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Abstract The recent development of the elliptic model (He,c,(r, 1) = (u(x+ 1. t+ ulx, Hi
etal. Phy. Rev. E, 2006), which predicts that the space-time ou(X+r)oy(X)
correlation functiorC,(r, 7) in a turbulent flow has a scaling

form C,(rg, 0) with rg being a combined space-time separawhereo(x + r) ando(X) are, respectively, the root-mean-
tion involving spatial separatianand time delay, has stim-  square (rms) values of the local velocity at positi@rs and
ulated considerable experiment#iagts aimed at testing the x. For simplicity, we only consider a one-dimensional case
model in various turbulent flows. In this paper, we reviewin Eq. (1), assuming that both the mean flow and its fluctu-
some recent experimental investigations of the space-timagions are along the-direction. One can readily extend the
correlation function in turbulent Rayleigh€Bard convec- definition to three-dimensional flows, in which case the cor-
tion. The experiments conducted affdient representative relation function becomes a tensor field. Understanding the
locations in the convection cell confirmed the predictions ofelationship between space and time in the velocity correla-
the elliptic model for the velocity field and passive scalartion functionCy(r,7) (or a passive-scalar correlation func-
field, such as local temperature and shadowgraph imagd#n) has long been a fundamental issue in statistical theories
The understanding of the functional form Gf(r,7) has a of small-scale turbulence and is also a common problem in
wide variety of applications in the analysis of experimentathe general areas of fluid dynamics, non-equilibrium statisti-
and numerical data and in the study of the statistical propegal physics, geophysics and astrophysics [1-3].

ties of small-scale turbulence. A few examples are discussed
in the review. In theories of turbulence, the equal-time correlation

functionCy(r, 0) or its Fourier transforni, (k) is often used
Keywords Turbulent Rayleigh—-Bnard convectionElliptic ~ to describe the spectrum of turbulent kinetic energy in dif-

1)

model- Space-time correlations ferent lengthsr or wave numberk. For example, Kol-
_ mogorov’s self-similarity hypothesis [4] predicted that the
1 Introduction wave-number energy spectrugy(k) of local velocity fluc-

. 53 Lo
Fluid turbulence is characterized by a fluctuating velocityf4ations scales agy(k) ~ k %, in the inertial subrange. For
field u(x, t) at positionx and timet. The statistical proper- near-wall turk_JuIence_, the velocity wave-number 1spectrum in
ties ofu(x, t) can be described by the normalized correlatiorin€ log-layer s predicted to have the foriiy(k) ~ k™, based

function at two space-time points separated by a spatial di€" Townsend's attached-eddy hypothesis [5]. Direct mea-
tancer and time delay surement of these quantities, however, is still a challenging

task for experiment. This is partially due to the fact that such
direct measurements require high resolutions both in space
X. He (2, - P. Tong &), and time over a large viewing area and a long measuring pe-
Department of Physics, riod of time. While recent developments of particle image
Hong Kong University of Science and Technology, velocimetry (P1V) allow one to obtain more spatial informa-
Clear Water Bay, Kowloon, Hong Kong, China tion for small-scale flows, time-domain measurements con-
e-ma!h: xiaozhou.he@ds.mpg.de tinue to play a major role in the experimental study of large-
e-maib: penger@ust.hk scale flows, such as turbulent jets and wind tunnels [6, 7].

X. He From the time series measurement of the local velocity (or
Max Planck Institute for Dynamics and Self Organization, a passive scalar) at a single or a few spatial positions, one
D-37073 Gdttingen, Germany can obtain the temporal correlation functi@q(0, ) or its
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Fourier transform, the frequency spectrity(f). Finding Rayleigh—Eenard convection (RBC) [16-18]. It is applica-
a relationship between space and time, which connects tide only to the time series measurement of local velocities
time-domain results to the theoretical predictions made ibut is not useful for passive scalars [19].

the real space (or in the Fouride() space) is, therefore, of More recently, Zhao and He [20] proposed a model
fundamental interest and practical importance to the study ghowing that the space-time correlation funct@ygr, r) has
fluid turbulence. a scaling formCy(rg, 0) for a stationary and homogenous

In 1938, Taylor first proposed the frozen-flow hypoth-flow with the combined space-time separatignbeing of
esis [8] in that the spatial structures of a turbulent flow fieldhe elliptic form
can be inferreq from _the temporgl fluctuations at a fixeqlé = (r — U7)2 + V272, )
downstream-wise position by a linear transformation be-
tween the spatial separatioand the time delay. The coef- HereU is a characteristic convection velocity proportional to
ficient which links the two quantities is the mean flow veloc-the mean flow velocityJo andV is associated with a random
ity Uo. Taylor’s hypothesis requires a long correlation lengttsweeping velocity proportional to the rms velocity. This
and, thus, is valid only for a special group of flows in whichso-called elliptic model incorporates both Taylor’s frozen-
the mean flow velocityJy is much larger than the velocity flow hypothesis wherV is small and Kraichnan’s random
fluctuations. It was first tested in a grid-generated turbulerfiweeping hypothesis for a homogenous and isotropic turbu-
flow in wind tunnel [8]. After that the Taylor frozen-flow lent flow with U ~ 0. Zhao and He [20, 21] showed that
hypothesis has been widely used in the analysis of statisticle scaling formC,(re, 0) is mathematically exact up to the
properties of the single-point velocity (and passive scalagecond order o€,(r, 7) and numerically demonstrated that
measurements conducted in turbulent wind tunnels and ihalso hold for large values afandr because of the scale-
other flow systems [9, 10]. invariance of the turbulent flow.

