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Abstract The recent development of the elliptic model (He,
et al. Phy. Rev. E, 2006), which predicts that the space-time
correlation functionCu(r, τ) in a turbulent flow has a scaling
form Cu(rE,0) with rE being a combined space-time separa-
tion involving spatial separationr and time delayτ, has stim-
ulated considerable experimental efforts aimed at testing the
model in various turbulent flows. In this paper, we review
some recent experimental investigations of the space-time
correlation function in turbulent Rayleigh–Bénard convec-
tion. The experiments conducted at different representative
locations in the convection cell confirmed the predictions of
the elliptic model for the velocity field and passive scalar
field, such as local temperature and shadowgraph images.
The understanding of the functional form ofCu(r, τ) has a
wide variety of applications in the analysis of experimental
and numerical data and in the study of the statistical proper-
ties of small-scale turbulence. A few examples are discussed
in the review.

Keywords Turbulent Rayleigh–B́enard convection·Elliptic
model· Space-time correlations

1 Introduction

Fluid turbulence is characterized by a fluctuating velocity
field uuu(xxx, t) at positionxxx and timet. The statistical proper-
ties ofuuu(xxx, t) can be described by the normalized correlation
function at two space-time points separated by a spatial dis-
tancer and time delayτ,
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Cu(r, τ) ≡
〈u(x+ r, t + τ)u(x, t)〉t
σu(x+ r)σu(x)

, (1)

whereσu(x + r) andσu(x) are, respectively, the root-mean-
square (rms) values of the local velocity at positionsx+r and
x. For simplicity, we only consider a one-dimensional case
in Eq. (1), assuming that both the mean flow and its fluctu-
ations are along thex-direction. One can readily extend the
definition to three-dimensional flows, in which case the cor-
relation function becomes a tensor field. Understanding the
relationship between space and time in the velocity correla-
tion functionCu(r, τ) (or a passive-scalar correlation func-
tion) has long been a fundamental issue in statistical theories
of small-scale turbulence and is also a common problem in
the general areas of fluid dynamics, non-equilibrium statisti-
cal physics, geophysics and astrophysics [1–3].

In theories of turbulence, the equal-time correlation
functionCu(r,0) or its Fourier transformEu(k) is often used
to describe the spectrum of turbulent kinetic energy in dif-
ferent lengthsr or wave numbersk. For example, Kol-
mogorov’s self-similarity hypothesis [4] predicted that the
wave-number energy spectrumEu(k) of local velocity fluc-
tuations scales as,Eu(k) ∼ k−5/3, in the inertial subrange. For
near-wall turbulence, the velocity wave-number spectrum in
the log-layer is predicted to have the form,Eu(k)∼k−1, based
on Townsend’s attached-eddy hypothesis [5]. Direct mea-
surement of these quantities, however, is still a challenging
task for experiment. This is partially due to the fact that such
direct measurements require high resolutions both in space
and time over a large viewing area and a long measuring pe-
riod of time. While recent developments of particle image
velocimetry (PIV) allow one to obtain more spatial informa-
tion for small-scale flows, time-domain measurements con-
tinue to play a major role in the experimental study of large-
scale flows, such as turbulent jets and wind tunnels [6, 7].
From the time series measurement of the local velocity (or
a passive scalar) at a single or a few spatial positions, one
can obtain the temporal correlation functionCu(0, τ) or its
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Fourier transform, the frequency spectrumEu( f ). Finding
a relationship between space and time, which connects the
time-domain results to the theoretical predictions made in
the real space (or in the Fourier (k−) space) is, therefore, of
fundamental interest and practical importance to the study of
fluid turbulence.

In 1938, Taylor first proposed the frozen-flow hypoth-
esis [8] in that the spatial structures of a turbulent flow field
can be inferred from the temporal fluctuations at a fixed
downstream-wise position by a linear transformation be-
tween the spatial separationr and the time delayτ. The coef-
ficient which links the two quantities is the mean flow veloc-
ity U0. Taylor’s hypothesis requires a long correlation length
and, thus, is valid only for a special group of flows in which
the mean flow velocityU0 is much larger than the velocity
fluctuations. It was first tested in a grid-generated turbulent
flow in wind tunnel [8]. After that the Taylor frozen-flow
hypothesis has been widely used in the analysis of statistical
properties of the single-point velocity (and passive scalar)
measurements conducted in turbulent wind tunnels and in
other flow systems [9, 10].

For isotropic turbulent flows, where there is no mean
flow (U0 = 0), the Taylor frozen-flow hypothesis is not ex-
pected to be valid. Kraichnan [11] postulated the random
sweeping hypothesis in that small-scale fluctuations are pas-
sively swept by large eddies in the flow, so that the flow
micro-structures are statistically independent of the large ed-
dies. Based on this hypothesis, Tennekes [12] showed that
the effect of flow fluctuations on the Eulerian frequency
spectrum or temporal structure function is to increase advec-
tive broadening. In the inertial subrange, the random sweep-
ing hypothesis leads to that the Eulerian frequency spectrum
of local velocity fluctuations has the formEu( f ) ∼ f −5/3.
This scaling form is the same as the wave-number spectrum
Eu(k) predicted by Kolmogorov’s 1941 self-similarity hy-
pothesis [4, 13]. Consequently, Kraichnan’s random sweep-
ing hypothesis yields a linear relation between the wave
numberk and frequencyf , or equivalently betweenr andτ.
The coefficient which links the two quantities is the random
sweeping velocityσu.

