion.

IV. DISCUSSION

The literature includes measurements of suspension set-
tling velocity for a range of Pe values. For large Pe, both
linear �Eq. �2�� �44,52,53� and nonanalytic �Eq. �3�� �7,15�
results are reported. Oliver �15� cites the work of Hanratty
and Bandukwala �52�, which shows a linear volume fraction
dependence as compared to a wealth of other data, cited by
Oliver, demonstrating a nonanalytic volume fraction depen-
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1.001.00
U

/U
0

φ

FIG. 1. Normalized sedimentation velocity U /U0 as a function
of volume fraction � for hard spheres with the Péclet number Pe
=4.8�10−2 �solid squares�, 6.8�10−1 �solid circles�, 2.1�101

�stars�, 1.6�103 �open triangles�, 5.4�103 �open diamonds�, 9.8
�104 �open squares�, and 8.5�107 �open circles�. The solid line
shows the function U /U0= �1−��6.55, and the dashed line shows the
function U /U0=1−1.2�1/3.
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FIG. 2. Normalized sedimentation velocity U /U0 as a function
of cylinder rotation rate 	. The measurements are made at three salt
�NaCl� concentrations: 0 M �unscreened particles, circles�, 0.06 M
�squares�, and 0.12 M �triangles�. The diamonds are obtained using
the continuous dc motor. The solid curve shows the fitted function
U /U0=��1−� exp�−�	�� with �=0.88, �=0.12, and �=12 s.
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dence. No quantitative estimate of polydispersity is available
for the Hanratty-Bandukwala data, but the data showing the
nonanalytic volume fraction dependence evidence low poly-
dispersity on the order of 5%. Bruneau et al. �44� perform
x-ray transmission measurements of settling of polydisperse
suspensions and mixtures. The minimum volume fraction is
0.1%, and the data are characterized by a linear function in
volume fraction with a coefficient 5.3. This is near the ex-
pected value for polydisperse suspensions �51�. However, the
samples have large polydispersity. Similarly, Ham and
Homsy �53� make tracer diffusion-settling measurements
within settling suspensions with volume fractions greater
than 2.5%. They observe large velocity fluctuations and char-
acterize data by a linear volume fraction theory with a coef-
ficient 4. Like Bruneau et al., the samples had a large poly-
dispersity with particle sizes varied on the order of 20% of
the mean value. We conclude that large polydispersity may
hinder subtle structure formation due to the increased inter-
nal chaos produced by particle size separation and produce a
linear volume fraction dependence for the settling velocity.

The introduction presents two functional forms for the
normalized sedimentation velocity U /U0 at low volume frac-
tions. The Batchelor form given in Eq. �2� is realized for
Péclet number less than unity, small Reynolds number, and
hard-sphere interactions. The Brownian motion of the par-
ticles keeps particles randomly positioned. On the other
hand, the “nonanalytic” form given in Eq. �3� obtains for
Péclet number greater than unity or for Péclet number less
than unity, if the particle direct interaction is strong and long
ranged such as that given by an appropriate screened Cou-
lomb interaction �7,54�. Here the particles are held as far
from one another as possible without forming a crystal struc-
ture. The results for the strongly interacting system suggest
that during the sedimentation the large Pe suspensions are
similarly ordered. Indeed, Oliver �15� suggested such order-
ing some 40 years earlier. However, the nature and mecha-
nism of ordering are unclear.

Recent work showed that velocity fluctuations in sedi-
mentation are also related to subtle particle ordering
�30,40,42�. Poisson or purely random fluctuations produce
the largest velocity fluctuations initially. As the velocity fluc-
tuations decrease, the particle occupation statistics deviate
from Poisson and the structure factor S�q� at vanishing wave
number q tends to zero. The suspension becomes more or-
dered, more uniform, on large length scales. Evidently, the
large-scale random fluctuations away from the average par-
ticle concentration fall or rise out of the system.