For isotropic turbulent flows, where there is no mean The eIIiptic_: model has_stimqlated.considerable experi-
flow (U = 0), the Taylor frozen-flow hypothesis is not ex- mental é¢forts aimed at testing it in various turbulent flows.

pected to be valid. Kraichnan [11] postulated the randorH was first tested in a turbulent RBC experiment using tem-

sweeping hypothesis in that small-scale fluctuations are pa _eratureT(?(,_ H asa passive_sca_lar field [22, 23]. I.t was then
sively swept by large eddies in the flow, so that the flo urther verified in the velocity field [24] and applied to the

micro-structures are statistically independent of the large ea;_hadowgraph image measurements [25] in RBC. More re-

dies. Based on this hypothesis, Tennekes [12] showed thﬁ?m.ly’.the eIIi.ptic model was extended to Lagrangian ve_Io_ci—
the efect of flow fluctuations on the Eulerian freCIuenCyt|eS|n isotropic turbulence [26] and was also used in deriving

spectrum or temporal structure function is to increase adve&heéanergy spegtru? n the'tvr\:ave-n du dn:b er-{requency spglcze?for
tive broadening. In the inertial subrange, the random swee andom sweeping flows with an additional mean speed [27].

ing hypothesis leads to that the Eulerian frequency spectru th's Paper, e review some recer_1t developmgnts n th_e ex-
of local velocity fluctuations has the fory(f) ~ f->/2 perimental investigation of space-time correlation functions
u .

This scaling form is the same as the wave-number spectrum turbulent REC.

Eu(k) predicted by Kolmogorov's 1941 self-similarity hy- 5 pjjintic approximation for space-time correlations
pothesis [4, 13]. Consequently, Kraichnan’s random sweep-
ing hypothesis yields a linear relation between the waven the elliptic model, Zhao and He [20,21] showed that

numberk and frequencyf, or equivalently betweenandr.  for a spatially homogeneous and statistically stationary one-
The codiicient which links the two quantities is the randomdimensional turbulent flow, the first-order terms in the

sweeping velocityry. Taylor-series expansion of the correlation function
For many practical flows of interest, such as turbulent 4C4(0,0)
jets, channel flows and turbulent thermal convection wher€u(r.7) = Cu(0.0) + —2—r

the mean velocityJ, is comparable to the rms velociby,,

neither Taylor’s frozen-flow hypothesis nor Kraichnan'’s ran- +3Cu(0’ 0) ., 9°Cu(0. O)rr

dom sweeping hypothesis holds. Attempts have been made ot aror

to deal with those flows in which the characteristic time as- 1/8°Cy(0,0) , 8°Cy(0,0) ,

sociated with small dissipative eddies is finite but not in- +§< ozt a2 T )+ )

finite, which is required by Taylor’'s frozen-flow hypothe-
sis. With the so-called “local Taylor hypothesis” [14], the
space variablex is connected to time via the equation

vanish. As a result, Eq. (3) can be written as a complete
square form

2
X = u(0, t)dt, where the integrat is chosen to be less Cu(r,7) = C4(0,0) — 1re 4. 4)

0 ey 5
than the largest time associated with the energy containing 24
eddies in the flow. The local Taylor hypothesis was first apwhere the combined space-time separatipris given by

plied to von Karman swirling flow [15] and then to turbulent Eg. (2) andA3 = —(3%Cy(0,0)/dr?)™* is the Taylor micro
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.. - 2
scale. In the above, the two characteristic velocitieand ' 7

V are determined by the second derivative€glr, 7) atthe a b
origin wherea = rg andb = rg/V. WhenV = 0, Eqg. (2) becomes
U= _aZCu(O, O)(BZCU(O, 0))*l 5) r=re+Urn (10)
oror ar? , In this case, the Taylor frozen-flow hypothesis is valid and
and the iso-correlation contours @(r, r) are represented by a
, 82C,(0, 0) {3°Cy(0, 0)\ L , set of straight lines with a slope &f and intercept equal to
e ( o ) _u2 ©6) re[21].