For many practical flows of interest, such as turbulent
jets, channel flows and turbulent thermal convection where
the mean velocityU0 is comparable to the rms velocityσu,
neither Taylor’s frozen-flow hypothesis nor Kraichnan’s ran-
dom sweeping hypothesis holds. Attempts have been made
to deal with those flows in which the characteristic time as-
sociated with small dissipative eddies is finite but not in-
finite, which is required by Taylor’s frozen-flow hypothe-
sis. With the so-called “local Taylor hypothesis” [14], the
space variablex is connected to timeτ via the equation

x =
∫ τ

0
u(0, t)dt, where the integralτ is chosen to be less

than the largest time associated with the energy containing
eddies in the flow. The local Taylor hypothesis was first ap-
plied to von Ḱarmán swirling flow [15] and then to turbulent

Rayleigh–B́enard convection (RBC) [16–18]. It is applica-
ble only to the time series measurement of local velocities
but is not useful for passive scalars [19].

More recently, Zhao and He [20] proposed a model
showing that the space-time correlation functionCu(r, τ) has
a scaling formCu(rE,0) for a stationary and homogenous
flow with the combined space-time separationrE being of
the elliptic form

r2
E = (r − Uτ)2 + V2τ2. (2)

HereU is a characteristic convection velocity proportional to
the mean flow velocityU0 andV is associated with a random
sweeping velocity proportional to the rms velocityσu. This
so-called elliptic model incorporates both Taylor’s frozen-
flow hypothesis whenV is small and Kraichnan’s random
sweeping hypothesis for a homogenous and isotropic turbu-
lent flow with U ' 0. Zhao and He [20, 21] showed that
the scaling formCu(rE,0) is mathematically exact up to the
second order ofCu(r, τ) and numerically demonstrated that
it also hold for large values ofr andτ because of the scale-
invariance of the turbulent flow.

The elliptic model has stimulated considerable experi-
mental efforts aimed at testing it in various turbulent flows.
It was first tested in a turbulent RBC experiment using tem-
peratureT(xxx, t) as a passive scalar field [22, 23]. It was then
further verified in the velocity field [24] and applied to the
shadowgraph image measurements [25] in RBC. More re-
cently, the elliptic model was extended to Lagrangian veloci-
ties in isotropic turbulence [26] and was also used in deriving
the energy spectrum in the wave-number-frequency space for
random sweeping flows with an additional mean speed [27].
In this paper, we review some recent developments in the ex-
perimental investigation of space-time correlation functions
in turbulent RBC.

2 Elliptic approximation for space-time correlations

In the elliptic model, Zhao and He [20, 21] showed that
for a spatially homogeneous and statistically stationary one-
dimensional turbulent flow, the first-order terms in the
Taylor-series expansion of the correlation function

Cu(r, τ) = Cu(0,0)+
∂Cu(0,0)
∂r

r

+
∂Cu(0,0)
∂τ

τ +
∂2Cu(0,0)
∂r∂τ

rτ

+
1
2

(
∂2Cu(0,0)
∂r2

r2 +
∂2Cu(0,0)
∂τ2

τ2
)
+ · · · (3)

vanish. As a result, Eq. (3) can be written as a complete
square form

Cu(r, τ) = Cu(0,0)−
1
2

r2
E

λ2
0

+ · · · , (4)

where the combined space-time separationrE is given by
Eq. (2) andλ2

0 = −(∂2Cu(0,0)/∂r2)−1 is the Taylor micro
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scale. In the above, the two characteristic velocitiesU and
V are determined by the second derivatives ofCu(r, τ) at the
origin

U = −
∂2Cu(0,0)
∂r∂τ

(
∂2Cu(0,0)
∂r2

)−1

, (5)

and

V2 =
∂2Cu(0,0)
∂τ2

(
∂2Cu(0,0)
∂r2

)−1

− U2. (6)

Evidently, Eq. (4) is valid only for small values ofr
andτ, as it is a second-order Taylor expansion. Zhao and
He [20, 21] proposed that if a turbulent flow becomes scale-
invariant in the inertial range at a sufficiently large Reynolds
number,Cu(r, τ) should have a self-similar form

Cu(r, τ) ' Cu(rE,0), (7)

even for large values ofr andτ. Using the direct numerical
simulation (DNS) data, Zhao and He [20] verified Eq. (7) in
a turbulent channel flow. It was found that the velocityU in
Eq. (2) is associated with the mean flow velocityU0 andV is
given by

V = [σ2
u + (Sλ0)2]1/2, (8)

whereS is the shear rate of the flow. For turbulent convec-
tion at the cell center [22] and turbulent pipe flows near the
central line, the termSλ0 is negligibly small and thus one
hasV ' σu.