Mucha et al. rationalize the experimental, theoretical, and
computer simulation results for velocity fluctuations in a re-
cent publication �43�. Non-Poisson occupation statistics play
an essential role. They also postulate a weak concentration
gradient to stabilize concentration fluctuations and suppress
velocity fluctuations �33�. A simple model based on a con-
tinuum hydrodynamic model �43� produces a static structure
factor S�q� for the settling suspension:

S�q� =
Nq2

Dq2 + A�U�/��aq�2 + �a/d�2�
, �5�

where N is the noise strength, D is the diffusivity, A is an
arbitrary constant, � is the vertical concentration gradient, U

is the average settling velocity, � is the initial volume frac-
tion, and a is the particle radius. Stratification introduces
another length scale d, the minimum cell dimension. This
structure factor evidences reduced particle number fluctua-
tions. The pair correlation function g�r� represented by this
structure factor for D=N has the screened Coulomb form

g�r� = 1 +
2�2B�e−�r − e�Br/��

�2r
, �6�

where B=A�U�a2 /D and �=a /d. The screened Coulomb
form in Eq. �6� produces a normalized settling velocity U /U0
like that given in Eq. �4� �54�, but not the experimentally
observed form in Eq. �3�. A comparison of the two forms
with data is shown in Fig. 3. In addition, the assumption of
an extremely weak �possibly not measurable� particle con-
centration gradient may not be justified �55�.

Another model represents the order in the suspension as a
hard-sphere pair correlation function. However, the effective
hard-sphere radius grows with time from the particle size 2a
to a value equal to the interparticle separation, ��a�−1/3,
due to self-cleaning of fluctuations in density. The pair cor-
relation function is taken as

g�r� = H„r − ��t�a�−1/3
… , �7�

where H(r−��t�a�−1/3) is the Heaviside step function and
2�1/3���t��1. With this pair correlation function both the
number fluctuations and the average settling velocity are cal-
culated. Using Eq. �1� we find

U = U0	1 −
3

2
�2�t��1/3 + � −

15

4��t�
�4/3
 . �8�

This equation has the desired volume fraction dependence
with a coefficient 3�2�t� /2 and is presented in Fig. 3 with

10-4 10-3 10-2 10-1 100

10-2

10-1

100

1-
U

/U
0

φ

FIG. 3. Log-log plot of 1−U /U0 versus the volume fraction �.
The velocity data U /U0 used here are the same as those shown in
Fig. 1. The solid line represents 1−U /U0=1− �1−��6.55, while the
dashed line represents 1−U /U0=1.2�1/3. The dotted line shows Eq.

�8� with ��t�=1, and the dot-dashed line shows Eq. �4� with k̃=2
�see text�. The estimated 5% experimental error produces large scat-
ter as 1−U /U0 approaches zero.
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��t�=1 �dotted line�. It is seen that the dotted line overesti-
mates the measured 1−U /U0 slightly. The growth factor ��t�,
of course, depends on the details of the pair correlation func-
tion g�r�. By choosing ��t�=0.9, we find that Eq. �8� fits the
data as well as Eq. �3� does �not shown�.

We have not been able to model the work by Nguyen and
Ladd �42� to produce a normalized sedimentation velocity
U /U0. Felderhof �35� recently published a paper for velocity
fluctuations. This work does not assume a vertically bounded
system and so is quite different from the work presented
here. However, the theory does predict the form in Eq. �3�,
but the coefficient k=0.006 is very small and assumed unob-
servable.

For the occupation statistics, we use the form given by
Lei et al. �30�:

�2

�N�
= 1 +

�

p
� F�r��g�r� − 1�dr , �9�

where �2 / �N�= �N2− �N�2� / �N� is the number fluctuations
normalized by the mean number of particle �N� in the obser-
vation volume V, p= �4� /3�a3 is the particle volume, and
F�r� is a convolution of the observation volume with itself.
We take the observation volume to be simpler than that in the
experiment, a sphere of radius R. Then Eq. �9� produces