Because the Taylor expansion and flow similarity as-
Evidently, Eq.(4) is valid only for small values of sumption are quite general, the elliptic model is also ex-
andr, as it is a second-order Taylor expansion. Zhao ang@ected to be useful for the study of other space-time func-
He [20, 21] proposed that if a turbulent flow becomes scalétions that are used to describe the statistical properties of
invariant in the inertial range at aféigiently large Reynolds small-scale turbulence. Examples of those space-time func-
numberCy(r, 7) should have a self-similar form tions include higher-order space-time correlation functions,
space-time structure functions, and space-time joint proba-
Culr, 7) = Culre, 0), (7) bility density functions. In this review, WF:a focus oulr attegtion
even for large values afandr. Using the direct numerical 0n the space-time correlation functio@g(r, ) andCs (r, 7).
simulation (DNS) data, Zhao and He [20] verified Eq. (7) in
a turbulent channel flow. It was found that the velodityn

Eq. (2) is associated with the mean flow velodityandV is 0.4
given by
0.2
V = [02 + (Sa0)AV2 (8) )
S 0
whereS is the shear rate of the flow. For turbulent convec- &
tion at the cell center [22] and turbulent pipe flows near the —02f : /
central line, the tern8.q is negligibly small and thus one /
hasV =~ ¢ -04
BecauseC(r, 1) is averaged over the space and time, -5 0 5
the two characteristic velocities are actually the space-time r/mm

averaged velocities. When the mean flow velodity is  Fig.1 Iso-correlation contour plots oEy(r,7) [= Cy(rg,0)] in

much larger than its rms value,, the elliptic model as ther-r plane for diferent values ofg given in Eqg. (2) withU =

described in Egs. (2)—(7) leads to the same result as tHg.0mnys andV = 112mnys. The two stars indicate two spe-

Taylor hypothesis does. For an isotropic random sweesial positions fo, 0) and (Qo); both of them satisfy Eq. (2) for a

ing flow where the flow fluctuations dominate, the ellipticcommon value ofg

model gives the same prediction as that made by Kraichnan’s

random sweeping hypothesis. The elliptic model thus nattd Experimental tests of the elliptic model

rally incorporates both Taylor’s frozen-flow hypothesis and ) )

Kraichnan’s random sweeping hypothesis. It is expected tg-1 Turbulent Rayleigh—&nard convection

be applicable to a large class of turbulent flows which arqurbulent RBC is a model system for the study of convec-

characterized by a combination of mean and rms velocitiestive turbulence [19,28-30]. The convective flow is gener-
Figure 1 shows the iso-correlation contour plots ofated in a confined system between two horizontal plates sep-

Cu(r,7) [= Cu(rg, 0)] in ther— plane for diferent values of arated by a distancke and heated from below in the pres-

re given in Eqg. (2) withU = 140 mmys andV = 11.2mnys.  ence of gravity. The flow properties in RBC are determined

It is seen that the iso-correlation contours appear as a setloy three dimensionless parameters: the Rayleigh number

elliptic curves having the same origin, orientation and asRa = agATL3/v«, the Prandtl numbePr = v/k, and the

pect ratio. For a given value of, the amplitude o€C,(r,7)  aspect ratid” = D/L of the convection cell. Herg is the

for different values of andr satisfying Eqg. (2) remains the gravitational acceleratiom\T is the temperature flference

same, as indicated in Eq. (7). Therefore, Eq. (2) describdsetween the two horizontal plates of lateral dimensinn

the functional form of the iso-correlation contour@f(r,7). ande, v, andk are, respectively, the thermal expansion co-

The aspect ratio and orientation angle of the elliptic contoursfficient, the kinematic viscosity, and the thermatuasivity

are determined by the valuesdfandV [21]. WhenU =0,  of the convecting fluid.

the set of elliptic contours has a standard form of the ellipse ~ When the dimensionless buoyancy forlka is suffi-

with its two major axes coincided with theandr axes, re- ciently large, the fluid close to the heating and cooling plates

spectively. Substituting = 0 into Eq. (2), one finds [23] becomes unstable and moves into the interior of the fluid.
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These active fluid parcels are known as thermal plumegassive scalar at the cell center and near the sidewall, the
When the convection reaches a steady state, the thermamperature space-time correlation functiop(r, ) at the
plumes in thel” ~ 1 cell organize themselves into a singletwo locations is expected to have the same form as that of
large-scale convection roll (also known as the large-scale ciG,(r, 7).

culation, or LSC), which moves from the bottom to the top In the experimentCr(r,7) is obtained from the two-

and vice versa along the sidewall. Such a convective flow iEoint temperature measurement, which are simultaneously
also associated with an inhomogeneous distribution of tuzken by two thermistors of diameter 0.2 mm with a spatial
bulent temperature field. It was found [31, 32] that the temseparatiorr. Details about the temperature measurements
perature dferenceAT across the cell is concentrated mainly haye peen described in Ref. [39]. Near the sidewall, the two
in two thin thermal boundary layers adjacent to the bottomhermistors are placed one above another with the vertical
and top conducting plates. There are only a few percent Qeparation varying from 0 to 16 mm along the downstream
AT dropped across the bulk region of the convecting fluidgjrection. In the central region, one thermistor is fixed at the
Recent experiments [33] revealed that the mean tempergg|| center and the other (mobile) thermistor is placed at the
ture profile across the bulk fluid varies logarithmically alonggame height as the fixed one with a horizontal separation
the vertical direction and is symmetric about the mid-heightre value ofr is varied from 0.1 to 90 mm. All the temper-