BecauseCu(r, τ) is averaged over the space and time,
the two characteristic velocities are actually the space-time
averaged velocities. When the mean flow velocityU0 is
much larger than its rms valueσu, the elliptic model as
described in Eqs. (2)–(7) leads to the same result as the
Taylor hypothesis does. For an isotropic random sweep-
ing flow where the flow fluctuations dominate, the elliptic
model gives the same prediction as that made by Kraichnan’s
random sweeping hypothesis. The elliptic model thus natu-
rally incorporates both Taylor’s frozen-flow hypothesis and
Kraichnan’s random sweeping hypothesis. It is expected to
be applicable to a large class of turbulent flows which are
characterized by a combination of mean and rms velocities.

Figure 1 shows the iso-correlation contour plots of
Cu(r, τ) [= Cu(rE,0)] in the r–τ plane for different values of
rE given in Eq. (2) withU = 14.0 mm/s andV = 11.2 mm/s.
It is seen that the iso-correlation contours appear as a set of
elliptic curves having the same origin, orientation and as-
pect ratio. For a given value ofrE, the amplitude ofCu(r, τ)
for different values ofr andτ satisfying Eq. (2) remains the
same, as indicated in Eq. (7). Therefore, Eq. (2) describes
the functional form of the iso-correlation contour ofCu(r, τ).
The aspect ratio and orientation angle of the elliptic contours
are determined by the values ofU andV [21]. WhenU = 0,
the set of elliptic contours has a standard form of the ellipse
with its two major axes coincided with ther andτ axes, re-
spectively. SubstitutingU = 0 into Eq. (2), one finds [23]

r2

a2
+
τ2

b2
= 1, (9)

wherea = rE andb = rE/V. WhenV = 0, Eq. (2) becomes

r = rE + Uτ. (10)

In this case, the Taylor frozen-flow hypothesis is valid and
the iso-correlation contours ofCu(r, τ) are represented by a
set of straight lines with a slope ofU and intercept equal to
rE [21].

Because the Taylor expansion and flow similarity as-
sumption are quite general, the elliptic model is also ex-
pected to be useful for the study of other space-time func-
tions that are used to describe the statistical properties of
small-scale turbulence. Examples of those space-time func-
tions include higher-order space-time correlation functions,
space-time structure functions, and space-time joint proba-
bility density functions. In this review, we focus our attention
on the space-time correlation functionsCu(r, τ) andCT(r, τ).

Fig. 1 Iso-correlation contour plots ofCu(r, τ) [= Cu(rE,0)] in
the r-τ plane for different values ofrE given in Eq. (2) withU =
14.0 mm/s andV = 11.2 mm/s. The two stars indicate two spe-
cial positions (r0,0) and (0, τ0); both of them satisfy Eq. (2) for a
common value ofrE

3 Experimental tests of the elliptic model

3.1 Turbulent Rayleigh–B́enard convection

Turbulent RBC is a model system for the study of convec-
tive turbulence [19, 28–30]. The convective flow is gener-
ated in a confined system between two horizontal plates sep-
arated by a distanceL and heated from below in the pres-
ence of gravity. The flow properties in RBC are determined
by three dimensionless parameters: the Rayleigh number
Ra ≡ αg∆T L3/νκ, the Prandtl numberPr ≡ ν/κ, and the
aspect ratioΓ ≡ D/L of the convection cell. Hereg is the
gravitational acceleration,∆T is the temperature difference
between the two horizontal plates of lateral dimensionD,
andα, ν, andκ are, respectively, the thermal expansion co-
efficient, the kinematic viscosity, and the thermal diffusivity
of the convecting fluid.

When the dimensionless buoyancy forceRa is suffi-
ciently large, the fluid close to the heating and cooling plates
becomes unstable and moves into the interior of the fluid.
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These active fluid parcels are known as thermal plumes.
When the convection reaches a steady state, the thermal
plumes in theΓ ' 1 cell organize themselves into a single
large-scale convection roll (also known as the large-scale cir-
culation, or LSC), which moves from the bottom to the top
and vice versa along the sidewall. Such a convective flow is
also associated with an inhomogeneous distribution of tur-
bulent temperature field. It was found [31, 32] that the tem-
perature difference∆T across the cell is concentrated mainly
in two thin thermal boundary layers adjacent to the bottom
and top conducting plates. There are only a few percent of
∆T dropped across the bulk region of the convecting fluid.
Recent experiments [33] revealed that the mean tempera-
ture profile across the bulk fluid varies logarithmically along
the vertical direction and is symmetric about the mid-height
plane of the cell.

Near the mid height, the logarithmic temperature pro-
file yields a minimum vertical gradient in the mean temper-
ature, which leads to a negligibly small buoyancy compared
to the advection by the convective flow. As a result, tempera-
ture field around the mid-height of the cell is a passive scalar
to a very good approximation, which has been confirmed by
previous studies [18, 34]. Only within the thermal boundary
layers where the buoyancy reaches the maximum and be-
comes dominant over the flow advection as the convective
flow velocity diminishes because of the non-slip boundaries,
the temperature behaves like an active scalar [35, 36].