�2

�N�
= 1 − �3�t�	1 −

9��t�
16�N�1/3 +

�3�t�
32�N�
 . �10�

Figure 4 compares occupation statistics data of the PS1 par-
ticles obtained by Lei et al. �30� with the form given in Eq.
�10�. Samples are mixed the same way in the mean settling
velocity experiments and in the occupation statistics experi-
ment. The reader should refer to the paper by Lei et al. �30�
for further details. Here ��t� is adjusted between 2�1/3 and 1
to fit the data. While there is a qualitative agreement, the
measured �2 / �N� decays more slowly with �N� than the

theory predicts. This is possibly due to the observation vol-
ume being more pancake shaped than spherical in the experi-
ment. The theory of Mucha et al. �43� fits the number fluc-
tuation data better, though it fails to produce the correct
functional form for the settling velocity. The dashed line rep-
resents the number fluctuations predicted by the structure
factor of Levine et al. �56� using numerical values from the
simulations of Nguyen and Ladd �42�. This structure factor is
related to g�r� in Eq. �9� to obtain the results shown in Fig. 4.

Figure 4 shows that particle ordering and suppression of
density fluctuations in the lower third of the suspension oc-
cur on time scales far longer �by a few orders of magnitude�
than the relaxation time for the interface shown in Fig. 2. To
understand how this time-scale difference may come about,
consider the typical container size concentration fluctuation
due to random positioning of the particles. For the most di-
lute sample �PS1 particles with �=5�10−4�, there are
roughly N=104 particles in a cubic centimeter. Our samples
are typically more than 1 cm3 but 104 is a convenient num-
ber. For random fluctuations in particle placement �Poisson
statistics�, sample size particle concentration variations are
on the order of �N or a �N /N=1% variation in particle con-
centration throughout the volume. It is not much, but this is
what must be smoothed out or settle out to make the sample
more uniform and quench velocity fluctuations. In terms of
concentration change, it is probably not measurable.

However, these small density variations on order of the
sample dimension require time to settle out of the bulk as
observed in Lei et al. �30� As a collective whole, these fluc-
tuations induce large-scale velocity fluctuations �convection�
and are carried out of suspension in advance of the suspen-
sion solvent interface. On the other hand, the moving inter-
face has an advantage that it is not perturbed from above by
such fluctuations and a density gradient, which is the defini-
tion of an interface, quenches rising low-density fluctuations
�33,43� and stabilizes the interface. So there are reasons to
expect the more rapid organization at the interface compared
to the bulk. It is the absence of these fluctuations that leads to
a slower interface sedimentation velocity and absence of ve-
locity fluctuations.

V. CONCLUSION

We have carried out an experimental study of sedimenta-
tion of monodisperse polystyrene latex spheres in an aqueous
solution. Salt is added to the solution so that the charged
polystyrene particles are highly screened and behave effec-
tively as hard spheres. The mean sedimentation velocity is
measured as a function of the particle volume fraction for
suspensions with different Péclet numbers. New sedimenta-
tion measurements are made for selected suspensions under-
going a simple shear flow, which is applied to destroy local
and global interparticle structures. The measurements sup-
port the contention that the high-Pe systems are more or-
dered than the low-Pe systems. The measured concentration
dependence of the mean sedimentation velocity, as a function
of Péclet number, shows that low-Pe systems produce Batch-
elor results with the particle configurations being continually
randomized by Brownian motion. On the other hand, high-Pe
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FIG. 4. Reduced number fluctuations �2 / �N� as a function of the
average number of particles in the test volume, �N�. The measure-
ments were made at different times during the sedimentation: 2 min
�diamonds�, 4 h �squares�, 6 h �triangles�, and 8 h �circles�. The
solid lines are calculated using Eq. �10� with ��t�=0, 0.6, 0.85, and
0.93 from top to bottom, respectively. The dashed line comes from
the work of Nguyen and Ladd �see text�.
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systems demonstrate the “nonanalytic” form given in Eq. �3�,
which is also produced in low-Pe suspensions, but with
strong long-ranged charge interactions. Here Brownian mo-
tion is not sufficient to randomize the inter-particle order.
Evidently the concentration fluctuations above and below the
average exit the system during the sedimentation, leaving the
suspension more uniform. The sedimentation measurements
in suspensions undergoing shear while settling support this
view. Increasing rate of shear disrupts this ordering in the

suspension and produces more rapid settling. The ordering
occurs more rapidly at the upper interface than in the bulk
due, possibly, to other processes active in the interface and
the development of a concentration gradient.
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