plane of the cell. - ature measurements are conducted in the plane of the LSC.
Near the mid height, the logarithmic temperature proGreat care is taken to align the two thermistors at an accuracy

file yields a minimum vertical gradient in the mean temperyetter than 3am. Typically, we take 10 h-long time series

ature, which leads to a negligibly small buoyancy comparegata at each location with a sampling rate of 40 Hz1CP

to the advection by the convective flow. As a result, temperagta| data points) in order to ensure adequate statistics.
ture field around the mid-height of the cell is a passive scalar

to a very good approximation, which has been confirmed lz}goint temperature statistics near the sidewall. Figure 2a

previous studies [18, 34]. Only within the thermal boundar shows the measured probability density function (R{5T)
layers where the buoyancy reaches the maximum and bg; . .

. . .of the normalized temperature fluctuatiafs/o1 near the
comes dominant over the flow advection as the convective

L ; . _sidewall. The measurements are made #edint verti-
flow velocity diminishes because of the non-slip boundarie

S . . .

the temperature behaves like an active scalar[35, 36]. cal Iocatlons. above. the m!d helght. of the cell. Al t.he
The velocity field in ar = 1 convection cell with pdf curves with varying vertical posmpns are well superim-

1x10° < Ra< 1x 10 andPr ~ 5 has been carefully posed with each other over an amplitude range of approxi-

studied previously [37]. In the rotation plane of the I_SC’mater 5 decades. Because the convection cell is tilted by

. mall angle in h a way that th -going large-scal
the flow has a fly wheel structure with a zero mean velocd SMal angie in such a way that the up-going arge-sca’e

ity at the cell center and an increasing mean vertical veIocitfIOW passes through the thermistors, the temperature pdfs

along the horizontal cell diameter at the mid-height. Aftergre all- asymmetric and are skewed toward the posive

reaching its maximum value near the sidewalf05D away Figure 2b shows the position dependence of the measured

from the sidewall), the mean vertical velocity starts to drop<T(X + 1) = TOJX (red solid squares), rms value (x + 1)

quickly and becomes zero at the cell wall because of the noﬁr-ed open squares), and skewn8gbx + 1) (black solid cir-

. o o cles) of the local temperature fluctuations atetient loca-
slip boundary condition. Therefore, the velocity field el onsr near the sidewall. These measurements suggest that
the sidewall at the mid-height is similar to that of a chan- : 99

nel flow with a mean vertical velocitdo and a rms velocity the single-point temperature statistics near the sidewall, as

o = 0.6Ug [37]. In the central region of the cell, on the described by the temperature gefsT), local temperature

other hand, the flow is close to a homogeneous and isotrong”atlomT(X +1) — T(9), rms valueor(x + 1) and skew-

wrbulent flow [38] with the mean velocity, = 0. At these nessSy(x + r), are all homogeneous and independent of the

two locations, the Taylor frozen-flow hypothesis is not exeasunng positiom up to around 14 mm (vertical dashed

pected to hold. line). )
Figure 3a shows the measured temporal auto-

3.2 Temperature space-time correlations correlation functiorCr (0, 7) of temperature fluctuations near

Similar to Eq. (1), the normalized correlation function ofthe sidewall with varying vertical positions It is seen that
temperature fluctuations at two space-time points separatéite measure@r (0, 7) remains unchanged with the measur-

by a spatial distanceand time delay is defined as ing positionr. Without any slow drift in the temperature
data, all the correlation curves decay to O whan~ 10s.
OT(X+1,t+7)0T (X )

, (11)  Figure 3b shows the magnified plots in Fig. 3a for small val-
or(x+r)or(X) ues ofr. All the the measure@r (0, 7)’s are symmetric about
where(---); denotes a time averagé] = T — (T), and 1 =0, as expected for stationary temperature fluctuations. In
or(x+r)andor(X) are, respectively, the rms values of thethe range ofr| < 0.1s, the measure@+ (0, r) can be well de-
local temperature fluctuations at positions r andx. Be-  scribed by a parabola functio@; (0,7) = 1 - (1/2)(r/1.)?,
cause the temperature at the cell mid-height behaves likevath A, being a decay time in analogous to Taylor's micro-