The velocity field in aΓ = 1 convection cell with
1 × 109 <

∼ Ra <∼ 1 × 1010 and Pr ' 5 has been carefully
studied previously [37]. In the rotation plane of the LSC,
the flow has a fly wheel structure with a zero mean veloc-
ity at the cell center and an increasing mean vertical velocity
along the horizontal cell diameter at the mid-height. After
reaching its maximum value near the sidewall (∼0.05D away
from the sidewall), the mean vertical velocity starts to drop
quickly and becomes zero at the cell wall because of the non-
slip boundary condition. Therefore, the velocity field near
the sidewall at the mid-height is similar to that of a chan-
nel flow with a mean vertical velocityU0 and a rms velocity
σv ' 0.6U0 [37]. In the central region of the cell, on the
other hand, the flow is close to a homogeneous and isotropic
turbulent flow [38] with the mean velocityU0 = 0. At these
two locations, the Taylor frozen-flow hypothesis is not ex-
pected to hold.

3.2 Temperature space-time correlations

Similar to Eq. (1), the normalized correlation function of
temperature fluctuations at two space-time points separated
by a spatial distancer and time delayτ is defined as

CT(r, τ) =
〈δT(x+ r, t + τ)δT(x, t)〉t
σT(x+ r)σT(x)

, (11)

where〈· · · 〉t denotes a time average,δT = T − 〈T〉t, and
σT(x + r) andσT(x) are, respectively, the rms values of the
local temperature fluctuations at positionsx + r andx. Be-
cause the temperature at the cell mid-height behaves like a

passive scalar at the cell center and near the sidewall, the
temperature space-time correlation functionCT(r, τ) at the
two locations is expected to have the same form as that of
Cu(r, τ).

In the experiment,CT(r, τ) is obtained from the two-
point temperature measurement, which are simultaneously
taken by two thermistors of diameter 0.2 mm with a spatial
separationr. Details about the temperature measurements
have been described in Ref. [39]. Near the sidewall, the two
thermistors are placed one above another with the vertical
separationr varying from 0 to 16 mm along the downstream
direction. In the central region, one thermistor is fixed at the
cell center and the other (mobile) thermistor is placed at the
same height as the fixed one with a horizontal separationr.
The value ofr is varied from 0.1 to 90 mm. All the temper-
ature measurements are conducted in the plane of the LSC.
Great care is taken to align the two thermistors at an accuracy
better than 30µm. Typically, we take 10 h-long time series
data at each location with a sampling rate of 40 Hz (> 106

total data points) in order to ensure adequate statistics.

We first examine the spatial dependence of the single-
point temperature statistics near the sidewall. Figure 2a
shows the measured probability density function (pdf)P(δT)
of the normalized temperature fluctuationsδT/σT near the
sidewall. The measurements are made at different verti-
cal locations above the mid height of the cell. All the
pdf curves with varying vertical positions are well superim-
posed with each other over an amplitude range of approxi-
mately 5 decades. Because the convection cell is tilted by
a small angle in such a way that the up-going large-scale
flow passes through the thermistors, the temperature pdfs
are all asymmetric and are skewed toward the positiveδT.
Figure 2b shows the position dependence of the measured
〈T(x + r) − T(x)〉t (red solid squares), rms valueσT(x + r)
(red open squares), and skewnessSk(x + r) (black solid cir-
cles) of the local temperature fluctuations at different loca-
tions r near the sidewall. These measurements suggest that
the single-point temperature statistics near the sidewall, as
described by the temperature pdfP(δT), local temperature
variation〈T(x+ r) − T(x)〉t, rms valueσT(x+ r) and skew-
nessSk(x+ r), are all homogeneous and independent of the
measuring positionr up to around 14 mm (vertical dashed
line).

Figure 3a shows the measured temporal auto-
correlation functionCT(0, τ) of temperature fluctuations near
the sidewall with varying vertical positionsr. It is seen that
the measuredCT(0, τ) remains unchanged with the measur-
ing position r. Without any slow drift in the temperature
data, all the correlation curves decay to 0 when|τ| ' 10 s.
Figure 3b shows the magnified plots in Fig. 3a for small val-
ues ofτ. All the the measuredCT(0, τ)’s are symmetric about
τ = 0, as expected for stationary temperature fluctuations. In
the range of|τ| 6 0.1s, the measuredCT(0, τ) can be well de-
scribed by a parabola function,CT(0, τ) = 1− (1/2)(τ/λτ)2,
with λτ being a decay time in analogous to Taylor’s micro-
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scale as defined in Eq. (4) [10]. In the central region of the
cell, we obtain similar results as shown in Figs. 2 and 3 (not
shown here). Our measurements thus demonstrate that the
temperature statistics at the two locations are spatially ho-
mogeneous and statistically stationary, as required by the el-
liptic model.

Figure 4a shows a three-dimensional (3D) plot of the
measured space-time correlation functionCT(r, τ) as a func-
tion of r andτ near the sidewall. The amplitude of the mea-
suredCT(r, τ) decays monotonically along the two directions
from the peak value ofCT(0,0) = 1 at the origin. The single
peaked function ofCT(r, τ) ensures that the iso-correlation
contours are closed curves and thatCT(r, τ) is differentiable
with respect tor andτ. Figure 4b shows a 2D plot of the
iso-correlation contours of the measuredCT(r, τ) in the r–τ
plane. From the inner to outer curves, the correlation ampli-
tude is varied from 0.98 to 0.8 with a decrement of 0.02. It
is seen that in ther-τ plane explored, all the iso-correlation
contours have a similar elliptic shape, as predicted in Eq. (2).
They appear as a common set of elliptic curves having the
same orientation and aspect ratio, as shown in Fig. 1. The
fact that the iso-correlation contours are tilted at an angle

with respect to ther-axis suggests that both the values ofU
andV are nonzero, as shown in Eq. (2).

Figure 5a shows a 3D plot of the measuredCT(r, τ) as a
function ofr andτ at the center of the convection cell, where
the mean velocityU0 = 0. Similar to the situation near the
sidewall, the measuredCT(r, τ) is a single peaked function
with a maximal value ofCT(0,0) = 1 at the origin and de-
cays monotonically to zero at large values ofr andτ. Fig-
ure 5b shows a 2D plot of the iso-correlation contours of the
measuredCT(r, τ) at the cell center with the correlation am-
plitude varied from 0.95 to 0.4 at decrements of 0.05 (from
inner to outer contours). The obtained iso-correlation con-
tours appear as a set of ellipses having the same orientation
and aspect ratio. The long and short major axes of the el-
lipses coincide with ther andτ axes, respectively. The shape
of the iso-correlation contours is well described by the stan-
dard elliptic function as given in Eq. (9). From Eq. (9), one
finds that the ratio of the long axis to the short axis for each
ellipse is directly related to the rms velocityV via a/b = V.
With this relationship, one can obtainV directly from the
iso-correlation contours as shown in Fig. 5b [23].

Fig. 2 (Colour online)a Measured probability density functionP(δT) of the normalized temperature fluctuationsδT/σT near the sidewall.
The measurements are made using the mobile thermistor for different vertical distance above the mid height:r = 0.98 mm (blue squares),
2.78 mm (black triangles), 7.22 mm (red circles), and 12.47 mm (green line). All the measuredP(δT) are normalized so that their integration
overδT/σT is 1;b Measured〈T(x+r)−T(x)〉t (red solid squares), rms valueσT(x+r) (red open squares), and skewnessSk(x+r) (black solid
circles) of the local temperature fluctuations at different locationsr near the sidewall. All the measurements are made atRa= 1.4× 1010

Fig. 3 (Colour online)a Measured temporal correlation functionCT(0, τ) of temperature fluctuations near the sidewall. The measurements
are made using the mobile thermistor for different vertical distance above the mid height:r = 0.98 mm (blue curve), 2.78 mm (black curve),
7.22 mm (red curve), and 12.47 mm (green curve);b Magnified plots in a for small values ofτ. The black solid line shows the fitted function
CT(0, τ) = 1− (1/2)(τ/τ0)2 to the diamonds with|τ| 6 0.1 s. All the measurements are made atRa= 1.4× 1010
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Fig. 4 a3D plot of the measured space-time correlation functionCT(r, τ) as a function ofr andτ; b 2D plot of the iso-correlation contours
of the measuredCT(r, τ) in the r-τ plane with the correlation amplitude varied from 0.98 to 0.8 at decrements of 0.02 (inner to outer
contours). The correlation amplitude is color coded. All the measurements are conducted near the sidewall at the mid height of the cell
with Ra= 1.4× 1010

Fig. 5 a3D plot of the measured space-time correlation functionCT(r, τ) as a function ofr andτ; b 2D plot of the iso-correlation contours
of the measuredCT(r, τ) in the r-τ plane with the correlation amplitude varied from 0.95 to 0.4 at decrements of 0.05 (inner to outer
contours). The correlation amplitude is color coded. All the measurements are conducted at the cell center withRa= 1.7× 1010

In general, one can obtain both the values ofU andV
from the measuredCT(r, τ) by using Eq. (2). Figure 6 shows
a comparison between the two space-time correlation func-
tions, one is measured at a single point (r0 = 0, red solid
line with dots) and the other is measured at two points sep-
arated by a distancer0 = 3.68 mm (black dashed line with
dots). According to Eq. (2), the peak positionτp, at which
CT(r0, τp) reaches the maximum value, satisfies the equation

∂rE(r0, τp)

∂τ
= 0. (12)

Solving Eq. (12), one finds

τp = αpr0, (13)

whereαp = U/(U2 + V2).

The two red stars in Fig. 1 show two special positions
(r0,0) and (0, τ0); both of them satisfy Eq. (2) for a common
value ofrE. At these two positions, the space-time correla-
tion functionCT(r, τ) [= CT(rE,0)] has the sample value

CT(r0,0) = CT(0, τ0). (14)

Fig. 6 Measured space-time correlation functionCT(r0, τ) as a
function of τ at a fixed value ofr0 = 0 (red solid line with dots)
andr0 = 3.68 mm (black dashed line with dots). The dots are sepa-
rated by 25 ms in time, corresponding to the sampling rate of 40 Hz
used in the experiment. The short vertical black dashed line indi-
cates the position ofτp whenCT(r0, τp) reaches the maximal value.
The length of the horizontal black dashed line indicates the value
of τ0, which satisfies the equationCT(0, τ0) = CT(r0,0). All the
measurements are made at the cell center withRa= 1.7× 1010
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Substituting the two positions into Eq. (2), one finds
τ0 = α0r0, (15)

whereα0 = 1/(U2+V2)1/2. Equations (13) and (15) are valid
for any values ofr0 so long as the elliptic model works. By
measuring the values ofτp andτ0 for a range of values of
r0, one can obtain the two slopesαp andα0 in Eqs. (13) and
(15). The two characteristic velocitiesU andV in the elliptic
model are given by