We first examine the spatial dependence of the single-

CT(r, T) =
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scale as defined in Eq. (4) [10]. In the central region of thavith respect to the-axis suggests that both the valued bf
cell, we obtain similar results as shown in Figs. 2 and 3 (naandV are nonzero, as shown in Eq. (2).
shown here). Our measurements thus demonstrate that the
temperature statistics at the two locations are spatially ho- ~ Figure 5a shows a 3D plot of the measu&dr, 7) as a
mogeneous and statistica”y stationary, as required by the efunction ofr andr at the center of the convection cell, where
liptic model. the mean velocitydy = 0. Similar to the situation near the
Figure 4a shows a three-dimensional (3D) plot of thesidewall, the measure@r(r, 7) is a single peaked function
measured space-time correlation funct®f(r, ) as a func-  With a maximal value o7(0,0) = 1 at the origin and de-
tion of r andr near the sidewall. The amplitude of the mea-cays monotonically to zero at large valuesrandr. Fig-
suredCt (r’ T) decays monotonica”y a|0ng the two directionsure 5b shows a 2D p|0t of the iso-correlation contours of the
from the peak value o+ (0, 0) = 1 at the origin. The single measurex(r,7) at the cell center with the correlation am-
peaked function o (r, 7) ensures that the iso-correlation plitude varied from 0.95 to 0.4 at decrements of 0.05 (from
contours are closed curves and t8a(r, 7) is differentiable inner to outer contours). The obtained iso-correlation con-
with respect tar andr. Figure 4b shows a 2D plot of the tours appear as a set of ellipses having the same orientation
iso-correlation contours of the measu@g(r, 7) in ther—r  and aspect ratio. The long and short major axes of the el-
plane. From the inner to outer curves, the correlation ampliipses coincide with the andr axes, respectively. The shape
tude is varied from ®8 to Q8 with a decrement of 0.02. It Of the iso-correlation contours is well described by the stan-
is seen that in the- plane explored, all the iso-correlation dard elliptic function as given in Eq. (9). From Eqg. (9), one
contours have a similar elliptic shape, as predicted in Eq. (2§inds that the ratio of the long axis to the short axis for each
They appear as a common set of elliptic curves having thellipse is directly related to the rms velockyvia a/b = V.
same orientation and aspect ratio, as shown in Fig. 1. Th&fth this relationship, one can obtaW directly from the
fact that the iso-correlation contours are tilted at an angligo-correlation contours as shown in Fig. 5b [23].

4 b s —
100k ; % " :
iz} o® ® 4
101k p= 06“ ° ® P L ) ? 4
= z L ®
AT 5 o4t -
= £ o02f .
4 = i
107k yf & .
’ Olsmpl = = = m mm & oE
10,5 L L L I
0 5 10 15
5T /o, r/mm

Fig. 2 (Colour online)a Measured probability density functid®(6T) of the normalized temperature fluctuatiefis/ o near the sidewall.
The measurements are made using the mobile thermistorfferetit vertical distance above the mid height 0.98 mm (blue squares),
2.78 mm (black triangles), 7.22 mm (red circles), and 12.47 mm (green line). All the me&§sifgdire normalized so that their integration
oversT /ot is 1;b MeasuredT (x+r)—T(X)); (red solid squares), rms valug (x+r) (red open squares), and skewn8gs+r) (black solid
circles) of the local temperature fluctuations dfetient locations near the sidewall. All the measurements are madReat 1.4 x 10%°

A T T T b
LOoF 1 1.00
- N
& L < 0.95
S 05 =)
5 L
0.90
0- 1
~10 0 10

/s /s

Fig. 3 (Colour online)a Measured temporal correlation functi@r (0, r) of temperature fluctuations near the sidewall. The measurements
are made using the mobile thermistor foffeient vertical distance above the mid height: 0.98 mm (blue curve), 2.78 mm (black curve),
7.22mm (red curve), and 12.47 mm (green curbeftagnified plots in a for small values of The black solid line shows the fitted function
Cr(0,7) = 1 - (1/2)(r/70)? to the diamonds withr| < 0.1 s. All the measurements are mad®at= 1.4 x 10'°
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r/mm

Fig. 4 a3D plot of the measured space-time correlation funcBe(r, ) as a function of andr; b 2D plot of the iso-correlation contours
of the measure@+(r, 7) in the r-r plane with the correlation amplitude varied from 0.98 to 0.8 at decrements of 0.02 (inner to outer
contours). The correlation amplitude is color coded. All the measurements are conducted near the sidewall at the mid height of the cel

with Ra= 1.4 x 10%°

=

Co(r,7)

T/s

r/mm

Fig.5 a3D plot of the measured space-time correlation func@e(r, ) as a function of andr; b 2D plot of the iso-correlation contours
of the measure®@+(r,7) in the r-r plane with the correlation amplitude varied from 0.95 to 0.4 at decrements of 0.05 (inner to outer
contours). The correlation amplitude is color coded. All the measurements are conducted at the cell ceRteewithx 10°

In general, one can obtain both the valuesJodndV
from the measure@+(r, 7) by using Eq. (2). Figure 6 shows
a comparison between the two space-time correlation func-
tions, one is measured at a single point € 0, red solid
line with dots) and the other is measured at two points sep-
arated by a distancg = 3.68 mm (black dashed line with
dots). According to Eqg. (2), the peak positiop at which
Cr(ro, 7p) reaches the maximum value, satisfies the equation

6rE(rO’ Tp) _
or B
Solving Eq. (12), one finds

0. (12)

‘['p = a(pro, (13)

whereay, = U/(U2 + V?).