U =
αp

α2
0

, (16)

and

V =
[1 − (αp/α0)2]1/2

α0
. (17)

Figure 7a shows the obtained values ofτp andτ0 as a
function of r near the sidewall, where the amplitudesU and
V are comparable. It is seen that in the range ofr <∼ 13 mm
(as indicated by the vertical dotted line), the two characteris-
tic times change linearly withr, as predicted by Eqs. (13) and
(15). Forr >∼ 13 mm, the data show slight deviations from
the linear dependence inr, indicating that the requirements
of the elliptic model are not completely satisfied beyond this
range ofr. We now compare this value ofr with the Kol-

mogorov dissipation length in turbulent convection, which is
estimated to be [40]

η = LPr1/2/(NuRa)1/4, (18)

whereNu is the Nusselt number representing the normal-
ized vertical heat flux. Using the measuredNu= 0.17Ra0.29

in a similar convection cell [32], we findη ' 0.35 mm at
Ra= 1.4× 1010 [34]. Thus the working ranger of the ellip-
tic model is up to 37η near the sidewall.

Figure 7b shows the obtained values ofτp and τ0 as
a function ofr at the cell center, where the mean flow ve-
locity U0 ' 0. As predicated in Eq. (13) withU = 0, the
measuredτp ' 0 for all values ofr up tor <∼ 17 mm (as indi-
cated by the vertical dotted line), which corresponds to 52η
for Ra= 1.7× 1010. Within this range ofr, the measuredτ0
is well described by a linear functionτ0 = α0r with the slope
α0 = 0.116 mm/s (dashed line). With the obtained values of
αp andα0, one can calculate the two characteristic velocities
U and V using Eqs. (16) and (17). Figure 7 thus demon-
strates that the elliptic form of the iso-correlation contours,
as predicted in Eq. (2), is not only valid near the origin but is
also a good approximation for larger values ofr andτ in the
inertial range of turbulent convection.

Fig. 7 (Colour online)a Obtained values ofτ0 (black diamonds) andτp (red circles) as a function ofr near the sidewall withRa= 1.4×1010.
The data points with black dots are used for the two linear fits:τ0 = α0r with α0 = 5.578× 10−2 mm/s (black dashed line) andτp = αpr
with αp = 4.355× 10−2 mm/s (red solid line). The vertical dotted line indicatesr = 13 mm;b Obtained values ofτ0 (black diamonds) and
τp (red circles) as a function ofr at the cell center withRa= 1.7× 1010. The red horizontal solid line indicatesτp = 0. The black dashed
line shows the linear fit,τ0 = α0r with α0 = 0.116 mm/s, to the black diamonds with dots. The vertical dotted line indicatesr = 17 mm

To further verify the elliptic model, we plot, in Fig. 8a,
the measuredCT(r, τ) as a function of the combined space-
time separationrE on a logarithmic scale. The measurements
are conducted near the sidewall with different values ofr
andτ. The value ofrE is calculated using Eq. (2) withU =
14.0 mm/s andV = 11.2 mm/s, which are obtained from the
measurements ofτp andτ0, as described above. It is seen that
the measuredCT(r, τ)’s with different values ofr andτ are
all collapsed onto a master curveCT(rE,0), once the values
r andτ are re-scaled as the combined space-time separation
rE given in Eq. (2). Figure 8a also reveals that the directly
measured space correlation functionCT(r,0) (red squares)

coincides with the master curveCT(rE,0). Whenτ = 0, one
findsr = rE from Eq. (2) and thusCT(r,0) = CT(rE,0). The
same excellent agreement has also been found for the mea-
suredCT(r, τ)’s at the cell center [23]. The measuredCT(r, τ)
curves with different values ofr andτ can all be brought into
coincidence with a master curveCT(rE,0), oncerE is used
as a scaling length. Figure 8a thus further confirms that the
elliptic approximation given in Eqs. (2) and (7) is indeed a
good approximation for the measured space-time correlation
functions in turbulent convection.

An important prediction of the elliptic model is that
whenr = 0 (single-point measurement), one hasCT(0, τ) =
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CT(rE,0) with

rE = (U2 + V2)1/2τ = Veffτ, (19)

whereVeff is given by

Veff ≡
√

U2 + V2 = α−1
0 . (20)

It should be pointed out that Eq. (19) is valid even when the
Taylor frozen-flow hypothesis does not hold. For compari-
son, we plot, in Fig. 8b, the same measuredCT(r, τ)’s as in
Fig. 8a but as a function ofτ for different values ofr in lin-

ear scales. It is seen that the peak amplitude of the measured
CT(r, τ) decreases and its width increases with increasingr.
The broadening ofCT(r, τ) is caused by the large velocity
fluctuations near the sidewall, which are characterized by the
rms velocityV in Eq. (20). Given these properties, the mea-
suredCT(r, τ) near the sidewall cannot be scaled into a single
master curve as shown in Fig. 8a using the linear equation
rE = Uτ, as predicted by the Taylor frozen-flow hypothesis.
This linear equation is valid only when the rms velocityV
becomes much smaller than the mean velocityU.