1.0F E
':“ 09+ @A 1
=
@]
0.8+ g
0.4 0.2 0 0.2 0.4
T/

Fig.6 Measured space-time correlation functi@r(ro,7) as a
function of r at a fixed value of, = 0 (red solid line with dots)
andry = 3.68 mm (black dashed line with dots). The dots are sepa-
rated by 25 ms in time, corresponding to the sampling rate of 40 Hz

The two red stars in Fig. 1 show two special positiong!sed in the experiment. The short vertical black dashed line indi-
(ro, 0) and (Q1o); both of them satisfy Eq. (2) for a common cates the position af, whenCr(ro, 7)) reaches the maximal value.
value OfrE At these two posnlonS, the Space_tlme Correla_The |ength of the horizontal black dashed line indicates the value

t|on functlonCT (r7 T) [= CT(rE’ O)] haS the sample Value of To, which satisfies the equati@T(O, TO) = CT(ro, O) All the
measurements are made at the cell center Rith: 1.7 x 10

C+(ro,0) = C1(0, 7o). (14)
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Substituting the two positions into Eq. (2), one finds mogorov dissipation length in turbulent convection, which is
To = aolo, (15) estimated to be [40]
whereag = 1/(U?+V?)Y2, Equations (13) and (15) are valid n = LPri/2/(NuR3™*, (18)

for any values of( so long as the elliptic model works. By
measuring the values af, and 7o for a range of values of whereNu is the Nusselt number representing the normal-

ro, ONe can obtain the two slopeg andao in Egs. (13) and ized vertical heat flux. Using the measumd = 0.17R&2°
(15). The two characteristic velocitiesandV in the elliptic  in a similar convection cell [32], we fing ~ 0.35mm at

model are given by Ra= 1.4 x 10'°[34]. Thus the working rangeof the ellip-
@ (16) tic model is up to 3i#f near the sidewall.
- a’ Figure 7b shows the obtained valuestgfand 7o as
and a function ofr at the cell center, where the mean flow ve-

12 locity Upg ~ 0. As predicated in Eq. (13) withh = 0, the
%_ (17) Measured; ~ 0O for all values of up tor 517 mm (as indi-

o cated by the vertical dotted line), which corresponds te 52
Figure 7a shows the obtained valuesrpfandry as a  for Ra= 1.7 x 10'. Within this range of , the measured
function ofr near the sidewall, where the amplitudésand  is well described by a linear functia = aor with the slope
V are comparable. It is seen that in the range gf13mm  «p = 0.116 mnjs (dashed line). With the obtained values of
(as indicated by the vertical dotted line), the two characteris¥, andao, one can calculate the two characteristic velocities
tic times change linearly with, as predicted by Egs. (13) and U andV using Egs. (16) and (17). Figure 7 thus demon-
(15). Forr > 13mm, the data show slight deviations fromstrates that the elliptic form of the iso-correlation contours,
the linear dependence iy indicating that the requirements as predicted in Eq. (2), is not only valid near the origin but is
of the elliptic model are not completely satisfied beyond thigilso a good approximation for larger values @ndr in the
range ofr. We now compare this value ofwith the Kol- inertial range of turbulent convection.

V =

3.0+ O
-~

28 23

7,0 /8
%

7/mm 7/mm

Fig. 7 (Colour online)a Obtained values af, (black diamonds) and, (red circles) as a function ofnear the sidewall witRa= 1.4x10%.
The data points with black dots are used for the two linear fgs= aqr with g = 5.578x 102 mnys (black dashed line) ang = apf
with @, = 4.355x 10-2mnys (red solid line). The vertical dotted line indicates 13 mm;b Obtained values of, (black diamonds) and
7o (red circles) as a function ofat the cell center witiRa= 1.7 x 10°. The red horizontal solid line indicates = 0. The black dashed
line shows the linear fitry = agr with ap = 0.116 mnjs, to the black diamonds with dots. The vertical dotted line indicate4 7 mm

To further verify the elliptic model, we plot, in Fig. 8a, coincides with the master cur@r(rg, 0). Whenr = 0, one
the measure€+(r, 7) as a function of the combined space-findsr = rg from Eq. (2) and thu€+(r,0) = C(rg, 0). The
time separationg on a logarithmic scale. The measurementsame excellent agreement has also been found for the mea-
are conducted near the sidewall withffdrent values of  suredCr(r, 7)’s at the cell center [23]. The measur@d(r, 7)
andr. The value ofrg is calculated using Eq. (2) with =  curves with diferent values of andr can all be brought into
14.0mmys andV = 11.2 mnys, which are obtained from the coincidence with a master curér(rg, 0), oncerg is used
measurements of, andro, as described above. Itis seen thatas a scaling length. Figure 8a thus further confirms that the
the measure€+(r, 7)'s with different values of andr are elliptic approximation given in Eqgs. (2) and (7) is indeed a
all collapsed onto a master cur@ (rg, 0), once the values good approximation for the measured space-time correlation
r andr are re-scaled as the combined space-time separatifumctions in turbulent convection.
re given in Eq. (2). Figure 8a also reveals that the directly

measured space correlation functi(r,0) (red squares) An important prediction of the elliptic model is that

whenr = 0 (single-point measurement), one &0, 1) =
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C+(rg, 0) with ear scales. Itis seen that the peak amplitude of the measured

Ct(r, 7) decreases and its width increases with increasing
—(1)2 2\1/2 _ T
re = (U7 + V)75 = Varr, (19) The broadening o€+ (r, 1) is caused by the large velocity
whereVg; is given by fluctuations near the sidewall, which are characterized by the
_ rms velocityV in Eg. (20). Given these properties, the mea-
= 1/)2 2 — 1
Ver = VU + V< = ag™. (20) suredCr (r, 7) near the sidewall cannot be scaled into a single

It should be pointed out that Eq. (19) is valid even when thenaster curve as shown in Fig. 8a using the linear equation
Taylor frozen-flow hypothesis does not hold. For comparite = U7, as predicted by the Taylor frozen-flow hypothesis.
son, we plot, in Fig. 8b, the same measu@dr, 7)’s as in  This linear equation is valid only when the rms velocity
Fig. 8a but as a function af for different values of in lin-  becomes much smaller than the mean velddity

4 1.0 T i i Lof r ' I ' I
— 0 mm
0.8} © 6.21 mm
o o 08r 6 861 mm
< ok & 4 9.88 mm
~ o 6.21 mm s % 12.47 mm
© < 8.61 mm © 06
4 9.88 mm
x 1247 mm
04 C(r.0) 5 041
100 1ol : =2 0 2
ry/cm /s

Fig.8 aMeasured space-time correlation function(r, 7) as a function of the combined space-time separatioon logarithmic scales.

The measurements are made near the sidew&bat 1.4 x 10° and with varying values of: 0 mm (black solid line), 6.21 mm (blue
circles), 8.61 mm (red diamonds), 9.88 mm (black triangles), 12.47 mm (green crosses). The red squares are the directly measured spz
correlation functiorC+ (r, 0) as a function of (= rg). The values ofg are calculated using Eq. (2) with = 14.0 mnys andV = 11.2 mmys.

The vertical dotted line indicateg = 13 mm;b Same correlation functions as @&plotted as a function of for different values of in

linear scales

3.3 Velocity space-time correlations for the horizontal velocity measurements.

The velocity space-time correlation functi&y(r, )

The elliptic model is also tested recently for the ve-was also measured in a random swirling flow [41]. The
locity space-time correlation functio@,(r, r) in turbulent swirling flow was generated between two horizontal disks
RBC[24]. The velocity measurements were carried out uswith the top disk driven by a commercial rheometer, which
ing PIV in a vertical cylindrical cell with the aspect-ratio shears the fluid between the two disks at a constant rotation
I' = 1 (both the cell diametdd and height equal to 50cm) rate. The aspect-ratio of the flow cell wés- 4.8 and the ve-
at fixed values oRa = 9.5x 10'° andPr = 55. The ve- locity measurements were carried out using PIV in the mid-
locity field was measured in the rotation plane of the LSCplane between the two horizontal disks. Being sheared by the
It was found that the iso-correlation contours of the mearotating disk, the flow structure was found to be close to that
suredCy(r, 7) for the vertical velocity near the sidewall have of a fly wheel with the mean velocityy ~ 0 at the center,

a similar elliptic shape as those shown in Fig. 4b with an oriincreasing radially away from the center, and reached a max-
entation angle determined by the valuedJodndV. Atthe imum value near the sidewall. This flow structure is quite
cell center wherd) ~ 0, the iso-correlation contours of the similar to that in the plane of the LSC in turbulent convec-
measured,(r, 7) for both the vertical and horizontal veloc- tion, where Taylor’s frozen-flow hypothesis does not hold. It
ity are similar to those shown in Fig. 5b with their two ma-was found that [41] the iso-correlation contours of the mea-
jor axes coincided with the andt axes, respectively. The suredC,(r, ) have an elliptic shape as predicted by the ellip-
experiment, therefore, verified the predictions of the elliptidic model. The measured values®fandr, were found to
model as shown in Egs. (2) and (7) for the velocity field. Thancrease linearly withr, as shown in Egs. (13) and (15), but
values ofU andV deduced from the measur€y(r, ) were the obtained slopesy anda, were found to disagree with
compared with those directly measured by PIV. The obtainethe predictions of the Taylor frozen-flow hypothesis. While
value ofU was found to be very close to the directly mea-the authors in Ref. [41] did not use the elliptic model to inter-
sured mean velocityy. The values oV obtained in the prettheir data, itis clearly seen from Egs. (13) to (17) that the
measuring plane, however, were found to be systematicallyeviations from the Taylor hypothesis can be well explained
larger than the measured rms veloeityby a factor of 1.87 by including the contributions of botd andV, as shown in

for the vertical velocity measurements and by a factor of 4.2Eq. (2).
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4 Applications of space-time correlation functions fined as
SI(X+ 1t +1)61 (X )i
o (X+1)oi(X)