Fig. 8 a Measured space-time correlation functionCT(r, τ) as a function of the combined space-time separationrE on logarithmic scales.
The measurements are made near the sidewall atRa = 1.4 × 1010 and with varying values ofr: 0 mm (black solid line), 6.21 mm (blue
circles), 8.61 mm (red diamonds), 9.88 mm (black triangles), 12.47 mm (green crosses). The red squares are the directly measured space
correlation functionCT(r,0) as a function ofr (= rE). The values ofrE are calculated using Eq. (2) withU = 14.0 mm/s andV = 11.2 mm/s.
The vertical dotted line indicatesrE = 13 mm;b Same correlation functions as ina plotted as a function ofτ for different values ofr in
linear scales

3.3 Velocity space-time correlations

The elliptic model is also tested recently for the ve-
locity space-time correlation functionCu(r, τ) in turbulent
RBC [24]. The velocity measurements were carried out us-
ing PIV in a vertical cylindrical cell with the aspect-ratio
Γ = 1 (both the cell diameterD and heightL equal to 50 cm)
at fixed values ofRa = 9.5 × 1010 andPr = 5.5. The ve-
locity field was measured in the rotation plane of the LSC.
It was found that the iso-correlation contours of the mea-
suredCu(r, τ) for the vertical velocity near the sidewall have
a similar elliptic shape as those shown in Fig. 4b with an ori-
entation angle determined by the values ofU andV. At the
cell center whereU ' 0, the iso-correlation contours of the
measuredCu(r, τ) for both the vertical and horizontal veloc-
ity are similar to those shown in Fig. 5b with their two ma-
jor axes coincided with ther andτ axes, respectively. The
experiment, therefore, verified the predictions of the elliptic
model as shown in Eqs. (2) and (7) for the velocity field. The
values ofU andV deduced from the measuredCu(r, τ) were
compared with those directly measured by PIV. The obtained
value ofU was found to be very close to the directly mea-
sured mean velocityU0. The values ofV obtained in the
measuring plane, however, were found to be systematically
larger than the measured rms velocityσu by a factor of 1.87
for the vertical velocity measurements and by a factor of 4.21

for the horizontal velocity measurements.
The velocity space-time correlation functionCu(r, τ)

was also measured in a random swirling flow [41]. The
swirling flow was generated between two horizontal disks
with the top disk driven by a commercial rheometer, which
shears the fluid between the two disks at a constant rotation
rate. The aspect-ratio of the flow cell wasΓ = 4.8 and the ve-
locity measurements were carried out using PIV in the mid-
plane between the two horizontal disks. Being sheared by the
rotating disk, the flow structure was found to be close to that
of a fly wheel with the mean velocityU0 ' 0 at the center,
increasing radially away from the center, and reached a max-
imum value near the sidewall. This flow structure is quite
similar to that in the plane of the LSC in turbulent convec-
tion, where Taylor’s frozen-flow hypothesis does not hold. It
was found that [41] the iso-correlation contours of the mea-
suredCu(r, τ) have an elliptic shape as predicted by the ellip-
tic model. The measured values ofτ0 andτp were found to
increase linearly withr, as shown in Eqs. (13) and (15), but
the obtained slopesα0 andαp were found to disagree with
the predictions of the Taylor frozen-flow hypothesis. While
the authors in Ref. [41] did not use the elliptic model to inter-
pret their data, it is clearly seen from Eqs. (13) to (17) that the
deviations from the Taylor hypothesis can be well explained
by including the contributions of bothU andV, as shown in
Eq. (2).
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4 Applications of space-time correlation functions

The successful test of the elliptic model allows us to have a
reliable analytic relationship between space and time in the
velocity correlation functionCu(r, τ) and temperature corre-
lation functionCT(r, τ), which has a wide variety of appli-
cations in the analysis of experimental and numerical data
obtained at either a single point or multiple points and in the
study of the statistical properties of small-scale turbulence.
In this section, we discuss a few examples.

4.1 Finding velocity information from two-point tempera-
ture measurements

In some convective flows, such as turbulent RBC in low tem-
perature helium gas [16, 17, 42], direct measurement of the
local velocity field is very difficult. In this case, one can
obtain the mean velocityU and rms velocityV from multi-
point temperature measurements. As shown in Fig. 7, when
the values ofτp andτ0 are measured at a number of separa-
tionsr, one can obtain the slopesαp andα0 from the two lin-
ear plots and calculate the two characteristic velocitiesU and
V, respectively, using Eqs. (16) and (17). This method was
first applied in a high-pressure thermal convection experi-
ment [43] with two-point temperature measurements sepa-
rated by a distancer0. The measurements used two sepa-
ration values, 0 andr0. Later, it was used for three-point
temperature measurements with uneven separations, result-
ing in four values of separationr. This method has been
proven to be a useful technique to obtain the velocity infor-
mation and can be used in many practical flows in opaque
fluids and in low-temperature, high-pressure, or low-vacuum
gases, where one can conduct temperature measurements but
it is difficult to conduct direct velocity measurement.

4.2 Finding velocity information from shadowgraph image
measurements

As mentioned above, in turbulent Rayleigh–Bénard convec-
tion, temperature as a passive scalar follows the local flow
everywhere in the bulk region of the convection cell except
near the upper and lower thermal boundary layers. In addi-
tion to being a directly measurable passive scalar, tempera-
ture fluctuations in turbulent convection also produce a fluc-
tuating refractive index field in the convecting fluid. Such
a fluctuating field can be visualized using the shadowgraph
technique, which measures a longitudinal average (along the
light path) of the lateral Laplacian of the refractive index
field [44]. The shadowgraph technique has been widely used
in the study of pattern formation and chaos [45].

In a recent experiment, Hogg and Ahlers [25] showed
that the space-time correlation function of the shadowgraph
images also has the elliptic form and used the elliptic ap-
proximation to study the scaling behavior of the mean ve-
locity U of the large-scale circulation and its rms valueV in
a large-aspect-ratio convection cell filled with low-Prandtl-
number gas mixtures at high pressures. In the experiment,
the shadowgraph-intensity correlation functionCI (r, τ) is de-

fined as

CI (r, τ) =
〈δI (x+ r, t + τ)δI (x, t)〉t,x

σI (x+ r)σI (x)
, (21)

where〈· · · 〉t,x denotes a space and time average,δI (x, t) =
I (x, t) − 〈I〉 is the intensity variation of the shadowgraph im-
age, andσI (x+ r) andσI (x) are, respectively, the rms values
of δI at positionsx+ r andx. In Eq. (21), the spatial separa-
tion r is obtained for each pair of pixels in the same image.
The value ofτ is given by the time difference between thei-th
and j-th images in the sequence. Compared to the local tem-
perature and/or velocity measurements at fixed locations, the
measuredCI (r, τ) from the shadowgraph images is averaged
over the viewing area. Thus the obtained values ofU and
V are averaged quantities over the viewing area as well as
over the measuring time. This method of obtaining velocity
information can also be extended to other flow visualization
images.

4.3 Finding wave-number spectrum from single-point fre-
quency power spectrum

For many practical flows of interest, experimental informa-
tion about small-scale turbulent fluctuations is often limited
to the time series measurement of the local temperature (or
velocity) at a single or a few spatial positions, from which
one obtains the temporal correlation functionCT(0, τ) or its
Fourier transformET( f ). The interpretation of the measured
ET( f ) is often made using the Taylor frozen-flow hypothesis
without a further justification about whether it is valid for a
particular flow of concern [20, 46].

As discussed in Sect. B, the temperature space corre-
lation function and temporal correlation function are con-
nected via the equation

CT(r,0) = CT(0, τ), (22)

wherer = Veffτ. For small values ofr andτ, both sides of
Eq. (22) can be expanded up to the second order

CT(r,0) = 1−
1
2

r
λ0
+ · · · ,

CT(0, τ) = 1−
1
2
τ

λτ
+ · · · ,

(23)

whereλτ is a micro-scale decay time analogous to the Taylor
micro-scaleλ0. Substituting Eq. (23) into Eq. (22), one im-
mediately findsλ0 = Veffλτ. Taking the Fourier transform of
both equations in Eq. (23), one finds [22]

ET(kλ0) = ET( fλτ). (24)

Equation (24) states that the power spectrumET( fλτ) in
the frequency domain is equivalent to the power spectrum
ET(kλ0) in the k-space, once the wave numberk is scaled
by λ0 and the frequencyf is scaled byλτ. Equation (24)
thus can be used to obtain the wave-number power spec-
trum ET(kλ0) from the single-point time series measure-
ments, even when the Taylor frozen-flow hypothesis does not
hold [47].
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5 Concluding remarks

The space-time correlation functionsCu(r, τ) for a velocity
field andCT(r, τ) for a passive scalar field, such as temper-
ature fluctuations in the bulk region of turbulent RBC, are
important functions that are used to describe the statistical
properties of small-scale turbulence. Theoretical predictions
are given in space and experimental information about small-
scale turbulent fluctuations is often limited to the time series
measurement at a single or a few spatial locations. Finding
a connection between the time-domain results and the theo-
retical predictions made in the real space (or in the Fourier
space) beyond Taylor’s frozen-flow hypothesis is therefore
of fundamental interest and of practical importance to the
study of fluid turbulence.

The recently developed elliptic model showed that for
a stationary and homogenous turbulent flow with two char-
acteristic velocities, the mean velocityU and a fluctuating
velocity V, its space-time correlation functionCu(r, τ) [or
CT(r, τ)] has a scaling formCu(rE,0) [or CT(rE,0)], where
the combined space-time separationrE is given in Eq. (2).
This elliptic relationship betweenr andτ is exact up to sec-
ond order and may also hold for large values ofr andτ if
the flow is scale-invariant. A number of experiments have
been carried out recently to study the scaling behavior of
the space-time correlation functions in turbulent RBC. These
experiments verified the elliptic model and demonstrated its
applications to a class of turbulent flows in which the require-
ment of Taylor’s frozen-flow hypothesis is not met. In addi-
tion to the space-time correlation functions, there are other
space-time functions used to describe the statistical prop-
erties of small-scale turbulence. Examples include higher-
order space-time correlation functions, space-time structure
functions, and space-time joint probability density functions.
How the space and time are connected in these functions
need to be addressed in future theoretical and experimental
investigations.
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