The successful test of the elliptic model allows us to have &(r,7) =
reliable analytic relationship between space and time in the
velocity correlation functiorC,(r, 7) and temperature corre- Where(:--);x denotes a space and time averagéx,t) =
lation functionCr(r, 7), which has a wide variety of appli- 1(x,t) — (1) is the intensity variation of the shadowgraph im-
cations in the analysis of experimental and numerical datage, andr,(x+r) ando(X) are, respectively, the rms values
obtained at either a single point or multiple points and in the@f 61 at positionsx + r andx. In Eq. (21), the spatial separa-
study of the statistical properties of small-scale turbulencdion r is obtained for each pair of pixels in the same image.
In this section, we discuss a few examples. The value ofr is given by the time dierence between thieh
and j-th images in the sequence. Compared to the local tem-
perature antr velocity measurements at fixed locations, the
measured, (r, ) from the shadowgraph images is averaged
In some convective flows, such as turbulent RBC in low temover the viewing area. Thus the obtained value&)adnd
perature helium gas [16, 17, 42], direct measurement of thé are averaged quantities over the viewing area as well as
local velocity field is very dficult. In this case, one can over the measuring time. This method of obtaining velocity
obtain the mean velocity and rms velocity/ from multi-  information can also be extended to other flow visualization
point temperature measurements. As shown in Fig. 7, whdmages.
the values ofy ande’ are measured at a number of S€PaArdy 3 Finding wave-number spectrum from single-point fre-
tionsr, one can obtain the slopeg andao from the two lin-

L guency power spectrum
ear plots and calculate the two characteristic velocltiesd
V, respectively, using Egs. (16) and (17). This method wakor many practical flows of interest, experimental informa-
first applied in a high-pressure thermal convection experition about small-scale turbulent fluctuations is often limited
ment [43] with two-point temperature measurements sepde the time series measurement of the local temperature (or
rated by a distance. The measurements used two sepavelocity) at a single or a few spatial positions, from which
ration values, 0 andy. Later, it was used for three-point one obtains the temporal correlation functi@n(0, 7) or its
temperature measurements with uneven separations, resiigurier transfornkr(f). The interpretation of the measured
ing in four values of separation This method has been Er(f) is often made using the Taylor frozen-flow hypothesis
proven to be a useful technique to obtain the velocity inforwithout a further justification about whether it is valid for a
mation and can be used in many practical flows in opaquearticular flow of concern [20, 46].
fluids and in low-temperature, high-pressure, or low-vacuum  As discussed in Sect. B, the temperature space corre-
gases, where one can conduct temperature measurementslation function and temporal correlation function are con-

: (21)

4.1 Finding velocity information from two-point tempera-
ture measurements

it is difficult to conduct direct velocity measurement. nected via the equation
4.2 Finding velocity information from shadowgraph imageCr+(r, 0) = C+(0, 7), (22)
measurements

wherer = V7. For small values of andr, both sides of
As mentioned above, in turbulent Rayleigteriaird convec- EQ.(22) can be expanded up to the second order

tion, temperature as a passive scalar follows the local flow 1r

everywhere in the bulk region of the convection cell excepCt(r,0)=1—- 53— +---,

: 22
near the upper and lower thermal boundary layers. In addi- 1 0 (23)
tion to being a directly measurable passive scalar, temper&;(0,7) = 1 - - —
ture fluctuations in turbulent convection also produce a fluc- 24

tuating refractive index field in the convecting fluid. SuchwhereA; is a micro-scale decay time analogous to the Taylor
a fluctuating field can be visualized using the shadowgrapimicro-scaledy. Substituting Eqg. (23) into Eq. (22), one im-
technique, which measures a longitudinal average (along teediately findslg = VegA,. Taking the Fourier transform of
light path) of the lateral Laplacian of the refractive indexboth equations in Eq. (23), one finds [22]
field [44]. The shadowgraph technique has been widely us
in the study of pattern formation and chaos [45]. elgT(k/lO) = Er(f4). (24)
In a recent experiment, Hogg and Ahlers [25] showedEquation (24) states that the power spectrBm(fA;) in
that the space-time correlation function of the shadowgrapthe frequency domain is equivalent to the power spectrum
images also has the elliptic form and used the elliptic apEr(k1p) in the k-space, once the wave numbers scaled
proximation to study the scaling behavior of the mean veby 1y and the frequency is scaled byi,. Equation (24)
locity U of the large-scale circulation and its rms valMién  thus can be used to obtain the wave-number power spec-
a large-aspect-ratio convection cell filled with low-Prandtl-trum Et(k1p) from the single-point time series measure-
number gas mixtures at high pressures. In the experimenhents, even when the Taylor frozen-flow hypothesis does not
the shadowgraph-intensity correlation functi@ygr, ) isde-  hold [47].
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5 Concluding remarks
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